llvm-project/llvm/lib/Analysis/TFLiteUtils.cpp
Aiden Grossman ec83c7e358 [MLGO] Make TFLiteUtils throw an error if some features haven't been passed to the model
In the Tensorflow C lib utilities, an error gets thrown if some features
haven't gotten passed into the model (due to differences in ordering
which now don't exist with the transition to TFLite). However, this is
not currently the case when using TFLiteUtils. This patch makes some
minor changes to throw an error when not all inputs of the model have
been passed, which when not handled will result in a seg fault within
TFLite.

Reviewed By: mtrofin

Differential Revision: https://reviews.llvm.org/D133451
2022-09-10 22:59:03 +00:00

245 lines
8.1 KiB
C++

//===- TFUtils.cpp - tensorflow evaluation utilities ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities for interfacing with tensorflow C APIs.
//
//===----------------------------------------------------------------------===//
#include "llvm/Config/config.h"
#if defined(LLVM_HAVE_TFLITE)
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/Utils/TFUtils.h"
#include "llvm/Support/Base64.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/JSON.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/kernels/register.h"
#include "tensorflow/lite/model.h"
#include "tensorflow/lite/model_builder.h"
#include "tensorflow/lite/op_resolver.h"
#include "tensorflow/lite/logger.h"
#include <cassert>
#include <numeric>
using namespace llvm;
namespace llvm {
class EvaluationResultImpl {
public:
EvaluationResultImpl(const std::vector<const TfLiteTensor *> &Outputs)
: Outputs(Outputs){};
const TfLiteTensor *getOutput(size_t I) { return Outputs[I]; }
EvaluationResultImpl(const EvaluationResultImpl &) = delete;
EvaluationResultImpl(EvaluationResultImpl &&Other) = delete;
private:
const std::vector<const TfLiteTensor *> Outputs;
};
class TFModelEvaluatorImpl {
public:
TFModelEvaluatorImpl(StringRef SavedModelPath,
const std::vector<TensorSpec> &InputSpecs,
function_ref<TensorSpec(size_t)> GetOutputSpecs,
size_t OutputSpecsSize, const char *Tags);
bool isValid() const { return IsValid; }
size_t outputSize() const { return Output.size(); }
std::unique_ptr<EvaluationResultImpl> evaluate() {
Interpreter->Invoke();
return std::make_unique<EvaluationResultImpl>(Output);
}
const std::vector<TfLiteTensor *> &getInput() const { return Input; }
~TFModelEvaluatorImpl();
private:
std::unique_ptr<tflite::FlatBufferModel> Model;
/// The objects necessary for carrying out an evaluation of the SavedModel.
/// They are expensive to set up, and we maintain them accross all the
/// evaluations of the model.
std::unique_ptr<tflite::Interpreter> Interpreter;
/// The input tensors. We set up the tensors once and just mutate theirs
/// scalars before each evaluation. The input tensors keep their value after
/// an evaluation.
std::vector<TfLiteTensor *> Input;
/// The output nodes.
std::vector<const TfLiteTensor *> Output;
void invalidate() { IsValid = false; }
bool IsValid = true;
/// Reusable utility for ensuring we can bind the requested Name to a node in
/// the SavedModel Graph.
bool checkReportAndInvalidate(const TfLiteTensor *Tensor,
const TensorSpec &Spec);
};
} // namespace llvm
TFModelEvaluatorImpl::TFModelEvaluatorImpl(
StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs,
function_ref<TensorSpec(size_t)> GetOutputSpecs, size_t OutputSpecsSize,
const char *Tags = "serve")
: Input(InputSpecs.size()), Output(OutputSpecsSize) {
// INFO and DEBUG messages could be numerous and not particularly interesting
tflite::LoggerOptions::SetMinimumLogSeverity(tflite::TFLITE_LOG_WARNING);
// FIXME: make ErrorReporter a member (may also need subclassing
// StatefulErrorReporter) to easily get the latest error status, for
// debugging.
tflite::StderrReporter ErrorReporter;
SmallVector<char, 128> TFLitePathBuff;
llvm::sys::path::append(TFLitePathBuff, SavedModelPath, "model.tflite");
StringRef TFLitePath(TFLitePathBuff.data(), TFLitePathBuff.size());
Model = tflite::FlatBufferModel::BuildFromFile(TFLitePath.str().c_str(),
&ErrorReporter);
if (!Model) {
invalidate();
return;
}
tflite::ops::builtin::BuiltinOpResolver Resolver;
tflite::InterpreterBuilder Builder(*Model, Resolver);
Builder(&Interpreter);
if (!Interpreter ||
Interpreter->AllocateTensors() != TfLiteStatus::kTfLiteOk) {
invalidate();
return;
}
// Known inputs and outputs
StringMap<int> InputsMap;
StringMap<int> OutputsMap;
for (size_t I = 0; I < Interpreter->inputs().size(); ++I)
InputsMap[Interpreter->GetInputName(I)] = I;
for (size_t I = 0; I < Interpreter->outputs().size(); ++I)
OutputsMap[Interpreter->GetOutputName(I)] = I;
size_t NumberFeaturesPassed = 0;
for (size_t I = 0; I < InputSpecs.size(); ++I) {
auto &InputSpec = InputSpecs[I];
auto MapI = InputsMap.find(InputSpec.name() + ":" +
std::to_string(InputSpec.port()));
if (MapI == InputsMap.end()) {
Input[I] = nullptr;
continue;
}
Input[I] = Interpreter->tensor(MapI->second);
if (!checkReportAndInvalidate(Input[I], InputSpec))
return;
std::memset(Input[I]->data.data, 0,
InputSpecs[I].getTotalTensorBufferSize());
++NumberFeaturesPassed;
}
if (NumberFeaturesPassed < Interpreter->inputs().size()) {
// we haven't passed all the required features to the model, throw an error.
errs() << "Required feature(s) have not been passed to the ML model";
invalidate();
return;
}
for (size_t I = 0; I < OutputSpecsSize; ++I) {
auto OutputSpec = GetOutputSpecs(I);
Output[I] = Interpreter->output_tensor(
OutputsMap[OutputSpec.name() + ":" +
std::to_string(OutputSpec.port())]);
if (!checkReportAndInvalidate(Output[I], OutputSpec))
return;
}
}
TFModelEvaluator::TFModelEvaluator(
StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs,
function_ref<TensorSpec(size_t)> GetOutputSpecs, size_t OutputSpecsSize,
const char *Tags)
: Impl(new TFModelEvaluatorImpl(SavedModelPath, InputSpecs, GetOutputSpecs,
OutputSpecsSize, Tags)) {
if (!Impl->isValid())
Impl.reset();
}
TFModelEvaluator::TFModelEvaluator(StringRef SavedModelPath,
const std::vector<TensorSpec> &InputSpecs,
const std::vector<TensorSpec> &OutputSpecs,
const char *Tags)
: TFModelEvaluator(
SavedModelPath, InputSpecs, [&](size_t I) { return OutputSpecs[I]; },
OutputSpecs.size(), Tags) {}
TFModelEvaluatorImpl::~TFModelEvaluatorImpl() {}
bool TFModelEvaluatorImpl::checkReportAndInvalidate(const TfLiteTensor *Tensor,
const TensorSpec &Spec) {
if (!Tensor) {
errs() << "Could not find TF_Output named: " + Spec.name();
IsValid = false;
}
if (Spec.getTotalTensorBufferSize() != Tensor->bytes)
IsValid = false;
// If the total sizes match, there could still be a mismatch in the shape.
// We ignore that for now.
return IsValid;
}
Optional<TFModelEvaluator::EvaluationResult> TFModelEvaluator::evaluate() {
if (!isValid())
return None;
return EvaluationResult(Impl->evaluate());
}
void *TFModelEvaluator::getUntypedInput(size_t Index) {
TfLiteTensor *T = Impl->getInput()[Index];
if (!T)
return nullptr;
return T->data.data;
}
TFModelEvaluator::EvaluationResult::EvaluationResult(
std::unique_ptr<EvaluationResultImpl> Impl)
: Impl(std::move(Impl)) {}
TFModelEvaluator::EvaluationResult::EvaluationResult(EvaluationResult &&Other)
: Impl(std::move(Other.Impl)) {}
TFModelEvaluator::EvaluationResult &
TFModelEvaluator::EvaluationResult::operator=(EvaluationResult &&Other) {
Impl = std::move(Other.Impl);
return *this;
}
void *TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) {
return Impl->getOutput(Index)->data.data;
}
const void *
TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) const {
return Impl->getOutput(Index)->data.data;
}
TFModelEvaluator::EvaluationResult::~EvaluationResult() {}
TFModelEvaluator::~TFModelEvaluator() {}
#endif // defined(LLVM_HAVE_TF_API)