llvm-project/lldb/source/Plugins/ExpressionParser/Clang/ClangModulesDeclVendor.cpp
Alex Lorenz 00cd6c0420 [Preprocessor] Reduce the memory overhead of #define directives (Recommit)
Recently we observed high memory pressure caused by clang during some parallel builds.
We discovered that we have several projects that have a large number of #define directives
in their TUs (on the order of millions), which caused huge memory consumption in clang due
to a lot of allocations for MacroInfo. We would like to reduce the memory overhead of
clang for a single #define to reduce the memory overhead for these files, to allow us to
reduce the memory pressure on the system during highly parallel builds. This change achieves
that by removing the SmallVector in MacroInfo and instead storing the tokens in an array
allocated using the bump pointer allocator, after all tokens are lexed.

The added unit test with 1000000 #define directives illustrates the problem. Prior to this
change, on arm64 macOS, clang's PP bump pointer allocator allocated 272007616 bytes, and
used roughly 272 bytes per #define. After this change, clang's PP bump pointer allocator
allocates 120002016 bytes, and uses only roughly 120 bytes per #define.

For an example test file that we have internally with 7.8 million #define directives, this
change produces the following improvement on arm64 macOS: Persistent allocation footprint for
this test case file as it's being compiled to LLVM IR went down 22% from 5.28 GB to 4.07 GB
and the total allocations went down 14% from 8.26 GB to 7.05 GB. Furthermore, this change
reduced the total number of allocations made by the system for this clang invocation from
1454853 to 133663, an order of magnitude improvement.

The recommit fixes the LLDB build failure.

Differential Revision: https://reviews.llvm.org/D117348
2022-02-14 09:27:44 -08:00

737 lines
25 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===-- ClangModulesDeclVendor.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/TargetInfo.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Frontend/TextDiagnosticPrinter.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Parse/Parser.h"
#include "clang/Sema/Lookup.h"
#include "clang/Serialization/ASTReader.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Threading.h"
#include "ClangHost.h"
#include "ClangModulesDeclVendor.h"
#include "ModuleDependencyCollector.h"
#include "Plugins/TypeSystem/Clang/TypeSystemClang.h"
#include "lldb/Core/ModuleList.h"
#include "lldb/Host/Host.h"
#include "lldb/Host/HostInfo.h"
#include "lldb/Symbol/CompileUnit.h"
#include "lldb/Symbol/SourceModule.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/FileSpec.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/ReproducerProvider.h"
#include "lldb/Utility/StreamString.h"
#include <memory>
#include <mutex>
using namespace lldb_private;
namespace {
/// Any Clang compiler requires a consumer for diagnostics. This one stores
/// them as strings so we can provide them to the user in case a module failed
/// to load.
class StoringDiagnosticConsumer : public clang::DiagnosticConsumer {
public:
StoringDiagnosticConsumer();
void HandleDiagnostic(clang::DiagnosticsEngine::Level DiagLevel,
const clang::Diagnostic &info) override;
void ClearDiagnostics();
void DumpDiagnostics(Stream &error_stream);
void BeginSourceFile(const clang::LangOptions &LangOpts,
const clang::Preprocessor *PP = nullptr) override;
void EndSourceFile() override;
private:
typedef std::pair<clang::DiagnosticsEngine::Level, std::string>
IDAndDiagnostic;
std::vector<IDAndDiagnostic> m_diagnostics;
/// The DiagnosticPrinter used for creating the full diagnostic messages
/// that are stored in m_diagnostics.
std::shared_ptr<clang::TextDiagnosticPrinter> m_diag_printer;
/// Output stream of m_diag_printer.
std::shared_ptr<llvm::raw_string_ostream> m_os;
/// Output string filled by m_os. Will be reused for different diagnostics.
std::string m_output;
Log *m_log;
};
/// The private implementation of our ClangModulesDeclVendor. Contains all the
/// Clang state required to load modules.
class ClangModulesDeclVendorImpl : public ClangModulesDeclVendor {
public:
ClangModulesDeclVendorImpl(
llvm::IntrusiveRefCntPtr<clang::DiagnosticsEngine> diagnostics_engine,
std::shared_ptr<clang::CompilerInvocation> compiler_invocation,
std::unique_ptr<clang::CompilerInstance> compiler_instance,
std::unique_ptr<clang::Parser> parser);
~ClangModulesDeclVendorImpl() override = default;
bool AddModule(const SourceModule &module, ModuleVector *exported_modules,
Stream &error_stream) override;
bool AddModulesForCompileUnit(CompileUnit &cu, ModuleVector &exported_modules,
Stream &error_stream) override;
uint32_t FindDecls(ConstString name, bool append, uint32_t max_matches,
std::vector<CompilerDecl> &decls) override;
void ForEachMacro(
const ModuleVector &modules,
std::function<bool(llvm::StringRef, llvm::StringRef)> handler) override;
private:
typedef llvm::DenseSet<ModuleID> ExportedModuleSet;
void ReportModuleExportsHelper(ExportedModuleSet &exports,
clang::Module *module);
void ReportModuleExports(ModuleVector &exports, clang::Module *module);
clang::ModuleLoadResult DoGetModule(clang::ModuleIdPath path,
bool make_visible);
bool m_enabled = false;
llvm::IntrusiveRefCntPtr<clang::DiagnosticsEngine> m_diagnostics_engine;
std::shared_ptr<clang::CompilerInvocation> m_compiler_invocation;
std::unique_ptr<clang::CompilerInstance> m_compiler_instance;
std::unique_ptr<clang::Parser> m_parser;
size_t m_source_location_index =
0; // used to give name components fake SourceLocations
typedef std::vector<ConstString> ImportedModule;
typedef std::map<ImportedModule, clang::Module *> ImportedModuleMap;
typedef llvm::DenseSet<ModuleID> ImportedModuleSet;
ImportedModuleMap m_imported_modules;
ImportedModuleSet m_user_imported_modules;
// We assume that every ASTContext has an TypeSystemClang, so we also store
// a custom TypeSystemClang for our internal ASTContext.
std::unique_ptr<TypeSystemClang> m_ast_context;
};
} // anonymous namespace
StoringDiagnosticConsumer::StoringDiagnosticConsumer() {
m_log = GetLog(LLDBLog::Expressions);
clang::DiagnosticOptions *m_options = new clang::DiagnosticOptions();
m_os = std::make_shared<llvm::raw_string_ostream>(m_output);
m_diag_printer =
std::make_shared<clang::TextDiagnosticPrinter>(*m_os, m_options);
}
void StoringDiagnosticConsumer::HandleDiagnostic(
clang::DiagnosticsEngine::Level DiagLevel, const clang::Diagnostic &info) {
// Print the diagnostic to m_output.
m_output.clear();
m_diag_printer->HandleDiagnostic(DiagLevel, info);
m_os->flush();
// Store the diagnostic for later.
m_diagnostics.push_back(IDAndDiagnostic(DiagLevel, m_output));
}
void StoringDiagnosticConsumer::ClearDiagnostics() { m_diagnostics.clear(); }
void StoringDiagnosticConsumer::DumpDiagnostics(Stream &error_stream) {
for (IDAndDiagnostic &diag : m_diagnostics) {
switch (diag.first) {
default:
error_stream.PutCString(diag.second);
error_stream.PutChar('\n');
break;
case clang::DiagnosticsEngine::Level::Ignored:
break;
}
}
}
void StoringDiagnosticConsumer::BeginSourceFile(
const clang::LangOptions &LangOpts, const clang::Preprocessor *PP) {
m_diag_printer->BeginSourceFile(LangOpts, PP);
}
void StoringDiagnosticConsumer::EndSourceFile() {
m_diag_printer->EndSourceFile();
}
ClangModulesDeclVendor::ClangModulesDeclVendor()
: ClangDeclVendor(eClangModuleDeclVendor) {}
ClangModulesDeclVendor::~ClangModulesDeclVendor() = default;
ClangModulesDeclVendorImpl::ClangModulesDeclVendorImpl(
llvm::IntrusiveRefCntPtr<clang::DiagnosticsEngine> diagnostics_engine,
std::shared_ptr<clang::CompilerInvocation> compiler_invocation,
std::unique_ptr<clang::CompilerInstance> compiler_instance,
std::unique_ptr<clang::Parser> parser)
: m_diagnostics_engine(std::move(diagnostics_engine)),
m_compiler_invocation(std::move(compiler_invocation)),
m_compiler_instance(std::move(compiler_instance)),
m_parser(std::move(parser)) {
// Initialize our TypeSystemClang.
m_ast_context =
std::make_unique<TypeSystemClang>("ClangModulesDeclVendor ASTContext",
m_compiler_instance->getASTContext());
}
void ClangModulesDeclVendorImpl::ReportModuleExportsHelper(
ExportedModuleSet &exports, clang::Module *module) {
if (exports.count(reinterpret_cast<ClangModulesDeclVendor::ModuleID>(module)))
return;
exports.insert(reinterpret_cast<ClangModulesDeclVendor::ModuleID>(module));
llvm::SmallVector<clang::Module *, 2> sub_exports;
module->getExportedModules(sub_exports);
for (clang::Module *module : sub_exports)
ReportModuleExportsHelper(exports, module);
}
void ClangModulesDeclVendorImpl::ReportModuleExports(
ClangModulesDeclVendor::ModuleVector &exports, clang::Module *module) {
ExportedModuleSet exports_set;
ReportModuleExportsHelper(exports_set, module);
for (ModuleID module : exports_set)
exports.push_back(module);
}
bool ClangModulesDeclVendorImpl::AddModule(const SourceModule &module,
ModuleVector *exported_modules,
Stream &error_stream) {
// Fail early.
if (m_compiler_instance->hadModuleLoaderFatalFailure()) {
error_stream.PutCString("error: Couldn't load a module because the module "
"loader is in a fatal state.\n");
return false;
}
// Check if we've already imported this module.
std::vector<ConstString> imported_module;
for (ConstString path_component : module.path)
imported_module.push_back(path_component);
{
ImportedModuleMap::iterator mi = m_imported_modules.find(imported_module);
if (mi != m_imported_modules.end()) {
if (exported_modules)
ReportModuleExports(*exported_modules, mi->second);
return true;
}
}
clang::HeaderSearch &HS =
m_compiler_instance->getPreprocessor().getHeaderSearchInfo();
if (module.search_path) {
auto path_begin = llvm::sys::path::begin(module.search_path.GetStringRef());
auto path_end = llvm::sys::path::end(module.search_path.GetStringRef());
auto sysroot_begin = llvm::sys::path::begin(module.sysroot.GetStringRef());
auto sysroot_end = llvm::sys::path::end(module.sysroot.GetStringRef());
// FIXME: Use C++14 std::equal(it, it, it, it) variant once it's available.
bool is_system_module = (std::distance(path_begin, path_end) >=
std::distance(sysroot_begin, sysroot_end)) &&
std::equal(sysroot_begin, sysroot_end, path_begin);
// No need to inject search paths to modules in the sysroot.
if (!is_system_module) {
auto error = [&]() {
error_stream.Printf("error: No module map file in %s\n",
module.search_path.AsCString());
return false;
};
bool is_system = true;
bool is_framework = false;
auto dir =
HS.getFileMgr().getDirectory(module.search_path.GetStringRef());
if (!dir)
return error();
auto *file = HS.lookupModuleMapFile(*dir, is_framework);
if (!file)
return error();
if (!HS.loadModuleMapFile(file, is_system))
return error();
}
}
if (!HS.lookupModule(module.path.front().GetStringRef())) {
error_stream.Printf("error: Header search couldn't locate module %s\n",
module.path.front().AsCString());
return false;
}
llvm::SmallVector<std::pair<clang::IdentifierInfo *, clang::SourceLocation>,
4>
clang_path;
{
clang::SourceManager &source_manager =
m_compiler_instance->getASTContext().getSourceManager();
for (ConstString path_component : module.path) {
clang_path.push_back(std::make_pair(
&m_compiler_instance->getASTContext().Idents.get(
path_component.GetStringRef()),
source_manager.getLocForStartOfFile(source_manager.getMainFileID())
.getLocWithOffset(m_source_location_index++)));
}
}
StoringDiagnosticConsumer *diagnostic_consumer =
static_cast<StoringDiagnosticConsumer *>(
m_compiler_instance->getDiagnostics().getClient());
diagnostic_consumer->ClearDiagnostics();
clang::Module *top_level_module = DoGetModule(clang_path.front(), false);
if (!top_level_module) {
diagnostic_consumer->DumpDiagnostics(error_stream);
error_stream.Printf("error: Couldn't load top-level module %s\n",
module.path.front().AsCString());
return false;
}
clang::Module *submodule = top_level_module;
for (auto &component : llvm::ArrayRef<ConstString>(module.path).drop_front()) {
submodule = submodule->findSubmodule(component.GetStringRef());
if (!submodule) {
diagnostic_consumer->DumpDiagnostics(error_stream);
error_stream.Printf("error: Couldn't load submodule %s\n",
component.GetCString());
return false;
}
}
clang::Module *requested_module = DoGetModule(clang_path, true);
if (requested_module != nullptr) {
if (exported_modules)
ReportModuleExports(*exported_modules, requested_module);
m_imported_modules[imported_module] = requested_module;
m_enabled = true;
return true;
}
return false;
}
bool ClangModulesDeclVendor::LanguageSupportsClangModules(
lldb::LanguageType language) {
switch (language) {
default:
return false;
case lldb::LanguageType::eLanguageTypeC:
case lldb::LanguageType::eLanguageTypeC11:
case lldb::LanguageType::eLanguageTypeC89:
case lldb::LanguageType::eLanguageTypeC99:
case lldb::LanguageType::eLanguageTypeC_plus_plus:
case lldb::LanguageType::eLanguageTypeC_plus_plus_03:
case lldb::LanguageType::eLanguageTypeC_plus_plus_11:
case lldb::LanguageType::eLanguageTypeC_plus_plus_14:
case lldb::LanguageType::eLanguageTypeObjC:
case lldb::LanguageType::eLanguageTypeObjC_plus_plus:
return true;
}
}
bool ClangModulesDeclVendorImpl::AddModulesForCompileUnit(
CompileUnit &cu, ClangModulesDeclVendor::ModuleVector &exported_modules,
Stream &error_stream) {
if (LanguageSupportsClangModules(cu.GetLanguage())) {
for (auto &imported_module : cu.GetImportedModules())
if (!AddModule(imported_module, &exported_modules, error_stream))
return false;
}
return true;
}
// ClangImporter::lookupValue
uint32_t
ClangModulesDeclVendorImpl::FindDecls(ConstString name, bool append,
uint32_t max_matches,
std::vector<CompilerDecl> &decls) {
if (!m_enabled)
return 0;
if (!append)
decls.clear();
clang::IdentifierInfo &ident =
m_compiler_instance->getASTContext().Idents.get(name.GetStringRef());
clang::LookupResult lookup_result(
m_compiler_instance->getSema(), clang::DeclarationName(&ident),
clang::SourceLocation(), clang::Sema::LookupOrdinaryName);
m_compiler_instance->getSema().LookupName(
lookup_result,
m_compiler_instance->getSema().getScopeForContext(
m_compiler_instance->getASTContext().getTranslationUnitDecl()));
uint32_t num_matches = 0;
for (clang::NamedDecl *named_decl : lookup_result) {
if (num_matches >= max_matches)
return num_matches;
decls.push_back(m_ast_context->GetCompilerDecl(named_decl));
++num_matches;
}
return num_matches;
}
void ClangModulesDeclVendorImpl::ForEachMacro(
const ClangModulesDeclVendor::ModuleVector &modules,
std::function<bool(llvm::StringRef, llvm::StringRef)> handler) {
if (!m_enabled)
return;
typedef std::map<ModuleID, ssize_t> ModulePriorityMap;
ModulePriorityMap module_priorities;
ssize_t priority = 0;
for (ModuleID module : modules)
module_priorities[module] = priority++;
if (m_compiler_instance->getPreprocessor().getExternalSource()) {
m_compiler_instance->getPreprocessor()
.getExternalSource()
->ReadDefinedMacros();
}
for (clang::Preprocessor::macro_iterator
mi = m_compiler_instance->getPreprocessor().macro_begin(),
me = m_compiler_instance->getPreprocessor().macro_end();
mi != me; ++mi) {
const clang::IdentifierInfo *ii = nullptr;
{
if (clang::IdentifierInfoLookup *lookup =
m_compiler_instance->getPreprocessor()
.getIdentifierTable()
.getExternalIdentifierLookup()) {
lookup->get(mi->first->getName());
}
if (!ii)
ii = mi->first;
}
ssize_t found_priority = -1;
clang::MacroInfo *macro_info = nullptr;
for (clang::ModuleMacro *module_macro :
m_compiler_instance->getPreprocessor().getLeafModuleMacros(ii)) {
clang::Module *module = module_macro->getOwningModule();
{
ModulePriorityMap::iterator pi =
module_priorities.find(reinterpret_cast<ModuleID>(module));
if (pi != module_priorities.end() && pi->second > found_priority) {
macro_info = module_macro->getMacroInfo();
found_priority = pi->second;
}
}
clang::Module *top_level_module = module->getTopLevelModule();
if (top_level_module != module) {
ModulePriorityMap::iterator pi = module_priorities.find(
reinterpret_cast<ModuleID>(top_level_module));
if ((pi != module_priorities.end()) && pi->second > found_priority) {
macro_info = module_macro->getMacroInfo();
found_priority = pi->second;
}
}
}
if (macro_info) {
std::string macro_expansion = "#define ";
llvm::StringRef macro_identifier = mi->first->getName();
macro_expansion.append(macro_identifier.str());
{
if (macro_info->isFunctionLike()) {
macro_expansion.append("(");
bool first_arg = true;
for (auto pi = macro_info->param_begin(),
pe = macro_info->param_end();
pi != pe; ++pi) {
if (!first_arg)
macro_expansion.append(", ");
else
first_arg = false;
macro_expansion.append((*pi)->getName().str());
}
if (macro_info->isC99Varargs()) {
if (first_arg)
macro_expansion.append("...");
else
macro_expansion.append(", ...");
} else if (macro_info->isGNUVarargs())
macro_expansion.append("...");
macro_expansion.append(")");
}
macro_expansion.append(" ");
bool first_token = true;
for (clang::MacroInfo::const_tokens_iterator
ti = macro_info->tokens_begin(),
te = macro_info->tokens_end();
ti != te; ++ti) {
if (!first_token)
macro_expansion.append(" ");
else
first_token = false;
if (ti->isLiteral()) {
if (const char *literal_data = ti->getLiteralData()) {
std::string token_str(literal_data, ti->getLength());
macro_expansion.append(token_str);
} else {
bool invalid = false;
const char *literal_source =
m_compiler_instance->getSourceManager().getCharacterData(
ti->getLocation(), &invalid);
if (invalid) {
lldbassert(0 && "Unhandled token kind");
macro_expansion.append("<unknown literal value>");
} else {
macro_expansion.append(
std::string(literal_source, ti->getLength()));
}
}
} else if (const char *punctuator_spelling =
clang::tok::getPunctuatorSpelling(ti->getKind())) {
macro_expansion.append(punctuator_spelling);
} else if (const char *keyword_spelling =
clang::tok::getKeywordSpelling(ti->getKind())) {
macro_expansion.append(keyword_spelling);
} else {
switch (ti->getKind()) {
case clang::tok::TokenKind::identifier:
macro_expansion.append(ti->getIdentifierInfo()->getName().str());
break;
case clang::tok::TokenKind::raw_identifier:
macro_expansion.append(ti->getRawIdentifier().str());
break;
default:
macro_expansion.append(ti->getName());
break;
}
}
}
if (handler(macro_identifier, macro_expansion)) {
return;
}
}
}
}
}
clang::ModuleLoadResult
ClangModulesDeclVendorImpl::DoGetModule(clang::ModuleIdPath path,
bool make_visible) {
clang::Module::NameVisibilityKind visibility =
make_visible ? clang::Module::AllVisible : clang::Module::Hidden;
const bool is_inclusion_directive = false;
return m_compiler_instance->loadModule(path.front().second, path, visibility,
is_inclusion_directive);
}
static const char *ModuleImportBufferName = "LLDBModulesMemoryBuffer";
lldb_private::ClangModulesDeclVendor *
ClangModulesDeclVendor::Create(Target &target) {
// FIXME we should insure programmatically that the expression parser's
// compiler and the modules runtime's
// compiler are both initialized in the same way preferably by the same
// code.
if (!target.GetPlatform()->SupportsModules())
return nullptr;
const ArchSpec &arch = target.GetArchitecture();
std::vector<std::string> compiler_invocation_arguments = {
"clang",
"-fmodules",
"-fimplicit-module-maps",
"-fcxx-modules",
"-fsyntax-only",
"-femit-all-decls",
"-target",
arch.GetTriple().str(),
"-fmodules-validate-system-headers",
"-Werror=non-modular-include-in-framework-module"};
target.GetPlatform()->AddClangModuleCompilationOptions(
&target, compiler_invocation_arguments);
compiler_invocation_arguments.push_back(ModuleImportBufferName);
// Add additional search paths with { "-I", path } or { "-F", path } here.
{
llvm::SmallString<128> path;
const auto &props = ModuleList::GetGlobalModuleListProperties();
props.GetClangModulesCachePath().GetPath(path);
std::string module_cache_argument("-fmodules-cache-path=");
module_cache_argument.append(std::string(path.str()));
compiler_invocation_arguments.push_back(module_cache_argument);
}
FileSpecList module_search_paths = target.GetClangModuleSearchPaths();
for (size_t spi = 0, spe = module_search_paths.GetSize(); spi < spe; ++spi) {
const FileSpec &search_path = module_search_paths.GetFileSpecAtIndex(spi);
std::string search_path_argument = "-I";
search_path_argument.append(search_path.GetPath());
compiler_invocation_arguments.push_back(search_path_argument);
}
{
FileSpec clang_resource_dir = GetClangResourceDir();
if (FileSystem::Instance().IsDirectory(clang_resource_dir.GetPath())) {
compiler_invocation_arguments.push_back("-resource-dir");
compiler_invocation_arguments.push_back(clang_resource_dir.GetPath());
}
}
llvm::IntrusiveRefCntPtr<clang::DiagnosticsEngine> diagnostics_engine =
clang::CompilerInstance::createDiagnostics(new clang::DiagnosticOptions,
new StoringDiagnosticConsumer);
std::vector<const char *> compiler_invocation_argument_cstrs;
compiler_invocation_argument_cstrs.reserve(
compiler_invocation_arguments.size());
for (const std::string &arg : compiler_invocation_arguments)
compiler_invocation_argument_cstrs.push_back(arg.c_str());
Log *log = GetLog(LLDBLog::Expressions);
LLDB_LOG(log, "ClangModulesDeclVendor's compiler flags {0:$[ ]}",
llvm::make_range(compiler_invocation_arguments.begin(),
compiler_invocation_arguments.end()));
std::shared_ptr<clang::CompilerInvocation> invocation =
clang::createInvocationFromCommandLine(compiler_invocation_argument_cstrs,
diagnostics_engine);
if (!invocation)
return nullptr;
std::unique_ptr<llvm::MemoryBuffer> source_buffer =
llvm::MemoryBuffer::getMemBuffer(
"extern int __lldb __attribute__((unavailable));",
ModuleImportBufferName);
invocation->getPreprocessorOpts().addRemappedFile(ModuleImportBufferName,
source_buffer.release());
std::unique_ptr<clang::CompilerInstance> instance(
new clang::CompilerInstance);
// When capturing a reproducer, hook up the file collector with clang to
// collector modules and headers.
if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) {
repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>();
instance->setModuleDepCollector(
std::make_shared<ModuleDependencyCollectorAdaptor>(
fp.GetFileCollector()));
clang::DependencyOutputOptions &opts = instance->getDependencyOutputOpts();
opts.IncludeSystemHeaders = true;
opts.IncludeModuleFiles = true;
}
// Make sure clang uses the same VFS as LLDB.
instance->createFileManager(FileSystem::Instance().GetVirtualFileSystem());
instance->setDiagnostics(diagnostics_engine.get());
instance->setInvocation(invocation);
std::unique_ptr<clang::FrontendAction> action(new clang::SyntaxOnlyAction);
instance->setTarget(clang::TargetInfo::CreateTargetInfo(
*diagnostics_engine, instance->getInvocation().TargetOpts));
if (!instance->hasTarget())
return nullptr;
instance->getTarget().adjust(*diagnostics_engine, instance->getLangOpts());
if (!action->BeginSourceFile(*instance,
instance->getFrontendOpts().Inputs[0]))
return nullptr;
instance->getPreprocessor().enableIncrementalProcessing();
instance->createASTReader();
instance->createSema(action->getTranslationUnitKind(), nullptr);
const bool skipFunctionBodies = false;
std::unique_ptr<clang::Parser> parser(new clang::Parser(
instance->getPreprocessor(), instance->getSema(), skipFunctionBodies));
instance->getPreprocessor().EnterMainSourceFile();
parser->Initialize();
clang::Parser::DeclGroupPtrTy parsed;
while (!parser->ParseTopLevelDecl(parsed))
;
return new ClangModulesDeclVendorImpl(std::move(diagnostics_engine),
std::move(invocation),
std::move(instance), std::move(parser));
}