
AAPCS32 defines the fp16 and bf16 types as being passed as if they were extended to 32 bits, with the high 16 bits being unspecified. The extension is specified as happening as-if it was done in a register, which means that for big endian targets, the actual value gets passed in the higher addressed half of the stack slot, instead of the lower addressed half as for little endian. Previously, for targets with the fp16 extension, we were passing these types as a 16 bit stack slot, which worked for little endian because every later stack slot would be 4-byte aligned leaving the 2 byte gap, but was incorrect for big endian.
333 lines
13 KiB
C++
333 lines
13 KiB
C++
//=== ARMCallingConv.cpp - ARM Custom CC Routines ---------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the custom routines for the ARM Calling Convention that
|
|
// aren't done by tablegen, and includes the table generated implementations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARMCallingConv.h"
|
|
#include "ARM.h"
|
|
#include "ARMSubtarget.h"
|
|
using namespace llvm;
|
|
|
|
// APCS f64 is in register pairs, possibly split to stack
|
|
static bool f64AssignAPCS(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo,
|
|
CCState &State, bool CanFail) {
|
|
static const MCPhysReg RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
|
|
|
|
// Try to get the first register.
|
|
if (MCRegister Reg = State.AllocateReg(RegList))
|
|
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
else {
|
|
// For the 2nd half of a v2f64, do not fail.
|
|
if (CanFail)
|
|
return false;
|
|
|
|
// Put the whole thing on the stack.
|
|
State.addLoc(CCValAssign::getCustomMem(
|
|
ValNo, ValVT, State.AllocateStack(8, Align(4)), LocVT, LocInfo));
|
|
return true;
|
|
}
|
|
|
|
// Try to get the second register.
|
|
if (MCRegister Reg = State.AllocateReg(RegList))
|
|
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
else
|
|
State.addLoc(CCValAssign::getCustomMem(
|
|
ValNo, ValVT, State.AllocateStack(4, Align(4)), LocVT, LocInfo));
|
|
return true;
|
|
}
|
|
|
|
static bool CC_ARM_APCS_Custom_f64(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags,
|
|
CCState &State) {
|
|
if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
|
|
return false;
|
|
if (LocVT == MVT::v2f64 &&
|
|
!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
|
|
return false;
|
|
return true; // we handled it
|
|
}
|
|
|
|
// AAPCS f64 is in aligned register pairs
|
|
static bool f64AssignAAPCS(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo,
|
|
CCState &State, bool CanFail) {
|
|
static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 };
|
|
static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 };
|
|
static const MCPhysReg ShadowRegList[] = { ARM::R0, ARM::R1 };
|
|
static const MCPhysReg GPRArgRegs[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
|
|
|
|
MCRegister Reg = State.AllocateReg(HiRegList, ShadowRegList);
|
|
if (!Reg) {
|
|
|
|
// If we had R3 unallocated only, now we still must to waste it.
|
|
Reg = State.AllocateReg(GPRArgRegs);
|
|
assert((!Reg || Reg == ARM::R3) && "Wrong GPRs usage for f64");
|
|
|
|
// For the 2nd half of a v2f64, do not just fail.
|
|
if (CanFail)
|
|
return false;
|
|
|
|
// Put the whole thing on the stack.
|
|
State.addLoc(CCValAssign::getCustomMem(
|
|
ValNo, ValVT, State.AllocateStack(8, Align(8)), LocVT, LocInfo));
|
|
return true;
|
|
}
|
|
|
|
unsigned i;
|
|
for (i = 0; i < 2; ++i)
|
|
if (HiRegList[i] == Reg)
|
|
break;
|
|
|
|
MCRegister T = State.AllocateReg(LoRegList[i]);
|
|
(void)T;
|
|
assert(T == LoRegList[i] && "Could not allocate register");
|
|
|
|
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
|
|
LocVT, LocInfo));
|
|
return true;
|
|
}
|
|
|
|
static bool CC_ARM_AAPCS_Custom_f64(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags,
|
|
CCState &State) {
|
|
if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
|
|
return false;
|
|
if (LocVT == MVT::v2f64 &&
|
|
!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
|
|
return false;
|
|
return true; // we handled it
|
|
}
|
|
|
|
static bool f64RetAssign(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo, CCState &State) {
|
|
static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 };
|
|
static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 };
|
|
|
|
MCRegister Reg = State.AllocateReg(HiRegList, LoRegList);
|
|
if (!Reg)
|
|
return false; // we didn't handle it
|
|
|
|
unsigned i;
|
|
for (i = 0; i < 2; ++i)
|
|
if (HiRegList[i] == Reg)
|
|
break;
|
|
|
|
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
|
|
LocVT, LocInfo));
|
|
return true;
|
|
}
|
|
|
|
static bool RetCC_ARM_APCS_Custom_f64(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags,
|
|
CCState &State) {
|
|
if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
|
|
return false;
|
|
if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
|
|
return false;
|
|
return true; // we handled it
|
|
}
|
|
|
|
static bool RetCC_ARM_AAPCS_Custom_f64(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags,
|
|
CCState &State) {
|
|
return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
|
|
State);
|
|
}
|
|
|
|
static const MCPhysReg RRegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
|
|
|
|
static const MCPhysReg SRegList[] = { ARM::S0, ARM::S1, ARM::S2, ARM::S3,
|
|
ARM::S4, ARM::S5, ARM::S6, ARM::S7,
|
|
ARM::S8, ARM::S9, ARM::S10, ARM::S11,
|
|
ARM::S12, ARM::S13, ARM::S14, ARM::S15 };
|
|
static const MCPhysReg DRegList[] = { ARM::D0, ARM::D1, ARM::D2, ARM::D3,
|
|
ARM::D4, ARM::D5, ARM::D6, ARM::D7 };
|
|
static const MCPhysReg QRegList[] = { ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3 };
|
|
|
|
|
|
// Allocate part of an AAPCS HFA or HVA. We assume that each member of the HA
|
|
// has InConsecutiveRegs set, and that the last member also has
|
|
// InConsecutiveRegsLast set. We must process all members of the HA before
|
|
// we can allocate it, as we need to know the total number of registers that
|
|
// will be needed in order to (attempt to) allocate a contiguous block.
|
|
static bool CC_ARM_AAPCS_Custom_Aggregate(unsigned ValNo, MVT ValVT,
|
|
MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags,
|
|
CCState &State) {
|
|
SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();
|
|
|
|
// AAPCS HFAs must have 1-4 elements, all of the same type
|
|
if (PendingMembers.size() > 0)
|
|
assert(PendingMembers[0].getLocVT() == LocVT);
|
|
|
|
// Add the argument to the list to be allocated once we know the size of the
|
|
// aggregate. Store the type's required alignment as extra info for later: in
|
|
// the [N x i64] case all trace has been removed by the time we actually get
|
|
// to do allocation.
|
|
PendingMembers.push_back(CCValAssign::getPending(
|
|
ValNo, ValVT, LocVT, LocInfo, ArgFlags.getNonZeroOrigAlign().value()));
|
|
|
|
if (!ArgFlags.isInConsecutiveRegsLast())
|
|
return true;
|
|
|
|
// Try to allocate a contiguous block of registers, each of the correct
|
|
// size to hold one member.
|
|
auto &DL = State.getMachineFunction().getDataLayout();
|
|
const MaybeAlign StackAlign = DL.getStackAlignment();
|
|
assert(StackAlign && "data layout string is missing stack alignment");
|
|
const Align FirstMemberAlign(PendingMembers[0].getExtraInfo());
|
|
Align Alignment = std::min(FirstMemberAlign, *StackAlign);
|
|
|
|
ArrayRef<MCPhysReg> RegList;
|
|
switch (LocVT.SimpleTy) {
|
|
case MVT::i32: {
|
|
RegList = RRegList;
|
|
unsigned RegIdx = State.getFirstUnallocated(RegList);
|
|
|
|
// First consume all registers that would give an unaligned object. Whether
|
|
// we go on stack or in regs, no-one will be using them in future.
|
|
unsigned RegAlign = alignTo(Alignment.value(), 4) / 4;
|
|
while (RegIdx % RegAlign != 0 && RegIdx < RegList.size())
|
|
State.AllocateReg(RegList[RegIdx++]);
|
|
|
|
break;
|
|
}
|
|
case MVT::f16:
|
|
case MVT::bf16:
|
|
case MVT::f32:
|
|
RegList = SRegList;
|
|
break;
|
|
case MVT::v4f16:
|
|
case MVT::v4bf16:
|
|
case MVT::f64:
|
|
RegList = DRegList;
|
|
break;
|
|
case MVT::v8f16:
|
|
case MVT::v8bf16:
|
|
case MVT::v2f64:
|
|
RegList = QRegList;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected member type for block aggregate");
|
|
break;
|
|
}
|
|
|
|
ArrayRef<MCPhysReg> RegResult =
|
|
State.AllocateRegBlock(RegList, PendingMembers.size());
|
|
if (!RegResult.empty()) {
|
|
for (const auto &[PendingMember, Reg] : zip(PendingMembers, RegResult)) {
|
|
PendingMember.convertToReg(Reg);
|
|
State.addLoc(PendingMember);
|
|
}
|
|
PendingMembers.clear();
|
|
return true;
|
|
}
|
|
|
|
// Register allocation failed, we'll be needing the stack
|
|
unsigned Size = LocVT.getSizeInBits() / 8;
|
|
if (LocVT == MVT::i32 && State.getStackSize() == 0) {
|
|
// If nothing else has used the stack until this point, a non-HFA aggregate
|
|
// can be split between regs and stack.
|
|
unsigned RegIdx = State.getFirstUnallocated(RegList);
|
|
for (auto &It : PendingMembers) {
|
|
if (RegIdx >= RegList.size())
|
|
It.convertToMem(State.AllocateStack(Size, Align(Size)));
|
|
else
|
|
It.convertToReg(State.AllocateReg(RegList[RegIdx++]));
|
|
|
|
State.addLoc(It);
|
|
}
|
|
PendingMembers.clear();
|
|
return true;
|
|
}
|
|
|
|
if (LocVT != MVT::i32)
|
|
RegList = SRegList;
|
|
|
|
// Mark all regs as unavailable (AAPCS rule C.2.vfp for VFP, C.6 for core)
|
|
for (auto Reg : RegList)
|
|
State.AllocateReg(Reg);
|
|
|
|
// Clamp the alignment between 4 and 8.
|
|
if (State.getMachineFunction().getSubtarget<ARMSubtarget>().isTargetAEABI())
|
|
Alignment = ArgFlags.getNonZeroMemAlign() <= 4 ? Align(4) : Align(8);
|
|
|
|
// After the first item has been allocated, the rest are packed as tightly as
|
|
// possible. (E.g. an incoming i64 would have starting Align of 8, but we'll
|
|
// be allocating a bunch of i32 slots).
|
|
for (auto &It : PendingMembers) {
|
|
It.convertToMem(State.AllocateStack(Size, Alignment));
|
|
State.addLoc(It);
|
|
Alignment = Align(1);
|
|
}
|
|
|
|
// All pending members have now been allocated
|
|
PendingMembers.clear();
|
|
|
|
// This will be allocated by the last member of the aggregate
|
|
return true;
|
|
}
|
|
|
|
static bool CustomAssignInRegList(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo, CCState &State,
|
|
ArrayRef<MCPhysReg> RegList) {
|
|
MCRegister Reg = State.AllocateReg(RegList);
|
|
if (Reg) {
|
|
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool CC_ARM_AAPCS_Custom_f16(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags, CCState &State) {
|
|
// f16 and bf16 arguments are extended to i32 and assigned to a register in
|
|
// [r0, r3].
|
|
return CustomAssignInRegList(ValNo, ValVT, MVT::i32, LocInfo, State,
|
|
RRegList);
|
|
}
|
|
|
|
static bool CC_ARM_AAPCS_VFP_Custom_f16(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags,
|
|
CCState &State) {
|
|
// f16 and bf16 arguments are extended to f32 and assigned to a register in
|
|
// [s0, s15].
|
|
return CustomAssignInRegList(ValNo, ValVT, MVT::f32, LocInfo, State,
|
|
SRegList);
|
|
}
|
|
|
|
static bool CC_ARM_AAPCS_Common_Custom_f16_Stack(unsigned ValNo, MVT ValVT,
|
|
MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags,
|
|
CCState &State) {
|
|
// f16 and bf16 (if not passed in a register) are assigned to a 32-bit stack
|
|
// slot, with the most-significant 16 bits unspecified. The 32-bit slot is
|
|
// important to make sure that the byte ordering is correct for big endian
|
|
// targets.
|
|
State.addLoc(CCValAssign::getCustomMem(
|
|
ValNo, ValVT, State.AllocateStack(4, Align(4)), MVT::i32, LocInfo));
|
|
return true;
|
|
}
|
|
|
|
// Include the table generated calling convention implementations.
|
|
#include "ARMGenCallingConv.inc"
|