
This PR implements structured, tooling-friendly optimization remarks with zero cost unless enabled. It implements: - `RemarkEngine` collects finalized remarks within `MLIRContext`. - `MLIRRemarkStreamerBase` abstract class streams them to a backend. - Backends: `MLIRLLVMRemarkStreamer` (bridges to llvm::remarks → YAML/Bitstream) or your own custom streamer. - Optional mirroring to DiagnosticEngine (printAsEmitRemarks + categories). - Off by default; no behavior change unless enabled. Thread-safe; ordering best-effort. ## Overview ``` Passes (reportOptimization*) │ ▼ +-------------------+ | RemarkEngine | collects +-------------------+ │ │ │ mirror │ stream ▼ ▼ emitRemark MLIRRemarkStreamerBase (abstract) │ ├── MLIRLLVMRemarkStreamer → llvm::remarks → YAML | Bitstream └── CustomStreamer → your sink ``` ## Enable Remark engine and Plug LLVM's Remark streamer ``` // Enable once per MLIRContext. This uses `MLIRLLVMRemarkStreamer` mlir::remark::enableOptimizationRemarksToFile( ctx, path, llvm::remarks::Format::YAML, cats); ``` ## API to emit remark ``` // Emit from a pass remark::passed(loc, categoryVectorizer, myPassname1) << "vectorized loop"; remark::missed(loc, categoryUnroll, "MyPass") << remark::reason("not profitable at this size") // Creates structured reason arg << remark::suggest("increase unroll factor to >=4"); // Creates structured suggestion arg remark::passed(loc, categoryVectorizer, myPassname1) << "vectorized loop" << remark::metric("tripCount", 128); // Create structured metric on-the-fly ```
MLIR documentation ================== Please note mlir.llvm.org is where MLIR's rendered documentation is displayed. The viewing experience on GitHub or elsewhere may not match those of the website. For any changes please verify instead that they work on the main website first. See https://github.com/llvm/mlir-www for the website generation information.