
This patch adds the `#gpu.kernel_metadata` and `#gpu.kernel_table` attributes. The `#gpu.kernel_metadata` attribute allows storing metadata related to a compiled kernel, for example, the number of scalar registers used by the kernel. The attribute only has 2 required parameters, the name and function type. It also has 2 optional parameters, the arguments attributes and generic dictionary for storing all other metadata. The `#gpu.kernel_table` stores a table of `#gpu.kernel_metadata`, mapping the name of the kernel to the metadata. Finally, the function `ROCDL::getAMDHSAKernelsELFMetadata` was added to collect ELF metadata from a binary, and to test the class methods in both attributes. Example: ```mlir gpu.binary @binary [#gpu.object<#rocdl.target<chip = "gfx900">, kernels = #gpu.kernel_table<[ #gpu.kernel_metadata<"kernel0", (i32) -> (), metadata = {sgpr_count = 255}>, #gpu.kernel_metadata<"kernel1", (i32, f32) -> (), arg_attrs = [{llvm.read_only}, {}]> ]> , bin = "BLOB">] ``` The motivation behind these attributes is to provide useful information for things like tunning. --------- Co-authored-by: Mehdi Amini <joker.eph@gmail.com>
91 lines
3.8 KiB
C++
91 lines
3.8 KiB
C++
//===- DialectGPU.cpp - Pybind module for the GPU passes ------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
#include "mlir-c/Dialect/GPU.h"
|
|
#include "mlir-c/IR.h"
|
|
#include "mlir-c/Support.h"
|
|
#include "mlir/Bindings/Python/PybindAdaptors.h"
|
|
|
|
#include <pybind11/detail/common.h>
|
|
#include <pybind11/pybind11.h>
|
|
|
|
namespace py = pybind11;
|
|
using namespace mlir;
|
|
using namespace mlir::python;
|
|
using namespace mlir::python::adaptors;
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Module initialization.
|
|
// -----------------------------------------------------------------------------
|
|
|
|
PYBIND11_MODULE(_mlirDialectsGPU, m) {
|
|
m.doc() = "MLIR GPU Dialect";
|
|
//===-------------------------------------------------------------------===//
|
|
// AsyncTokenType
|
|
//===-------------------------------------------------------------------===//
|
|
|
|
auto mlirGPUAsyncTokenType =
|
|
mlir_type_subclass(m, "AsyncTokenType", mlirTypeIsAGPUAsyncTokenType);
|
|
|
|
mlirGPUAsyncTokenType.def_classmethod(
|
|
"get",
|
|
[](py::object cls, MlirContext ctx) {
|
|
return cls(mlirGPUAsyncTokenTypeGet(ctx));
|
|
},
|
|
"Gets an instance of AsyncTokenType in the same context", py::arg("cls"),
|
|
py::arg("ctx") = py::none());
|
|
|
|
//===-------------------------------------------------------------------===//
|
|
// ObjectAttr
|
|
//===-------------------------------------------------------------------===//
|
|
|
|
mlir_attribute_subclass(m, "ObjectAttr", mlirAttributeIsAGPUObjectAttr)
|
|
.def_classmethod(
|
|
"get",
|
|
[](py::object cls, MlirAttribute target, uint32_t format,
|
|
py::bytes object, std::optional<MlirAttribute> mlirObjectProps,
|
|
std::optional<MlirAttribute> mlirKernelsAttr) {
|
|
py::buffer_info info(py::buffer(object).request());
|
|
MlirStringRef objectStrRef =
|
|
mlirStringRefCreate(static_cast<char *>(info.ptr), info.size);
|
|
return cls(mlirGPUObjectAttrGetWithKernels(
|
|
mlirAttributeGetContext(target), target, format, objectStrRef,
|
|
mlirObjectProps.has_value() ? *mlirObjectProps
|
|
: MlirAttribute{nullptr},
|
|
mlirKernelsAttr.has_value() ? *mlirKernelsAttr
|
|
: MlirAttribute{nullptr}));
|
|
},
|
|
"cls"_a, "target"_a, "format"_a, "object"_a,
|
|
"properties"_a = py::none(), "kernels"_a = py::none(),
|
|
"Gets a gpu.object from parameters.")
|
|
.def_property_readonly(
|
|
"target",
|
|
[](MlirAttribute self) { return mlirGPUObjectAttrGetTarget(self); })
|
|
.def_property_readonly(
|
|
"format",
|
|
[](MlirAttribute self) { return mlirGPUObjectAttrGetFormat(self); })
|
|
.def_property_readonly(
|
|
"object",
|
|
[](MlirAttribute self) {
|
|
MlirStringRef stringRef = mlirGPUObjectAttrGetObject(self);
|
|
return py::bytes(stringRef.data, stringRef.length);
|
|
})
|
|
.def_property_readonly("properties",
|
|
[](MlirAttribute self) {
|
|
if (mlirGPUObjectAttrHasProperties(self))
|
|
return py::cast(
|
|
mlirGPUObjectAttrGetProperties(self));
|
|
return py::none().cast<py::object>();
|
|
})
|
|
.def_property_readonly("kernels", [](MlirAttribute self) {
|
|
if (mlirGPUObjectAttrHasKernels(self))
|
|
return py::cast(mlirGPUObjectAttrGetKernels(self));
|
|
return py::none().cast<py::object>();
|
|
});
|
|
}
|