
When the very first statement of the executable part has syntax errors, it's not at all obvious whether the error messages that are reported to the user should be those from its failure to be the last statement of the specification part or its failure to be the first executable statement when both failures are at the same character in the cooked character stream. Fortran makes this problem more exciting by allowing statement function definitions look a lot like several executable statements. The current error recovery scheme for declaration constructs depends on a look-ahead test to see whether the failed construct is actually the first executable statement. This works fine when the first executable statement is not in error, but should also allow for some error cases that begin with the tokens of an executable statement. This can obviously still go wrong for declaration constructs that are unparseable and also have ambiguity in their leading tokens with executable statements, but that seems to be a less likely case. Also improves error recovery for parenthesized items.
542 lines
22 KiB
C++
542 lines
22 KiB
C++
//===-- lib/Parser/expr-parsers.cpp ---------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Per-type parsers for expressions.
|
|
|
|
#include "expr-parsers.h"
|
|
#include "basic-parsers.h"
|
|
#include "misc-parsers.h"
|
|
#include "stmt-parser.h"
|
|
#include "token-parsers.h"
|
|
#include "type-parser-implementation.h"
|
|
#include "flang/Parser/characters.h"
|
|
#include "flang/Parser/parse-tree.h"
|
|
|
|
namespace Fortran::parser {
|
|
|
|
// R764 boz-literal-constant -> binary-constant | octal-constant | hex-constant
|
|
// R765 binary-constant -> B ' digit [digit]... ' | B " digit [digit]... "
|
|
// R766 octal-constant -> O ' digit [digit]... ' | O " digit [digit]... "
|
|
// R767 hex-constant ->
|
|
// Z ' hex-digit [hex-digit]... ' | Z " hex-digit [hex-digit]... "
|
|
// extension: X accepted for Z
|
|
// extension: BOZX suffix accepted
|
|
TYPE_PARSER(construct<BOZLiteralConstant>(BOZLiteral{}))
|
|
|
|
// R769 array-constructor -> (/ ac-spec /) | lbracket ac-spec rbracket
|
|
TYPE_CONTEXT_PARSER("array constructor"_en_US,
|
|
construct<ArrayConstructor>(
|
|
"(/" >> Parser<AcSpec>{} / "/)" || bracketed(Parser<AcSpec>{})))
|
|
|
|
// R770 ac-spec -> type-spec :: | [type-spec ::] ac-value-list
|
|
TYPE_PARSER(construct<AcSpec>(maybe(typeSpec / "::"),
|
|
nonemptyList("expected array constructor values"_err_en_US,
|
|
Parser<AcValue>{})) ||
|
|
construct<AcSpec>(typeSpec / "::"))
|
|
|
|
// R773 ac-value -> expr | ac-implied-do
|
|
TYPE_PARSER(
|
|
// PGI/Intel extension: accept triplets in array constructors
|
|
extension<LanguageFeature::TripletInArrayConstructor>(
|
|
"nonstandard usage: triplet in array constructor"_port_en_US,
|
|
construct<AcValue>(construct<AcValue::Triplet>(scalarIntExpr,
|
|
":" >> scalarIntExpr, maybe(":" >> scalarIntExpr)))) ||
|
|
construct<AcValue>(indirect(expr)) ||
|
|
construct<AcValue>(indirect(Parser<AcImpliedDo>{})))
|
|
|
|
// R774 ac-implied-do -> ( ac-value-list , ac-implied-do-control )
|
|
TYPE_PARSER(parenthesized(
|
|
construct<AcImpliedDo>(nonemptyList(Parser<AcValue>{} / lookAhead(","_tok)),
|
|
"," >> Parser<AcImpliedDoControl>{})))
|
|
|
|
// R775 ac-implied-do-control ->
|
|
// [integer-type-spec ::] ac-do-variable = scalar-int-expr ,
|
|
// scalar-int-expr [, scalar-int-expr]
|
|
// R776 ac-do-variable -> do-variable
|
|
TYPE_PARSER(construct<AcImpliedDoControl>(
|
|
maybe(integerTypeSpec / "::"), loopBounds(scalarIntExpr)))
|
|
|
|
// R1001 primary ->
|
|
// literal-constant | designator | array-constructor |
|
|
// structure-constructor | function-reference | type-param-inquiry |
|
|
// type-param-name | ( expr )
|
|
// type-param-inquiry is parsed as a structure component, except for
|
|
// substring%KIND/LEN
|
|
constexpr auto primary{instrumented("primary"_en_US,
|
|
first(construct<Expr>(indirect(Parser<CharLiteralConstantSubstring>{})),
|
|
construct<Expr>(literalConstant),
|
|
construct<Expr>(construct<Expr::Parentheses>("(" >>
|
|
expr / !","_tok / recovery(")"_tok, SkipPastNested<'(', ')'>{}))),
|
|
construct<Expr>(indirect(functionReference) / !"("_tok / !"%"_tok),
|
|
construct<Expr>(designator / !"("_tok / !"%"_tok),
|
|
construct<Expr>(indirect(Parser<SubstringInquiry>{})), // %LEN or %KIND
|
|
construct<Expr>(Parser<StructureConstructor>{}),
|
|
construct<Expr>(Parser<ArrayConstructor>{}),
|
|
// PGI/XLF extension: COMPLEX constructor (x,y)
|
|
construct<Expr>(parenthesized(
|
|
construct<Expr::ComplexConstructor>(expr, "," >> expr))),
|
|
extension<LanguageFeature::PercentLOC>(
|
|
"nonstandard usage: %LOC"_port_en_US,
|
|
construct<Expr>("%LOC" >> parenthesized(construct<Expr::PercentLoc>(
|
|
indirect(variable)))))))};
|
|
|
|
// R1002 level-1-expr -> [defined-unary-op] primary
|
|
// TODO: Reasonable extension: permit multiple defined-unary-ops
|
|
constexpr auto level1Expr{sourced(
|
|
primary || // must come before define op to resolve .TRUE._8 ambiguity
|
|
construct<Expr>(construct<Expr::DefinedUnary>(definedOpName, primary)))};
|
|
|
|
// R1004 mult-operand -> level-1-expr [power-op mult-operand]
|
|
// R1007 power-op -> **
|
|
// Exponentiation (**) is Fortran's only right-associative binary operation.
|
|
struct MultOperand {
|
|
using resultType = Expr;
|
|
constexpr MultOperand() {}
|
|
static inline std::optional<Expr> Parse(ParseState &);
|
|
};
|
|
|
|
// Extension: allow + or - before a mult-operand
|
|
// Such a unary operand has lower precedence than exponentiation,
|
|
// so -x**2 is -(x**2), not (-x)**2; this matches all other
|
|
// compilers with this extension.
|
|
static constexpr auto standardMultOperand{sourced(MultOperand{})};
|
|
static constexpr auto multOperand{standardMultOperand ||
|
|
extension<LanguageFeature::SignedMultOperand>(
|
|
"nonstandard usage: signed mult-operand"_port_en_US,
|
|
construct<Expr>(
|
|
construct<Expr::UnaryPlus>("+" >> standardMultOperand))) ||
|
|
extension<LanguageFeature::SignedMultOperand>(
|
|
"nonstandard usage: signed mult-operand"_port_en_US,
|
|
construct<Expr>(construct<Expr::Negate>("-" >> standardMultOperand)))};
|
|
|
|
inline std::optional<Expr> MultOperand::Parse(ParseState &state) {
|
|
std::optional<Expr> result{level1Expr.Parse(state)};
|
|
if (result) {
|
|
static constexpr auto op{attempt("**"_tok)};
|
|
if (op.Parse(state)) {
|
|
std::function<Expr(Expr &&)> power{[&result](Expr &&right) {
|
|
return Expr{Expr::Power(std::move(result).value(), std::move(right))};
|
|
}};
|
|
return applyLambda(power, multOperand).Parse(state); // right-recursive
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// R1005 add-operand -> [add-operand mult-op] mult-operand
|
|
// R1008 mult-op -> * | /
|
|
// The left recursion in the grammar is implemented iteratively.
|
|
struct AddOperand {
|
|
using resultType = Expr;
|
|
constexpr AddOperand() {}
|
|
static inline std::optional<Expr> Parse(ParseState &state) {
|
|
std::optional<Expr> result{multOperand.Parse(state)};
|
|
if (result) {
|
|
auto source{result->source};
|
|
std::function<Expr(Expr &&)> multiply{[&result](Expr &&right) {
|
|
return Expr{
|
|
Expr::Multiply(std::move(result).value(), std::move(right))};
|
|
}};
|
|
std::function<Expr(Expr &&)> divide{[&result](Expr &&right) {
|
|
return Expr{Expr::Divide(std::move(result).value(), std::move(right))};
|
|
}};
|
|
auto more{attempt(sourced("*" >> applyLambda(multiply, multOperand) ||
|
|
"/" >> applyLambda(divide, multOperand)))};
|
|
while (std::optional<Expr> next{more.Parse(state)}) {
|
|
result = std::move(next);
|
|
result->source.ExtendToCover(source);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
};
|
|
constexpr AddOperand addOperand;
|
|
|
|
// R1006 level-2-expr -> [[level-2-expr] add-op] add-operand
|
|
// R1009 add-op -> + | -
|
|
// These are left-recursive productions, implemented iteratively.
|
|
// Note that standard Fortran admits a unary + or - to appear only here,
|
|
// by means of a missing first operand; e.g., 2*-3 is valid in C but not
|
|
// standard Fortran. We accept unary + and - to appear before any primary
|
|
// as an extension.
|
|
struct Level2Expr {
|
|
using resultType = Expr;
|
|
constexpr Level2Expr() {}
|
|
static inline std::optional<Expr> Parse(ParseState &state) {
|
|
static constexpr auto unary{
|
|
sourced(
|
|
construct<Expr>(construct<Expr::UnaryPlus>("+" >> addOperand)) ||
|
|
construct<Expr>(construct<Expr::Negate>("-" >> addOperand))) ||
|
|
addOperand};
|
|
std::optional<Expr> result{unary.Parse(state)};
|
|
if (result) {
|
|
auto source{result->source};
|
|
std::function<Expr(Expr &&)> add{[&result](Expr &&right) {
|
|
return Expr{Expr::Add(std::move(result).value(), std::move(right))};
|
|
}};
|
|
std::function<Expr(Expr &&)> subtract{[&result](Expr &&right) {
|
|
return Expr{
|
|
Expr::Subtract(std::move(result).value(), std::move(right))};
|
|
}};
|
|
auto more{attempt(sourced("+" >> applyLambda(add, addOperand) ||
|
|
"-" >> applyLambda(subtract, addOperand)))};
|
|
while (std::optional<Expr> next{more.Parse(state)}) {
|
|
result = std::move(next);
|
|
result->source.ExtendToCover(source);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
};
|
|
constexpr Level2Expr level2Expr;
|
|
|
|
// R1010 level-3-expr -> [level-3-expr concat-op] level-2-expr
|
|
// R1011 concat-op -> //
|
|
// Concatenation (//) is left-associative for parsing performance, although
|
|
// one would never notice if it were right-associated.
|
|
struct Level3Expr {
|
|
using resultType = Expr;
|
|
constexpr Level3Expr() {}
|
|
static inline std::optional<Expr> Parse(ParseState &state) {
|
|
std::optional<Expr> result{level2Expr.Parse(state)};
|
|
if (result) {
|
|
auto source{result->source};
|
|
std::function<Expr(Expr &&)> concat{[&result](Expr &&right) {
|
|
return Expr{Expr::Concat(std::move(result).value(), std::move(right))};
|
|
}};
|
|
auto more{attempt(sourced("//" >> applyLambda(concat, level2Expr)))};
|
|
while (std::optional<Expr> next{more.Parse(state)}) {
|
|
result = std::move(next);
|
|
result->source.ExtendToCover(source);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
};
|
|
constexpr Level3Expr level3Expr;
|
|
|
|
// R1012 level-4-expr -> [level-3-expr rel-op] level-3-expr
|
|
// R1013 rel-op ->
|
|
// .EQ. | .NE. | .LT. | .LE. | .GT. | .GE. |
|
|
// == | /= | < | <= | > | >= @ | <>
|
|
// N.B. relations are not recursive (i.e., LOGICAL is not ordered)
|
|
struct Level4Expr {
|
|
using resultType = Expr;
|
|
constexpr Level4Expr() {}
|
|
static inline std::optional<Expr> Parse(ParseState &state) {
|
|
std::optional<Expr> result{level3Expr.Parse(state)};
|
|
if (result) {
|
|
auto source{result->source};
|
|
std::function<Expr(Expr &&)> lt{[&result](Expr &&right) {
|
|
return Expr{Expr::LT(std::move(result).value(), std::move(right))};
|
|
}};
|
|
std::function<Expr(Expr &&)> le{[&result](Expr &&right) {
|
|
return Expr{Expr::LE(std::move(result).value(), std::move(right))};
|
|
}};
|
|
std::function<Expr(Expr &&)> eq{[&result](Expr &&right) {
|
|
return Expr{Expr::EQ(std::move(result).value(), std::move(right))};
|
|
}};
|
|
std::function<Expr(Expr &&)> ne{[&result](Expr &&right) {
|
|
return Expr{Expr::NE(std::move(result).value(), std::move(right))};
|
|
}};
|
|
std::function<Expr(Expr &&)> ge{[&result](Expr &&right) {
|
|
return Expr{Expr::GE(std::move(result).value(), std::move(right))};
|
|
}};
|
|
std::function<Expr(Expr &&)> gt{[&result](Expr &&right) {
|
|
return Expr{Expr::GT(std::move(result).value(), std::move(right))};
|
|
}};
|
|
auto more{attempt(
|
|
sourced((".LT."_tok || "<"_tok) >> applyLambda(lt, level3Expr) ||
|
|
(".LE."_tok || "<="_tok) >> applyLambda(le, level3Expr) ||
|
|
(".EQ."_tok || "=="_tok) >> applyLambda(eq, level3Expr) ||
|
|
(".NE."_tok || "/="_tok ||
|
|
extension<LanguageFeature::AlternativeNE>(
|
|
"nonstandard usage: <> for /= or .NE."_port_en_US,
|
|
"<>"_tok /* PGI/Cray extension; Cray also has .LG. */)) >>
|
|
applyLambda(ne, level3Expr) ||
|
|
(".GE."_tok || ">="_tok) >> applyLambda(ge, level3Expr) ||
|
|
(".GT."_tok || ">"_tok) >> applyLambda(gt, level3Expr)))};
|
|
if (std::optional<Expr> next{more.Parse(state)}) {
|
|
next->source.ExtendToCover(source);
|
|
return next;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
};
|
|
constexpr Level4Expr level4Expr;
|
|
|
|
// R1014 and-operand -> [not-op] level-4-expr
|
|
// R1018 not-op -> .NOT.
|
|
// N.B. Fortran's .NOT. binds less tightly than its comparison operators do.
|
|
// PGI/Intel extension: accept multiple .NOT. operators
|
|
struct AndOperand {
|
|
using resultType = Expr;
|
|
constexpr AndOperand() {}
|
|
static inline std::optional<Expr> Parse(ParseState &);
|
|
};
|
|
constexpr AndOperand andOperand;
|
|
|
|
// Match a logical operator or, optionally, its abbreviation.
|
|
inline constexpr auto logicalOp(const char *op, const char *abbrev) {
|
|
return TokenStringMatch{op} ||
|
|
extension<LanguageFeature::LogicalAbbreviations>(
|
|
"nonstandard usage: abbreviated LOGICAL operator"_port_en_US,
|
|
TokenStringMatch{abbrev});
|
|
}
|
|
|
|
inline std::optional<Expr> AndOperand::Parse(ParseState &state) {
|
|
static constexpr auto notOp{attempt(logicalOp(".NOT.", ".N.") >> andOperand)};
|
|
if (std::optional<Expr> negation{notOp.Parse(state)}) {
|
|
return Expr{Expr::NOT{std::move(*negation)}};
|
|
} else {
|
|
return level4Expr.Parse(state);
|
|
}
|
|
}
|
|
|
|
// R1015 or-operand -> [or-operand and-op] and-operand
|
|
// R1019 and-op -> .AND.
|
|
// .AND. is left-associative
|
|
struct OrOperand {
|
|
using resultType = Expr;
|
|
constexpr OrOperand() {}
|
|
static inline std::optional<Expr> Parse(ParseState &state) {
|
|
static constexpr auto operand{sourced(andOperand)};
|
|
std::optional<Expr> result{operand.Parse(state)};
|
|
if (result) {
|
|
auto source{result->source};
|
|
std::function<Expr(Expr &&)> logicalAnd{[&result](Expr &&right) {
|
|
return Expr{Expr::AND(std::move(result).value(), std::move(right))};
|
|
}};
|
|
auto more{attempt(sourced(
|
|
logicalOp(".AND.", ".A.") >> applyLambda(logicalAnd, andOperand)))};
|
|
while (std::optional<Expr> next{more.Parse(state)}) {
|
|
result = std::move(next);
|
|
result->source.ExtendToCover(source);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
};
|
|
constexpr OrOperand orOperand;
|
|
|
|
// R1016 equiv-operand -> [equiv-operand or-op] or-operand
|
|
// R1020 or-op -> .OR.
|
|
// .OR. is left-associative
|
|
struct EquivOperand {
|
|
using resultType = Expr;
|
|
constexpr EquivOperand() {}
|
|
static inline std::optional<Expr> Parse(ParseState &state) {
|
|
std::optional<Expr> result{orOperand.Parse(state)};
|
|
if (result) {
|
|
auto source{result->source};
|
|
std::function<Expr(Expr &&)> logicalOr{[&result](Expr &&right) {
|
|
return Expr{Expr::OR(std::move(result).value(), std::move(right))};
|
|
}};
|
|
auto more{attempt(sourced(
|
|
logicalOp(".OR.", ".O.") >> applyLambda(logicalOr, orOperand)))};
|
|
while (std::optional<Expr> next{more.Parse(state)}) {
|
|
result = std::move(next);
|
|
result->source.ExtendToCover(source);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
};
|
|
constexpr EquivOperand equivOperand;
|
|
|
|
// R1017 level-5-expr -> [level-5-expr equiv-op] equiv-operand
|
|
// R1021 equiv-op -> .EQV. | .NEQV.
|
|
// Logical equivalence is left-associative.
|
|
// Extension: .XOR. as synonym for .NEQV.
|
|
struct Level5Expr {
|
|
using resultType = Expr;
|
|
constexpr Level5Expr() {}
|
|
static inline std::optional<Expr> Parse(ParseState &state) {
|
|
std::optional<Expr> result{equivOperand.Parse(state)};
|
|
if (result) {
|
|
auto source{result->source};
|
|
std::function<Expr(Expr &&)> eqv{[&result](Expr &&right) {
|
|
return Expr{Expr::EQV(std::move(result).value(), std::move(right))};
|
|
}};
|
|
std::function<Expr(Expr &&)> neqv{[&result](Expr &&right) {
|
|
return Expr{Expr::NEQV(std::move(result).value(), std::move(right))};
|
|
}};
|
|
auto more{attempt(sourced(".EQV." >> applyLambda(eqv, equivOperand) ||
|
|
(".NEQV."_tok ||
|
|
extension<LanguageFeature::XOROperator>(
|
|
"nonstandard usage: .XOR./.X. spelling of .NEQV."_port_en_US,
|
|
logicalOp(".XOR.", ".X."))) >>
|
|
applyLambda(neqv, equivOperand)))};
|
|
while (std::optional<Expr> next{more.Parse(state)}) {
|
|
result = std::move(next);
|
|
result->source.ExtendToCover(source);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
};
|
|
constexpr Level5Expr level5Expr;
|
|
|
|
// R1022 expr -> [expr defined-binary-op] level-5-expr
|
|
// Defined binary operators associate leftwards.
|
|
template <> std::optional<Expr> Parser<Expr>::Parse(ParseState &state) {
|
|
std::optional<Expr> result{level5Expr.Parse(state)};
|
|
if (result) {
|
|
auto source{result->source};
|
|
std::function<Expr(DefinedOpName &&, Expr &&)> defBinOp{
|
|
[&result](DefinedOpName &&op, Expr &&right) {
|
|
return Expr{Expr::DefinedBinary(
|
|
std::move(op), std::move(result).value(), std::move(right))};
|
|
}};
|
|
auto more{attempt(
|
|
sourced(applyLambda<Expr>(defBinOp, definedOpName, level5Expr)))};
|
|
while (std::optional<Expr> next{more.Parse(state)}) {
|
|
result = std::move(next);
|
|
result->source.ExtendToCover(source);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// R1003 defined-unary-op -> . letter [letter]... .
|
|
// R1023 defined-binary-op -> . letter [letter]... .
|
|
// R1414 local-defined-operator -> defined-unary-op | defined-binary-op
|
|
// R1415 use-defined-operator -> defined-unary-op | defined-binary-op
|
|
// C1003 A defined operator must be distinct from logical literal constants
|
|
// and intrinsic operator names; this is handled by attempting their parses
|
|
// first, and by name resolution on their definitions, for best errors.
|
|
// N.B. The name of the operator is captured with the dots around it.
|
|
constexpr auto definedOpNameChar{letter ||
|
|
extension<LanguageFeature::PunctuationInNames>(
|
|
"nonstandard usage: non-alphabetic character in defined operator"_port_en_US,
|
|
"$@"_ch)};
|
|
TYPE_PARSER(
|
|
space >> construct<DefinedOpName>(sourced("."_ch >>
|
|
some(definedOpNameChar) >> construct<Name>() / "."_ch)))
|
|
|
|
// R1028 specification-expr -> scalar-int-expr
|
|
TYPE_PARSER(construct<SpecificationExpr>(scalarIntExpr))
|
|
|
|
// R1032 assignment-stmt -> variable = expr
|
|
TYPE_CONTEXT_PARSER("assignment statement"_en_US,
|
|
construct<AssignmentStmt>(variable / "=", expr))
|
|
|
|
// R1033 pointer-assignment-stmt ->
|
|
// data-pointer-object [( bounds-spec-list )] => data-target |
|
|
// data-pointer-object ( bounds-remapping-list ) => data-target |
|
|
// proc-pointer-object => proc-target
|
|
// R1034 data-pointer-object ->
|
|
// variable-name | scalar-variable % data-pointer-component-name
|
|
// C1022 a scalar-variable shall be a data-ref
|
|
// C1024 a data-pointer-object shall not be a coindexed object
|
|
// R1038 proc-pointer-object -> proc-pointer-name | proc-component-ref
|
|
//
|
|
// A distinction can't be made at the time of the initial parse between
|
|
// data-pointer-object and proc-pointer-object, or between data-target
|
|
// and proc-target.
|
|
TYPE_CONTEXT_PARSER("pointer assignment statement"_en_US,
|
|
construct<PointerAssignmentStmt>(dataRef,
|
|
parenthesized(nonemptyList(Parser<BoundsRemapping>{})), "=>" >> expr) ||
|
|
construct<PointerAssignmentStmt>(dataRef,
|
|
defaulted(parenthesized(nonemptyList(Parser<BoundsSpec>{}))),
|
|
"=>" >> expr))
|
|
|
|
// R1035 bounds-spec -> lower-bound-expr :
|
|
TYPE_PARSER(construct<BoundsSpec>(boundExpr / ":"))
|
|
|
|
// R1036 bounds-remapping -> lower-bound-expr : upper-bound-expr
|
|
TYPE_PARSER(construct<BoundsRemapping>(boundExpr / ":", boundExpr))
|
|
|
|
// R1039 proc-component-ref -> scalar-variable % procedure-component-name
|
|
// C1027 the scalar-variable must be a data-ref without coindices.
|
|
TYPE_PARSER(construct<ProcComponentRef>(structureComponent))
|
|
|
|
// R1041 where-stmt -> WHERE ( mask-expr ) where-assignment-stmt
|
|
// R1045 where-assignment-stmt -> assignment-stmt
|
|
// R1046 mask-expr -> logical-expr
|
|
TYPE_CONTEXT_PARSER("WHERE statement"_en_US,
|
|
construct<WhereStmt>("WHERE" >> parenthesized(logicalExpr), assignmentStmt))
|
|
|
|
// R1042 where-construct ->
|
|
// where-construct-stmt [where-body-construct]...
|
|
// [masked-elsewhere-stmt [where-body-construct]...]...
|
|
// [elsewhere-stmt [where-body-construct]...] end-where-stmt
|
|
TYPE_CONTEXT_PARSER("WHERE construct"_en_US,
|
|
construct<WhereConstruct>(statement(Parser<WhereConstructStmt>{}),
|
|
many(whereBodyConstruct),
|
|
many(construct<WhereConstruct::MaskedElsewhere>(
|
|
statement(Parser<MaskedElsewhereStmt>{}),
|
|
many(whereBodyConstruct))),
|
|
maybe(construct<WhereConstruct::Elsewhere>(
|
|
statement(Parser<ElsewhereStmt>{}), many(whereBodyConstruct))),
|
|
statement(Parser<EndWhereStmt>{})))
|
|
|
|
// R1043 where-construct-stmt -> [where-construct-name :] WHERE ( mask-expr )
|
|
TYPE_CONTEXT_PARSER("WHERE construct statement"_en_US,
|
|
construct<WhereConstructStmt>(
|
|
maybe(name / ":"), "WHERE" >> parenthesized(logicalExpr)))
|
|
|
|
// R1044 where-body-construct ->
|
|
// where-assignment-stmt | where-stmt | where-construct
|
|
TYPE_PARSER(construct<WhereBodyConstruct>(statement(assignmentStmt)) ||
|
|
construct<WhereBodyConstruct>(statement(whereStmt)) ||
|
|
construct<WhereBodyConstruct>(indirect(whereConstruct)))
|
|
|
|
// R1047 masked-elsewhere-stmt ->
|
|
// ELSEWHERE ( mask-expr ) [where-construct-name]
|
|
TYPE_CONTEXT_PARSER("masked ELSEWHERE statement"_en_US,
|
|
construct<MaskedElsewhereStmt>(
|
|
"ELSE WHERE" >> parenthesized(logicalExpr), maybe(name)))
|
|
|
|
// R1048 elsewhere-stmt -> ELSEWHERE [where-construct-name]
|
|
TYPE_CONTEXT_PARSER("ELSEWHERE statement"_en_US,
|
|
construct<ElsewhereStmt>("ELSE WHERE" >> maybe(name)))
|
|
|
|
// R1049 end-where-stmt -> ENDWHERE [where-construct-name]
|
|
TYPE_CONTEXT_PARSER("END WHERE statement"_en_US,
|
|
construct<EndWhereStmt>(recovery(
|
|
"END WHERE" >> maybe(name), namedConstructEndStmtErrorRecovery)))
|
|
|
|
// R1050 forall-construct ->
|
|
// forall-construct-stmt [forall-body-construct]... end-forall-stmt
|
|
TYPE_CONTEXT_PARSER("FORALL construct"_en_US,
|
|
construct<ForallConstruct>(statement(Parser<ForallConstructStmt>{}),
|
|
many(Parser<ForallBodyConstruct>{}),
|
|
statement(Parser<EndForallStmt>{})))
|
|
|
|
// R1051 forall-construct-stmt ->
|
|
// [forall-construct-name :] FORALL concurrent-header
|
|
TYPE_CONTEXT_PARSER("FORALL construct statement"_en_US,
|
|
construct<ForallConstructStmt>(
|
|
maybe(name / ":"), "FORALL" >> indirect(concurrentHeader)))
|
|
|
|
// R1052 forall-body-construct ->
|
|
// forall-assignment-stmt | where-stmt | where-construct |
|
|
// forall-construct | forall-stmt
|
|
TYPE_PARSER(construct<ForallBodyConstruct>(statement(forallAssignmentStmt)) ||
|
|
construct<ForallBodyConstruct>(statement(whereStmt)) ||
|
|
construct<ForallBodyConstruct>(whereConstruct) ||
|
|
construct<ForallBodyConstruct>(indirect(forallConstruct)) ||
|
|
construct<ForallBodyConstruct>(statement(forallStmt)))
|
|
|
|
// R1053 forall-assignment-stmt -> assignment-stmt | pointer-assignment-stmt
|
|
TYPE_PARSER(construct<ForallAssignmentStmt>(assignmentStmt) ||
|
|
construct<ForallAssignmentStmt>(pointerAssignmentStmt))
|
|
|
|
// R1054 end-forall-stmt -> END FORALL [forall-construct-name]
|
|
TYPE_CONTEXT_PARSER("END FORALL statement"_en_US,
|
|
construct<EndForallStmt>(recovery(
|
|
"END FORALL" >> maybe(name), namedConstructEndStmtErrorRecovery)))
|
|
|
|
// R1055 forall-stmt -> FORALL concurrent-header forall-assignment-stmt
|
|
TYPE_CONTEXT_PARSER("FORALL statement"_en_US,
|
|
construct<ForallStmt>("FORALL" >> indirect(concurrentHeader),
|
|
unlabeledStatement(forallAssignmentStmt)))
|
|
} // namespace Fortran::parser
|