
Now that #149310 has restricted lifetime intrinsics to only work on allocas, we can also drop the explicit size argument. Instead, the size is implied by the alloca. This removes the ability to only mark a prefix of an alloca alive/dead. We never used that capability, so we should remove the need to handle that possibility everywhere (though many key places, including stack coloring, did not actually respect this).
1014 lines
36 KiB
C++
1014 lines
36 KiB
C++
//===-- ExpandVariadicsPass.cpp --------------------------------*- C++ -*-=//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This is an optimization pass for variadic functions. If called from codegen,
|
|
// it can serve as the implementation of variadic functions for a given target.
|
|
//
|
|
// The strategy is to turn the ... part of a variadic function into a va_list
|
|
// and fix up the call sites. The majority of the pass is target independent.
|
|
// The exceptions are the va_list type itself and the rules for where to store
|
|
// variables in memory such that va_arg can iterate over them given a va_list.
|
|
//
|
|
// The majority of the plumbing is splitting the variadic function into a
|
|
// single basic block that packs the variadic arguments into a va_list and
|
|
// a second function that does the work of the original. That packing is
|
|
// exactly what is done by va_start. Further, the transform from ... to va_list
|
|
// replaced va_start with an operation to copy a va_list from the new argument,
|
|
// which is exactly a va_copy. This is useful for reducing target-dependence.
|
|
//
|
|
// A va_list instance is a forward iterator, where the primary operation va_arg
|
|
// is dereference-then-increment. This interface forces significant convergent
|
|
// evolution between target specific implementations. The variation in runtime
|
|
// data layout is limited to that representable by the iterator, parameterised
|
|
// by the type passed to the va_arg instruction.
|
|
//
|
|
// Therefore the majority of the target specific subtlety is packing arguments
|
|
// into a stack allocated buffer such that a va_list can be initialised with it
|
|
// and the va_arg expansion for the target will find the arguments at runtime.
|
|
//
|
|
// The aggregate effect is to unblock other transforms, most critically the
|
|
// general purpose inliner. Known calls to variadic functions become zero cost.
|
|
//
|
|
// Consistency with clang is primarily tested by emitting va_arg using clang
|
|
// then expanding the variadic functions using this pass, followed by trying
|
|
// to constant fold the functions to no-ops.
|
|
//
|
|
// Target specific behaviour is tested in IR - mainly checking that values are
|
|
// put into positions in call frames that make sense for that particular target.
|
|
//
|
|
// There is one "clever" invariant in use. va_start intrinsics that are not
|
|
// within a varidic functions are an error in the IR verifier. When this
|
|
// transform moves blocks from a variadic function into a fixed arity one, it
|
|
// moves va_start intrinsics along with everything else. That means that the
|
|
// va_start intrinsics that need to be rewritten to use the trailing argument
|
|
// are exactly those that are in non-variadic functions so no further state
|
|
// is needed to distinguish those that need to be rewritten.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/ExpandVariadics.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/TargetParser/Triple.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
|
|
#define DEBUG_TYPE "expand-variadics"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
cl::opt<ExpandVariadicsMode> ExpandVariadicsModeOption(
|
|
DEBUG_TYPE "-override", cl::desc("Override the behaviour of " DEBUG_TYPE),
|
|
cl::init(ExpandVariadicsMode::Unspecified),
|
|
cl::values(clEnumValN(ExpandVariadicsMode::Unspecified, "unspecified",
|
|
"Use the implementation defaults"),
|
|
clEnumValN(ExpandVariadicsMode::Disable, "disable",
|
|
"Disable the pass entirely"),
|
|
clEnumValN(ExpandVariadicsMode::Optimize, "optimize",
|
|
"Optimise without changing ABI"),
|
|
clEnumValN(ExpandVariadicsMode::Lowering, "lowering",
|
|
"Change variadic calling convention")));
|
|
|
|
bool commandLineOverride() {
|
|
return ExpandVariadicsModeOption != ExpandVariadicsMode::Unspecified;
|
|
}
|
|
|
|
// Instances of this class encapsulate the target-dependant behaviour as a
|
|
// function of triple. Implementing a new ABI is adding a case to the switch
|
|
// in create(llvm::Triple) at the end of this file.
|
|
// This class may end up instantiated in TargetMachine instances, keeping it
|
|
// here for now until enough targets are implemented for the API to evolve.
|
|
class VariadicABIInfo {
|
|
protected:
|
|
VariadicABIInfo() = default;
|
|
|
|
public:
|
|
static std::unique_ptr<VariadicABIInfo> create(const Triple &T);
|
|
|
|
// Allow overriding whether the pass runs on a per-target basis
|
|
virtual bool enableForTarget() = 0;
|
|
|
|
// Whether a valist instance is passed by value or by address
|
|
// I.e. does it need to be alloca'ed and stored into, or can
|
|
// it be passed directly in a SSA register
|
|
virtual bool vaListPassedInSSARegister() = 0;
|
|
|
|
// The type of a va_list iterator object
|
|
virtual Type *vaListType(LLVMContext &Ctx) = 0;
|
|
|
|
// The type of a va_list as a function argument as lowered by C
|
|
virtual Type *vaListParameterType(Module &M) = 0;
|
|
|
|
// Initialize an allocated va_list object to point to an already
|
|
// initialized contiguous memory region.
|
|
// Return the value to pass as the va_list argument
|
|
virtual Value *initializeVaList(Module &M, LLVMContext &Ctx,
|
|
IRBuilder<> &Builder, AllocaInst *VaList,
|
|
Value *Buffer) = 0;
|
|
|
|
struct VAArgSlotInfo {
|
|
Align DataAlign; // With respect to the call frame
|
|
bool Indirect; // Passed via a pointer
|
|
};
|
|
virtual VAArgSlotInfo slotInfo(const DataLayout &DL, Type *Parameter) = 0;
|
|
|
|
// Targets implemented so far all have the same trivial lowering for these
|
|
bool vaEndIsNop() { return true; }
|
|
bool vaCopyIsMemcpy() { return true; }
|
|
|
|
virtual ~VariadicABIInfo() = default;
|
|
};
|
|
|
|
class ExpandVariadics : public ModulePass {
|
|
|
|
// The pass construction sets the default to optimize when called from middle
|
|
// end and lowering when called from the backend. The command line variable
|
|
// overrides that. This is useful for testing and debugging. It also allows
|
|
// building an applications with variadic functions wholly removed if one
|
|
// has sufficient control over the dependencies, e.g. a statically linked
|
|
// clang that has no variadic function calls remaining in the binary.
|
|
|
|
public:
|
|
static char ID;
|
|
const ExpandVariadicsMode Mode;
|
|
std::unique_ptr<VariadicABIInfo> ABI;
|
|
|
|
ExpandVariadics(ExpandVariadicsMode Mode)
|
|
: ModulePass(ID),
|
|
Mode(commandLineOverride() ? ExpandVariadicsModeOption : Mode) {}
|
|
|
|
StringRef getPassName() const override { return "Expand variadic functions"; }
|
|
|
|
bool rewriteABI() { return Mode == ExpandVariadicsMode::Lowering; }
|
|
|
|
bool runOnModule(Module &M) override;
|
|
|
|
bool runOnFunction(Module &M, IRBuilder<> &Builder, Function *F);
|
|
|
|
Function *replaceAllUsesWithNewDeclaration(Module &M,
|
|
Function *OriginalFunction);
|
|
|
|
Function *deriveFixedArityReplacement(Module &M, IRBuilder<> &Builder,
|
|
Function *OriginalFunction);
|
|
|
|
Function *defineVariadicWrapper(Module &M, IRBuilder<> &Builder,
|
|
Function *VariadicWrapper,
|
|
Function *FixedArityReplacement);
|
|
|
|
bool expandCall(Module &M, IRBuilder<> &Builder, CallBase *CB, FunctionType *,
|
|
Function *NF);
|
|
|
|
// The intrinsic functions va_copy and va_end are removed unconditionally.
|
|
// They correspond to a memcpy and a no-op on all implemented targets.
|
|
// The va_start intrinsic is removed from basic blocks that were not created
|
|
// by this pass, some may remain if needed to maintain the external ABI.
|
|
|
|
template <Intrinsic::ID ID, typename InstructionType>
|
|
bool expandIntrinsicUsers(Module &M, IRBuilder<> &Builder,
|
|
PointerType *IntrinsicArgType) {
|
|
bool Changed = false;
|
|
const DataLayout &DL = M.getDataLayout();
|
|
if (Function *Intrinsic =
|
|
Intrinsic::getDeclarationIfExists(&M, ID, {IntrinsicArgType})) {
|
|
for (User *U : make_early_inc_range(Intrinsic->users()))
|
|
if (auto *I = dyn_cast<InstructionType>(U))
|
|
Changed |= expandVAIntrinsicCall(Builder, DL, I);
|
|
|
|
if (Intrinsic->use_empty())
|
|
Intrinsic->eraseFromParent();
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
bool expandVAIntrinsicUsersWithAddrspace(Module &M, IRBuilder<> &Builder,
|
|
unsigned Addrspace) {
|
|
auto &Ctx = M.getContext();
|
|
PointerType *IntrinsicArgType = PointerType::get(Ctx, Addrspace);
|
|
bool Changed = false;
|
|
|
|
// expand vastart before vacopy as vastart may introduce a vacopy
|
|
Changed |= expandIntrinsicUsers<Intrinsic::vastart, VAStartInst>(
|
|
M, Builder, IntrinsicArgType);
|
|
Changed |= expandIntrinsicUsers<Intrinsic::vaend, VAEndInst>(
|
|
M, Builder, IntrinsicArgType);
|
|
Changed |= expandIntrinsicUsers<Intrinsic::vacopy, VACopyInst>(
|
|
M, Builder, IntrinsicArgType);
|
|
return Changed;
|
|
}
|
|
|
|
bool expandVAIntrinsicCall(IRBuilder<> &Builder, const DataLayout &DL,
|
|
VAStartInst *Inst);
|
|
|
|
bool expandVAIntrinsicCall(IRBuilder<> &, const DataLayout &,
|
|
VAEndInst *Inst);
|
|
|
|
bool expandVAIntrinsicCall(IRBuilder<> &Builder, const DataLayout &DL,
|
|
VACopyInst *Inst);
|
|
|
|
FunctionType *inlinableVariadicFunctionType(Module &M, FunctionType *FTy) {
|
|
// The type of "FTy" with the ... removed and a va_list appended
|
|
SmallVector<Type *> ArgTypes(FTy->params());
|
|
ArgTypes.push_back(ABI->vaListParameterType(M));
|
|
return FunctionType::get(FTy->getReturnType(), ArgTypes,
|
|
/*IsVarArgs=*/false);
|
|
}
|
|
|
|
bool expansionApplicableToFunction(Module &M, Function *F) {
|
|
if (F->isIntrinsic() || !F->isVarArg() ||
|
|
F->hasFnAttribute(Attribute::Naked))
|
|
return false;
|
|
|
|
if (F->getCallingConv() != CallingConv::C)
|
|
return false;
|
|
|
|
if (rewriteABI())
|
|
return true;
|
|
|
|
if (!F->hasExactDefinition())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool expansionApplicableToFunctionCall(CallBase *CB) {
|
|
if (CallInst *CI = dyn_cast<CallInst>(CB)) {
|
|
if (CI->isMustTailCall()) {
|
|
// Cannot expand musttail calls
|
|
return false;
|
|
}
|
|
|
|
if (CI->getCallingConv() != CallingConv::C)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
if (isa<InvokeInst>(CB)) {
|
|
// Invoke not implemented in initial implementation of pass
|
|
return false;
|
|
}
|
|
|
|
// Other unimplemented derivative of CallBase
|
|
return false;
|
|
}
|
|
|
|
class ExpandedCallFrame {
|
|
// Helper for constructing an alloca instance containing the arguments bound
|
|
// to the variadic ... parameter, rearranged to allow indexing through a
|
|
// va_list iterator
|
|
enum { N = 4 };
|
|
SmallVector<Type *, N> FieldTypes;
|
|
enum Tag { Store, Memcpy, Padding };
|
|
SmallVector<std::tuple<Value *, uint64_t, Tag>, N> Source;
|
|
|
|
template <Tag tag> void append(Type *FieldType, Value *V, uint64_t Bytes) {
|
|
FieldTypes.push_back(FieldType);
|
|
Source.push_back({V, Bytes, tag});
|
|
}
|
|
|
|
public:
|
|
void store(LLVMContext &Ctx, Type *T, Value *V) { append<Store>(T, V, 0); }
|
|
|
|
void memcpy(LLVMContext &Ctx, Type *T, Value *V, uint64_t Bytes) {
|
|
append<Memcpy>(T, V, Bytes);
|
|
}
|
|
|
|
void padding(LLVMContext &Ctx, uint64_t By) {
|
|
append<Padding>(ArrayType::get(Type::getInt8Ty(Ctx), By), nullptr, 0);
|
|
}
|
|
|
|
size_t size() const { return FieldTypes.size(); }
|
|
bool empty() const { return FieldTypes.empty(); }
|
|
|
|
StructType *asStruct(LLVMContext &Ctx, StringRef Name) {
|
|
const bool IsPacked = true;
|
|
return StructType::create(Ctx, FieldTypes,
|
|
(Twine(Name) + ".vararg").str(), IsPacked);
|
|
}
|
|
|
|
void initializeStructAlloca(const DataLayout &DL, IRBuilder<> &Builder,
|
|
AllocaInst *Alloced) {
|
|
|
|
StructType *VarargsTy = cast<StructType>(Alloced->getAllocatedType());
|
|
|
|
for (size_t I = 0; I < size(); I++) {
|
|
|
|
auto [V, bytes, tag] = Source[I];
|
|
|
|
if (tag == Padding) {
|
|
assert(V == nullptr);
|
|
continue;
|
|
}
|
|
|
|
auto Dst = Builder.CreateStructGEP(VarargsTy, Alloced, I);
|
|
|
|
assert(V != nullptr);
|
|
|
|
if (tag == Store)
|
|
Builder.CreateStore(V, Dst);
|
|
|
|
if (tag == Memcpy)
|
|
Builder.CreateMemCpy(Dst, {}, V, {}, bytes);
|
|
}
|
|
}
|
|
};
|
|
};
|
|
|
|
bool ExpandVariadics::runOnModule(Module &M) {
|
|
bool Changed = false;
|
|
if (Mode == ExpandVariadicsMode::Disable)
|
|
return Changed;
|
|
|
|
Triple TT(M.getTargetTriple());
|
|
ABI = VariadicABIInfo::create(TT);
|
|
if (!ABI)
|
|
return Changed;
|
|
|
|
if (!ABI->enableForTarget())
|
|
return Changed;
|
|
|
|
auto &Ctx = M.getContext();
|
|
const DataLayout &DL = M.getDataLayout();
|
|
IRBuilder<> Builder(Ctx);
|
|
|
|
// Lowering needs to run on all functions exactly once.
|
|
// Optimize could run on functions containing va_start exactly once.
|
|
for (Function &F : make_early_inc_range(M))
|
|
Changed |= runOnFunction(M, Builder, &F);
|
|
|
|
// After runOnFunction, all known calls to known variadic functions have been
|
|
// replaced. va_start intrinsics are presently (and invalidly!) only present
|
|
// in functions that used to be variadic and have now been replaced to take a
|
|
// va_list instead. If lowering as opposed to optimising, calls to unknown
|
|
// variadic functions have also been replaced.
|
|
|
|
{
|
|
// 0 and AllocaAddrSpace are sufficient for the targets implemented so far
|
|
unsigned Addrspace = 0;
|
|
Changed |= expandVAIntrinsicUsersWithAddrspace(M, Builder, Addrspace);
|
|
|
|
Addrspace = DL.getAllocaAddrSpace();
|
|
if (Addrspace != 0)
|
|
Changed |= expandVAIntrinsicUsersWithAddrspace(M, Builder, Addrspace);
|
|
}
|
|
|
|
if (Mode != ExpandVariadicsMode::Lowering)
|
|
return Changed;
|
|
|
|
for (Function &F : make_early_inc_range(M)) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
|
|
// Now need to track down indirect calls. Can't find those
|
|
// by walking uses of variadic functions, need to crawl the instruction
|
|
// stream. Fortunately this is only necessary for the ABI rewrite case.
|
|
for (BasicBlock &BB : F) {
|
|
for (Instruction &I : make_early_inc_range(BB)) {
|
|
if (CallBase *CB = dyn_cast<CallBase>(&I)) {
|
|
if (CB->isIndirectCall()) {
|
|
FunctionType *FTy = CB->getFunctionType();
|
|
if (FTy->isVarArg())
|
|
Changed |= expandCall(M, Builder, CB, FTy, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool ExpandVariadics::runOnFunction(Module &M, IRBuilder<> &Builder,
|
|
Function *OriginalFunction) {
|
|
bool Changed = false;
|
|
|
|
if (!expansionApplicableToFunction(M, OriginalFunction))
|
|
return Changed;
|
|
|
|
[[maybe_unused]] const bool OriginalFunctionIsDeclaration =
|
|
OriginalFunction->isDeclaration();
|
|
assert(rewriteABI() || !OriginalFunctionIsDeclaration);
|
|
|
|
// Declare a new function and redirect every use to that new function
|
|
Function *VariadicWrapper =
|
|
replaceAllUsesWithNewDeclaration(M, OriginalFunction);
|
|
assert(VariadicWrapper->isDeclaration());
|
|
assert(OriginalFunction->use_empty());
|
|
|
|
// Create a new function taking va_list containing the implementation of the
|
|
// original
|
|
Function *FixedArityReplacement =
|
|
deriveFixedArityReplacement(M, Builder, OriginalFunction);
|
|
assert(OriginalFunction->isDeclaration());
|
|
assert(FixedArityReplacement->isDeclaration() ==
|
|
OriginalFunctionIsDeclaration);
|
|
assert(VariadicWrapper->isDeclaration());
|
|
|
|
// Create a single block forwarding wrapper that turns a ... into a va_list
|
|
[[maybe_unused]] Function *VariadicWrapperDefine =
|
|
defineVariadicWrapper(M, Builder, VariadicWrapper, FixedArityReplacement);
|
|
assert(VariadicWrapperDefine == VariadicWrapper);
|
|
assert(!VariadicWrapper->isDeclaration());
|
|
|
|
// We now have:
|
|
// 1. the original function, now as a declaration with no uses
|
|
// 2. a variadic function that unconditionally calls a fixed arity replacement
|
|
// 3. a fixed arity function equivalent to the original function
|
|
|
|
// Replace known calls to the variadic with calls to the va_list equivalent
|
|
for (User *U : make_early_inc_range(VariadicWrapper->users())) {
|
|
if (CallBase *CB = dyn_cast<CallBase>(U)) {
|
|
Value *CalledOperand = CB->getCalledOperand();
|
|
if (VariadicWrapper == CalledOperand)
|
|
Changed |=
|
|
expandCall(M, Builder, CB, VariadicWrapper->getFunctionType(),
|
|
FixedArityReplacement);
|
|
}
|
|
}
|
|
|
|
// The original function will be erased.
|
|
// One of the two new functions will become a replacement for the original.
|
|
// When preserving the ABI, the other is an internal implementation detail.
|
|
// When rewriting the ABI, RAUW then the variadic one.
|
|
Function *const ExternallyAccessible =
|
|
rewriteABI() ? FixedArityReplacement : VariadicWrapper;
|
|
Function *const InternalOnly =
|
|
rewriteABI() ? VariadicWrapper : FixedArityReplacement;
|
|
|
|
// The external function is the replacement for the original
|
|
ExternallyAccessible->setLinkage(OriginalFunction->getLinkage());
|
|
ExternallyAccessible->setVisibility(OriginalFunction->getVisibility());
|
|
ExternallyAccessible->setComdat(OriginalFunction->getComdat());
|
|
ExternallyAccessible->takeName(OriginalFunction);
|
|
|
|
// Annotate the internal one as internal
|
|
InternalOnly->setVisibility(GlobalValue::DefaultVisibility);
|
|
InternalOnly->setLinkage(GlobalValue::InternalLinkage);
|
|
|
|
// The original is unused and obsolete
|
|
OriginalFunction->eraseFromParent();
|
|
|
|
InternalOnly->removeDeadConstantUsers();
|
|
|
|
if (rewriteABI()) {
|
|
// All known calls to the function have been removed by expandCall
|
|
// Resolve everything else by replaceAllUsesWith
|
|
VariadicWrapper->replaceAllUsesWith(FixedArityReplacement);
|
|
VariadicWrapper->eraseFromParent();
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
Function *
|
|
ExpandVariadics::replaceAllUsesWithNewDeclaration(Module &M,
|
|
Function *OriginalFunction) {
|
|
auto &Ctx = M.getContext();
|
|
Function &F = *OriginalFunction;
|
|
FunctionType *FTy = F.getFunctionType();
|
|
Function *NF = Function::Create(FTy, F.getLinkage(), F.getAddressSpace());
|
|
|
|
NF->setName(F.getName() + ".varargs");
|
|
|
|
F.getParent()->getFunctionList().insert(F.getIterator(), NF);
|
|
|
|
AttrBuilder ParamAttrs(Ctx);
|
|
AttributeList Attrs = NF->getAttributes();
|
|
Attrs = Attrs.addParamAttributes(Ctx, FTy->getNumParams(), ParamAttrs);
|
|
NF->setAttributes(Attrs);
|
|
|
|
OriginalFunction->replaceAllUsesWith(NF);
|
|
return NF;
|
|
}
|
|
|
|
Function *
|
|
ExpandVariadics::deriveFixedArityReplacement(Module &M, IRBuilder<> &Builder,
|
|
Function *OriginalFunction) {
|
|
Function &F = *OriginalFunction;
|
|
// The purpose here is split the variadic function F into two functions
|
|
// One is a variadic function that bundles the passed argument into a va_list
|
|
// and passes it to the second function. The second function does whatever
|
|
// the original F does, except that it takes a va_list instead of the ...
|
|
|
|
assert(expansionApplicableToFunction(M, &F));
|
|
|
|
auto &Ctx = M.getContext();
|
|
|
|
// Returned value isDeclaration() is equal to F.isDeclaration()
|
|
// but that property is not invariant throughout this function
|
|
const bool FunctionIsDefinition = !F.isDeclaration();
|
|
|
|
FunctionType *FTy = F.getFunctionType();
|
|
SmallVector<Type *> ArgTypes(FTy->params());
|
|
ArgTypes.push_back(ABI->vaListParameterType(M));
|
|
|
|
FunctionType *NFTy = inlinableVariadicFunctionType(M, FTy);
|
|
Function *NF = Function::Create(NFTy, F.getLinkage(), F.getAddressSpace());
|
|
|
|
// Note - same attribute handling as DeadArgumentElimination
|
|
NF->copyAttributesFrom(&F);
|
|
NF->setComdat(F.getComdat());
|
|
F.getParent()->getFunctionList().insert(F.getIterator(), NF);
|
|
NF->setName(F.getName() + ".valist");
|
|
|
|
AttrBuilder ParamAttrs(Ctx);
|
|
|
|
AttributeList Attrs = NF->getAttributes();
|
|
Attrs = Attrs.addParamAttributes(Ctx, NFTy->getNumParams() - 1, ParamAttrs);
|
|
NF->setAttributes(Attrs);
|
|
|
|
// Splice the implementation into the new function with minimal changes
|
|
if (FunctionIsDefinition) {
|
|
NF->splice(NF->begin(), &F);
|
|
|
|
auto NewArg = NF->arg_begin();
|
|
for (Argument &Arg : F.args()) {
|
|
Arg.replaceAllUsesWith(NewArg);
|
|
NewArg->setName(Arg.getName()); // takeName without killing the old one
|
|
++NewArg;
|
|
}
|
|
NewArg->setName("varargs");
|
|
}
|
|
|
|
SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
|
|
F.getAllMetadata(MDs);
|
|
for (auto [KindID, Node] : MDs)
|
|
NF->addMetadata(KindID, *Node);
|
|
F.clearMetadata();
|
|
|
|
return NF;
|
|
}
|
|
|
|
Function *
|
|
ExpandVariadics::defineVariadicWrapper(Module &M, IRBuilder<> &Builder,
|
|
Function *VariadicWrapper,
|
|
Function *FixedArityReplacement) {
|
|
auto &Ctx = Builder.getContext();
|
|
const DataLayout &DL = M.getDataLayout();
|
|
assert(VariadicWrapper->isDeclaration());
|
|
Function &F = *VariadicWrapper;
|
|
|
|
assert(F.isDeclaration());
|
|
Type *VaListTy = ABI->vaListType(Ctx);
|
|
|
|
auto *BB = BasicBlock::Create(Ctx, "entry", &F);
|
|
Builder.SetInsertPoint(BB);
|
|
|
|
AllocaInst *VaListInstance =
|
|
Builder.CreateAlloca(VaListTy, nullptr, "va_start");
|
|
|
|
Builder.CreateLifetimeStart(VaListInstance);
|
|
|
|
Builder.CreateIntrinsic(Intrinsic::vastart, {DL.getAllocaPtrType(Ctx)},
|
|
{VaListInstance});
|
|
|
|
SmallVector<Value *> Args(llvm::make_pointer_range(F.args()));
|
|
|
|
Type *ParameterType = ABI->vaListParameterType(M);
|
|
if (ABI->vaListPassedInSSARegister())
|
|
Args.push_back(Builder.CreateLoad(ParameterType, VaListInstance));
|
|
else
|
|
Args.push_back(Builder.CreateAddrSpaceCast(VaListInstance, ParameterType));
|
|
|
|
CallInst *Result = Builder.CreateCall(FixedArityReplacement, Args);
|
|
|
|
Builder.CreateIntrinsic(Intrinsic::vaend, {DL.getAllocaPtrType(Ctx)},
|
|
{VaListInstance});
|
|
Builder.CreateLifetimeEnd(VaListInstance);
|
|
|
|
if (Result->getType()->isVoidTy())
|
|
Builder.CreateRetVoid();
|
|
else
|
|
Builder.CreateRet(Result);
|
|
|
|
return VariadicWrapper;
|
|
}
|
|
|
|
bool ExpandVariadics::expandCall(Module &M, IRBuilder<> &Builder, CallBase *CB,
|
|
FunctionType *VarargFunctionType,
|
|
Function *NF) {
|
|
bool Changed = false;
|
|
const DataLayout &DL = M.getDataLayout();
|
|
|
|
if (!expansionApplicableToFunctionCall(CB)) {
|
|
if (rewriteABI())
|
|
report_fatal_error("Cannot lower callbase instruction");
|
|
return Changed;
|
|
}
|
|
|
|
// This is tricky. The call instruction's function type might not match
|
|
// the type of the caller. When optimising, can leave it unchanged.
|
|
// Webassembly detects that inconsistency and repairs it.
|
|
FunctionType *FuncType = CB->getFunctionType();
|
|
if (FuncType != VarargFunctionType) {
|
|
if (!rewriteABI())
|
|
return Changed;
|
|
FuncType = VarargFunctionType;
|
|
}
|
|
|
|
auto &Ctx = CB->getContext();
|
|
|
|
Align MaxFieldAlign(1);
|
|
|
|
// The strategy is to allocate a call frame containing the variadic
|
|
// arguments laid out such that a target specific va_list can be initialized
|
|
// with it, such that target specific va_arg instructions will correctly
|
|
// iterate over it. This means getting the alignment right and sometimes
|
|
// embedding a pointer to the value instead of embedding the value itself.
|
|
|
|
Function *CBF = CB->getParent()->getParent();
|
|
|
|
ExpandedCallFrame Frame;
|
|
|
|
uint64_t CurrentOffset = 0;
|
|
|
|
for (unsigned I = FuncType->getNumParams(), E = CB->arg_size(); I < E; ++I) {
|
|
Value *ArgVal = CB->getArgOperand(I);
|
|
const bool IsByVal = CB->paramHasAttr(I, Attribute::ByVal);
|
|
const bool IsByRef = CB->paramHasAttr(I, Attribute::ByRef);
|
|
|
|
// The type of the value being passed, decoded from byval/byref metadata if
|
|
// required
|
|
Type *const UnderlyingType = IsByVal ? CB->getParamByValType(I)
|
|
: IsByRef ? CB->getParamByRefType(I)
|
|
: ArgVal->getType();
|
|
const uint64_t UnderlyingSize =
|
|
DL.getTypeAllocSize(UnderlyingType).getFixedValue();
|
|
|
|
// The type to be written into the call frame
|
|
Type *FrameFieldType = UnderlyingType;
|
|
|
|
// The value to copy from when initialising the frame alloca
|
|
Value *SourceValue = ArgVal;
|
|
|
|
VariadicABIInfo::VAArgSlotInfo SlotInfo = ABI->slotInfo(DL, UnderlyingType);
|
|
|
|
if (SlotInfo.Indirect) {
|
|
// The va_arg lowering loads through a pointer. Set up an alloca to aim
|
|
// that pointer at.
|
|
Builder.SetInsertPointPastAllocas(CBF);
|
|
Builder.SetCurrentDebugLocation(CB->getStableDebugLoc());
|
|
Value *CallerCopy =
|
|
Builder.CreateAlloca(UnderlyingType, nullptr, "IndirectAlloca");
|
|
|
|
Builder.SetInsertPoint(CB);
|
|
if (IsByVal)
|
|
Builder.CreateMemCpy(CallerCopy, {}, ArgVal, {}, UnderlyingSize);
|
|
else
|
|
Builder.CreateStore(ArgVal, CallerCopy);
|
|
|
|
// Indirection now handled, pass the alloca ptr by value
|
|
FrameFieldType = DL.getAllocaPtrType(Ctx);
|
|
SourceValue = CallerCopy;
|
|
}
|
|
|
|
// Alignment of the value within the frame
|
|
// This probably needs to be controllable as a function of type
|
|
Align DataAlign = SlotInfo.DataAlign;
|
|
|
|
MaxFieldAlign = std::max(MaxFieldAlign, DataAlign);
|
|
|
|
uint64_t DataAlignV = DataAlign.value();
|
|
if (uint64_t Rem = CurrentOffset % DataAlignV) {
|
|
// Inject explicit padding to deal with alignment requirements
|
|
uint64_t Padding = DataAlignV - Rem;
|
|
Frame.padding(Ctx, Padding);
|
|
CurrentOffset += Padding;
|
|
}
|
|
|
|
if (SlotInfo.Indirect) {
|
|
Frame.store(Ctx, FrameFieldType, SourceValue);
|
|
} else {
|
|
if (IsByVal)
|
|
Frame.memcpy(Ctx, FrameFieldType, SourceValue, UnderlyingSize);
|
|
else
|
|
Frame.store(Ctx, FrameFieldType, SourceValue);
|
|
}
|
|
|
|
CurrentOffset += DL.getTypeAllocSize(FrameFieldType).getFixedValue();
|
|
}
|
|
|
|
if (Frame.empty()) {
|
|
// Not passing any arguments, hopefully va_arg won't try to read any
|
|
// Creating a single byte frame containing nothing to point the va_list
|
|
// instance as that is less special-casey in the compiler and probably
|
|
// easier to interpret in a debugger.
|
|
Frame.padding(Ctx, 1);
|
|
}
|
|
|
|
StructType *VarargsTy = Frame.asStruct(Ctx, CBF->getName());
|
|
|
|
// The struct instance needs to be at least MaxFieldAlign for the alignment of
|
|
// the fields to be correct at runtime. Use the native stack alignment instead
|
|
// if that's greater as that tends to give better codegen.
|
|
// This is an awkward way to guess whether there is a known stack alignment
|
|
// without hitting an assert in DL.getStackAlignment, 1024 is an arbitrary
|
|
// number likely to be greater than the natural stack alignment.
|
|
Align AllocaAlign = MaxFieldAlign;
|
|
if (MaybeAlign StackAlign = DL.getStackAlignment();
|
|
StackAlign && *StackAlign > AllocaAlign)
|
|
AllocaAlign = *StackAlign;
|
|
|
|
// Put the alloca to hold the variadic args in the entry basic block.
|
|
Builder.SetInsertPointPastAllocas(CBF);
|
|
|
|
// SetCurrentDebugLocation when the builder SetInsertPoint method does not
|
|
Builder.SetCurrentDebugLocation(CB->getStableDebugLoc());
|
|
|
|
// The awkward construction here is to set the alignment on the instance
|
|
AllocaInst *Alloced = Builder.Insert(
|
|
new AllocaInst(VarargsTy, DL.getAllocaAddrSpace(), nullptr, AllocaAlign),
|
|
"vararg_buffer");
|
|
Changed = true;
|
|
assert(Alloced->getAllocatedType() == VarargsTy);
|
|
|
|
// Initialize the fields in the struct
|
|
Builder.SetInsertPoint(CB);
|
|
Builder.CreateLifetimeStart(Alloced);
|
|
Frame.initializeStructAlloca(DL, Builder, Alloced);
|
|
|
|
const unsigned NumArgs = FuncType->getNumParams();
|
|
SmallVector<Value *> Args(CB->arg_begin(), CB->arg_begin() + NumArgs);
|
|
|
|
// Initialize a va_list pointing to that struct and pass it as the last
|
|
// argument
|
|
AllocaInst *VaList = nullptr;
|
|
{
|
|
if (!ABI->vaListPassedInSSARegister()) {
|
|
Type *VaListTy = ABI->vaListType(Ctx);
|
|
Builder.SetInsertPointPastAllocas(CBF);
|
|
Builder.SetCurrentDebugLocation(CB->getStableDebugLoc());
|
|
VaList = Builder.CreateAlloca(VaListTy, nullptr, "va_argument");
|
|
Builder.SetInsertPoint(CB);
|
|
Builder.CreateLifetimeStart(VaList);
|
|
}
|
|
Builder.SetInsertPoint(CB);
|
|
Args.push_back(ABI->initializeVaList(M, Ctx, Builder, VaList, Alloced));
|
|
}
|
|
|
|
// Attributes excluding any on the vararg arguments
|
|
AttributeList PAL = CB->getAttributes();
|
|
if (!PAL.isEmpty()) {
|
|
SmallVector<AttributeSet, 8> ArgAttrs;
|
|
for (unsigned ArgNo = 0; ArgNo < NumArgs; ArgNo++)
|
|
ArgAttrs.push_back(PAL.getParamAttrs(ArgNo));
|
|
PAL =
|
|
AttributeList::get(Ctx, PAL.getFnAttrs(), PAL.getRetAttrs(), ArgAttrs);
|
|
}
|
|
|
|
SmallVector<OperandBundleDef, 1> OpBundles;
|
|
CB->getOperandBundlesAsDefs(OpBundles);
|
|
|
|
CallBase *NewCB = nullptr;
|
|
|
|
if (CallInst *CI = dyn_cast<CallInst>(CB)) {
|
|
Value *Dst = NF ? NF : CI->getCalledOperand();
|
|
FunctionType *NFTy = inlinableVariadicFunctionType(M, VarargFunctionType);
|
|
|
|
NewCB = CallInst::Create(NFTy, Dst, Args, OpBundles, "", CI->getIterator());
|
|
|
|
CallInst::TailCallKind TCK = CI->getTailCallKind();
|
|
assert(TCK != CallInst::TCK_MustTail);
|
|
|
|
// Can't tail call a function that is being passed a pointer to an alloca
|
|
if (TCK == CallInst::TCK_Tail)
|
|
TCK = CallInst::TCK_None;
|
|
CI->setTailCallKind(TCK);
|
|
|
|
} else {
|
|
llvm_unreachable("Unreachable when !expansionApplicableToFunctionCall()");
|
|
}
|
|
|
|
if (VaList)
|
|
Builder.CreateLifetimeEnd(VaList);
|
|
|
|
Builder.CreateLifetimeEnd(Alloced);
|
|
|
|
NewCB->setAttributes(PAL);
|
|
NewCB->takeName(CB);
|
|
NewCB->setCallingConv(CB->getCallingConv());
|
|
NewCB->setDebugLoc(DebugLoc());
|
|
|
|
// DeadArgElim and ArgPromotion copy exactly this metadata
|
|
NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
|
|
|
|
CB->replaceAllUsesWith(NewCB);
|
|
CB->eraseFromParent();
|
|
return Changed;
|
|
}
|
|
|
|
bool ExpandVariadics::expandVAIntrinsicCall(IRBuilder<> &Builder,
|
|
const DataLayout &DL,
|
|
VAStartInst *Inst) {
|
|
// Only removing va_start instructions that are not in variadic functions.
|
|
// Those would be rejected by the IR verifier before this pass.
|
|
// After splicing basic blocks from a variadic function into a fixed arity
|
|
// one the va_start that used to refer to the ... parameter still exist.
|
|
// There are also variadic functions that this pass did not change and
|
|
// va_start instances in the created single block wrapper functions.
|
|
// Replace exactly the instances in non-variadic functions as those are
|
|
// the ones to be fixed up to use the va_list passed as the final argument.
|
|
|
|
Function *ContainingFunction = Inst->getFunction();
|
|
if (ContainingFunction->isVarArg()) {
|
|
return false;
|
|
}
|
|
|
|
// The last argument is a vaListParameterType, either a va_list
|
|
// or a pointer to one depending on the target.
|
|
bool PassedByValue = ABI->vaListPassedInSSARegister();
|
|
Argument *PassedVaList =
|
|
ContainingFunction->getArg(ContainingFunction->arg_size() - 1);
|
|
|
|
// va_start takes a pointer to a va_list, e.g. one on the stack
|
|
Value *VaStartArg = Inst->getArgList();
|
|
|
|
Builder.SetInsertPoint(Inst);
|
|
|
|
if (PassedByValue) {
|
|
// The general thing to do is create an alloca, store the va_list argument
|
|
// to it, then create a va_copy. When vaCopyIsMemcpy(), this optimises to a
|
|
// store to the VaStartArg.
|
|
assert(ABI->vaCopyIsMemcpy());
|
|
Builder.CreateStore(PassedVaList, VaStartArg);
|
|
} else {
|
|
|
|
// Otherwise emit a vacopy to pick up target-specific handling if any
|
|
auto &Ctx = Builder.getContext();
|
|
|
|
Builder.CreateIntrinsic(Intrinsic::vacopy, {DL.getAllocaPtrType(Ctx)},
|
|
{VaStartArg, PassedVaList});
|
|
}
|
|
|
|
Inst->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool ExpandVariadics::expandVAIntrinsicCall(IRBuilder<> &, const DataLayout &,
|
|
VAEndInst *Inst) {
|
|
assert(ABI->vaEndIsNop());
|
|
Inst->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool ExpandVariadics::expandVAIntrinsicCall(IRBuilder<> &Builder,
|
|
const DataLayout &DL,
|
|
VACopyInst *Inst) {
|
|
assert(ABI->vaCopyIsMemcpy());
|
|
Builder.SetInsertPoint(Inst);
|
|
|
|
auto &Ctx = Builder.getContext();
|
|
Type *VaListTy = ABI->vaListType(Ctx);
|
|
uint64_t Size = DL.getTypeAllocSize(VaListTy).getFixedValue();
|
|
|
|
Builder.CreateMemCpy(Inst->getDest(), {}, Inst->getSrc(), {},
|
|
Builder.getInt32(Size));
|
|
|
|
Inst->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
struct Amdgpu final : public VariadicABIInfo {
|
|
|
|
bool enableForTarget() override { return true; }
|
|
|
|
bool vaListPassedInSSARegister() override { return true; }
|
|
|
|
Type *vaListType(LLVMContext &Ctx) override {
|
|
return PointerType::getUnqual(Ctx);
|
|
}
|
|
|
|
Type *vaListParameterType(Module &M) override {
|
|
return PointerType::getUnqual(M.getContext());
|
|
}
|
|
|
|
Value *initializeVaList(Module &M, LLVMContext &Ctx, IRBuilder<> &Builder,
|
|
AllocaInst * /*va_list*/, Value *Buffer) override {
|
|
// Given Buffer, which is an AllocInst of vararg_buffer
|
|
// need to return something usable as parameter type
|
|
return Builder.CreateAddrSpaceCast(Buffer, vaListParameterType(M));
|
|
}
|
|
|
|
VAArgSlotInfo slotInfo(const DataLayout &DL, Type *Parameter) override {
|
|
return {Align(4), false};
|
|
}
|
|
};
|
|
|
|
struct NVPTX final : public VariadicABIInfo {
|
|
|
|
bool enableForTarget() override { return true; }
|
|
|
|
bool vaListPassedInSSARegister() override { return true; }
|
|
|
|
Type *vaListType(LLVMContext &Ctx) override {
|
|
return PointerType::getUnqual(Ctx);
|
|
}
|
|
|
|
Type *vaListParameterType(Module &M) override {
|
|
return PointerType::getUnqual(M.getContext());
|
|
}
|
|
|
|
Value *initializeVaList(Module &M, LLVMContext &Ctx, IRBuilder<> &Builder,
|
|
AllocaInst *, Value *Buffer) override {
|
|
return Builder.CreateAddrSpaceCast(Buffer, vaListParameterType(M));
|
|
}
|
|
|
|
VAArgSlotInfo slotInfo(const DataLayout &DL, Type *Parameter) override {
|
|
// NVPTX expects natural alignment in all cases. The variadic call ABI will
|
|
// handle promoting types to their appropriate size and alignment.
|
|
Align A = DL.getABITypeAlign(Parameter);
|
|
return {A, false};
|
|
}
|
|
};
|
|
|
|
struct Wasm final : public VariadicABIInfo {
|
|
|
|
bool enableForTarget() override {
|
|
// Currently wasm is only used for testing.
|
|
return commandLineOverride();
|
|
}
|
|
|
|
bool vaListPassedInSSARegister() override { return true; }
|
|
|
|
Type *vaListType(LLVMContext &Ctx) override {
|
|
return PointerType::getUnqual(Ctx);
|
|
}
|
|
|
|
Type *vaListParameterType(Module &M) override {
|
|
return PointerType::getUnqual(M.getContext());
|
|
}
|
|
|
|
Value *initializeVaList(Module &M, LLVMContext &Ctx, IRBuilder<> &Builder,
|
|
AllocaInst * /*va_list*/, Value *Buffer) override {
|
|
return Buffer;
|
|
}
|
|
|
|
VAArgSlotInfo slotInfo(const DataLayout &DL, Type *Parameter) override {
|
|
LLVMContext &Ctx = Parameter->getContext();
|
|
const unsigned MinAlign = 4;
|
|
Align A = DL.getABITypeAlign(Parameter);
|
|
if (A < MinAlign)
|
|
A = Align(MinAlign);
|
|
|
|
if (auto *S = dyn_cast<StructType>(Parameter)) {
|
|
if (S->getNumElements() > 1) {
|
|
return {DL.getABITypeAlign(PointerType::getUnqual(Ctx)), true};
|
|
}
|
|
}
|
|
|
|
return {A, false};
|
|
}
|
|
};
|
|
|
|
std::unique_ptr<VariadicABIInfo> VariadicABIInfo::create(const Triple &T) {
|
|
switch (T.getArch()) {
|
|
case Triple::r600:
|
|
case Triple::amdgcn: {
|
|
return std::make_unique<Amdgpu>();
|
|
}
|
|
|
|
case Triple::wasm32: {
|
|
return std::make_unique<Wasm>();
|
|
}
|
|
|
|
case Triple::nvptx:
|
|
case Triple::nvptx64: {
|
|
return std::make_unique<NVPTX>();
|
|
}
|
|
|
|
default:
|
|
return {};
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
char ExpandVariadics::ID = 0;
|
|
|
|
INITIALIZE_PASS(ExpandVariadics, DEBUG_TYPE, "Expand variadic functions", false,
|
|
false)
|
|
|
|
ModulePass *llvm::createExpandVariadicsPass(ExpandVariadicsMode M) {
|
|
return new ExpandVariadics(M);
|
|
}
|
|
|
|
PreservedAnalyses ExpandVariadicsPass::run(Module &M, ModuleAnalysisManager &) {
|
|
return ExpandVariadics(Mode).runOnModule(M) ? PreservedAnalyses::none()
|
|
: PreservedAnalyses::all();
|
|
}
|
|
|
|
ExpandVariadicsPass::ExpandVariadicsPass(ExpandVariadicsMode M) : Mode(M) {}
|