
This stack of changes introduces `llvm-profgen` utility which generates a profile data file from given perf script data files for sample-based PGO. It’s part of(not only) the CSSPGO work. Specifically to support context-sensitive with/without pseudo probe profile, it implements a series of functionalities including perf trace parsing, instruction symbolization, LBR stack/call frame stack unwinding, pseudo probe decoding, etc. Also high throughput is achieved by multiple levels of sample aggregation and compatible format with one stop is generated at the end. Please refer to: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s for the CSSPGO RFC. This change adds the support of instruction symbolization. Given the RVA on an instruction pointer, a full calling context can be printed side-by-side with the disassembly code. E.g. ``` Disassembly of section .text [0x0, 0x4a]: <funcA>: 0: mov eax, edi funcA:0 2: mov ecx, dword ptr [rip] funcLeaf:2 @ funcA:1 8: lea edx, [rcx + 3] fib:2 @ funcLeaf:2 @ funcA:1 b: cmp ecx, 3 fib:2 @ funcLeaf:2 @ funcA:1 e: cmovl edx, ecx fib:2 @ funcLeaf:2 @ funcA:1 11: sub eax, edx funcLeaf:2 @ funcA:1 13: ret funcA:2 14: nop word ptr cs:[rax + rax] 1e: nop <funcLeaf>: 20: mov eax, edi funcLeaf:1 22: mov ecx, dword ptr [rip] funcLeaf:2 28: lea edx, [rcx + 3] fib:2 @ funcLeaf:2 2b: cmp ecx, 3 fib:2 @ funcLeaf:2 2e: cmovl edx, ecx fib:2 @ funcLeaf:2 31: sub eax, edx funcLeaf:2 33: ret funcLeaf:3 34: nop word ptr cs:[rax + rax] 3e: nop <fib>: 40: lea eax, [rdi + 3] fib:2 43: cmp edi, 3 fib:2 46: cmovl eax, edi fib:2 49: ret fib:8 ``` Test Plan: ninja check-llvm Reviewed By: wenlei, wmi Differential Revision: https://reviews.llvm.org/D89715
313 lines
11 KiB
C++
313 lines
11 KiB
C++
//===-- ProfiledBinary.cpp - Binary decoder ---------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ProfiledBinary.h"
|
|
#include "ErrorHandling.h"
|
|
#include "MCTargetDesc/X86MCTargetDesc.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Demangle/Demangle.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/TargetSelect.h"
|
|
#include "llvm/Support/X86TargetParser.h"
|
|
|
|
#define DEBUG_TYPE "load-binary"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> ShowDisassembly("show-disassembly", cl::ReallyHidden,
|
|
cl::init(false), cl::ZeroOrMore,
|
|
cl::desc("Print disassembled code."));
|
|
|
|
static cl::opt<bool> ShowSourceLocations("show-source-locations",
|
|
cl::ReallyHidden, cl::init(false),
|
|
cl::ZeroOrMore,
|
|
cl::desc("Print source locations."));
|
|
|
|
namespace llvm {
|
|
namespace sampleprof {
|
|
|
|
static const Target *getTarget(const ObjectFile *Obj) {
|
|
Triple TheTriple = Obj->makeTriple();
|
|
std::string Error;
|
|
std::string ArchName;
|
|
const Target *TheTarget =
|
|
TargetRegistry::lookupTarget(ArchName, TheTriple, Error);
|
|
if (!TheTarget)
|
|
exitWithError(Error, Obj->getFileName());
|
|
return TheTarget;
|
|
}
|
|
|
|
template <class ELFT>
|
|
static uint64_t getELFImageLMAForSec(const ELFFile<ELFT> *Obj,
|
|
const object::ELFSectionRef &Sec,
|
|
StringRef FileName) {
|
|
// Search for a PT_LOAD segment containing the requested section. Return this
|
|
// segment's p_addr as the image load address for the section.
|
|
const auto &PhdrRange = unwrapOrError(Obj->program_headers(), FileName);
|
|
for (const typename ELFT::Phdr &Phdr : PhdrRange)
|
|
if ((Phdr.p_type == ELF::PT_LOAD) && (Phdr.p_vaddr <= Sec.getAddress()) &&
|
|
(Phdr.p_vaddr + Phdr.p_memsz > Sec.getAddress()))
|
|
// Segments will always be loaded at a page boundary.
|
|
return Phdr.p_paddr & ~(Phdr.p_align - 1U);
|
|
return 0;
|
|
}
|
|
|
|
// Get the image load address for a specific section. Note that an image is
|
|
// loaded by segments (a group of sections) and segments may not be consecutive
|
|
// in memory.
|
|
static uint64_t getELFImageLMAForSec(const object::ELFSectionRef &Sec) {
|
|
if (const auto *ELFObj = dyn_cast<ELF32LEObjectFile>(Sec.getObject()))
|
|
return getELFImageLMAForSec(ELFObj->getELFFile(), Sec,
|
|
ELFObj->getFileName());
|
|
else if (const auto *ELFObj = dyn_cast<ELF32BEObjectFile>(Sec.getObject()))
|
|
return getELFImageLMAForSec(ELFObj->getELFFile(), Sec,
|
|
ELFObj->getFileName());
|
|
else if (const auto *ELFObj = dyn_cast<ELF64LEObjectFile>(Sec.getObject()))
|
|
return getELFImageLMAForSec(ELFObj->getELFFile(), Sec,
|
|
ELFObj->getFileName());
|
|
const auto *ELFObj = cast<ELF64BEObjectFile>(Sec.getObject());
|
|
return getELFImageLMAForSec(ELFObj->getELFFile(), Sec, ELFObj->getFileName());
|
|
}
|
|
|
|
void ProfiledBinary::load() {
|
|
// Attempt to open the binary.
|
|
OwningBinary<Binary> OBinary = unwrapOrError(createBinary(Path), Path);
|
|
Binary &Binary = *OBinary.getBinary();
|
|
|
|
auto *Obj = dyn_cast<ELFObjectFileBase>(&Binary);
|
|
if (!Obj)
|
|
exitWithError("not a valid Elf image", Path);
|
|
|
|
TheTriple = Obj->makeTriple();
|
|
// Current only support X86
|
|
if (!TheTriple.isX86())
|
|
exitWithError("unsupported target", TheTriple.getTriple());
|
|
LLVM_DEBUG(dbgs() << "Loading " << Path << "\n");
|
|
|
|
// Find the preferred base address for text sections.
|
|
setPreferredBaseAddress(Obj);
|
|
|
|
// Disassemble the text sections.
|
|
disassemble(Obj);
|
|
|
|
// TODO: decode other sections.
|
|
|
|
return;
|
|
}
|
|
|
|
void ProfiledBinary::setPreferredBaseAddress(const ELFObjectFileBase *Obj) {
|
|
for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end();
|
|
SI != SE; ++SI) {
|
|
const SectionRef &Section = *SI;
|
|
if (Section.isText()) {
|
|
PreferredBaseAddress = getELFImageLMAForSec(Section);
|
|
return;
|
|
}
|
|
}
|
|
exitWithError("no text section found", Obj->getFileName());
|
|
}
|
|
|
|
bool ProfiledBinary::dissassembleSymbol(std::size_t SI, ArrayRef<uint8_t> Bytes,
|
|
SectionSymbolsTy &Symbols,
|
|
const SectionRef &Section) {
|
|
|
|
std::size_t SE = Symbols.size();
|
|
uint64_t SectionOffset = Section.getAddress() - PreferredBaseAddress;
|
|
uint64_t SectSize = Section.getSize();
|
|
uint64_t StartOffset = Symbols[SI].Addr - PreferredBaseAddress;
|
|
uint64_t EndOffset = (SI + 1 < SE)
|
|
? Symbols[SI + 1].Addr - PreferredBaseAddress
|
|
: SectionOffset + SectSize;
|
|
if (StartOffset >= EndOffset)
|
|
return true;
|
|
|
|
std::string &&SymbolName = Symbols[SI].Name.str();
|
|
if (ShowDisassembly)
|
|
outs() << '<' << SymbolName << ">:\n";
|
|
|
|
uint64_t Offset = StartOffset;
|
|
while (Offset < EndOffset) {
|
|
MCInst Inst;
|
|
uint64_t Size;
|
|
// Disassemble an instruction.
|
|
if (!DisAsm->getInstruction(Inst, Size, Bytes.slice(Offset - SectionOffset),
|
|
Offset + PreferredBaseAddress, nulls()))
|
|
return false;
|
|
|
|
if (ShowDisassembly) {
|
|
outs() << format("%8" PRIx64 ":", Offset);
|
|
size_t Start = outs().tell();
|
|
IP->printInst(&Inst, Offset + Size, "", *STI.get(), outs());
|
|
if (ShowSourceLocations) {
|
|
unsigned Cur = outs().tell() - Start;
|
|
if (Cur < 40)
|
|
outs().indent(40 - Cur);
|
|
InstructionPointer Inst(this, Offset);
|
|
outs() << getReversedLocWithContext(symbolize(Inst));
|
|
}
|
|
outs() << "\n";
|
|
}
|
|
|
|
const MCInstrDesc &MCDesc = MII->get(Inst.getOpcode());
|
|
|
|
// Populate address maps.
|
|
CodeAddrs.push_back(Offset);
|
|
if (MCDesc.isCall())
|
|
CallAddrs.insert(Offset);
|
|
else if (MCDesc.isReturn())
|
|
RetAddrs.insert(Offset);
|
|
|
|
Offset += Size;
|
|
}
|
|
|
|
if (ShowDisassembly)
|
|
outs() << "\n";
|
|
|
|
FuncStartAddrMap[StartOffset] = Symbols[SI].Name.str();
|
|
return true;
|
|
}
|
|
|
|
void ProfiledBinary::setUpDisassembler(const ELFObjectFileBase *Obj) {
|
|
const Target *TheTarget = getTarget(Obj);
|
|
std::string TripleName = TheTriple.getTriple();
|
|
StringRef FileName = Obj->getFileName();
|
|
|
|
MRI.reset(TheTarget->createMCRegInfo(TripleName));
|
|
if (!MRI)
|
|
exitWithError("no register info for target " + TripleName, FileName);
|
|
|
|
MCTargetOptions MCOptions;
|
|
AsmInfo.reset(TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
|
|
if (!AsmInfo)
|
|
exitWithError("no assembly info for target " + TripleName, FileName);
|
|
|
|
SubtargetFeatures Features = Obj->getFeatures();
|
|
STI.reset(
|
|
TheTarget->createMCSubtargetInfo(TripleName, "", Features.getString()));
|
|
if (!STI)
|
|
exitWithError("no subtarget info for target " + TripleName, FileName);
|
|
|
|
MII.reset(TheTarget->createMCInstrInfo());
|
|
if (!MII)
|
|
exitWithError("no instruction info for target " + TripleName, FileName);
|
|
|
|
MCObjectFileInfo MOFI;
|
|
MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
|
|
MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
|
|
DisAsm.reset(TheTarget->createMCDisassembler(*STI, Ctx));
|
|
if (!DisAsm)
|
|
exitWithError("no disassembler for target " + TripleName, FileName);
|
|
|
|
MIA.reset(TheTarget->createMCInstrAnalysis(MII.get()));
|
|
|
|
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
|
|
IP.reset(TheTarget->createMCInstPrinter(Triple(TripleName), AsmPrinterVariant,
|
|
*AsmInfo, *MII, *MRI));
|
|
IP->setPrintBranchImmAsAddress(true);
|
|
}
|
|
|
|
void ProfiledBinary::disassemble(const ELFObjectFileBase *Obj) {
|
|
// Set up disassembler and related components.
|
|
setUpDisassembler(Obj);
|
|
|
|
// Create a mapping from virtual address to symbol name. The symbols in text
|
|
// sections are the candidates to dissassemble.
|
|
std::map<SectionRef, SectionSymbolsTy> AllSymbols;
|
|
StringRef FileName = Obj->getFileName();
|
|
for (const SymbolRef &Symbol : Obj->symbols()) {
|
|
const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
|
|
const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
|
|
section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
|
|
if (SecI != Obj->section_end())
|
|
AllSymbols[*SecI].push_back(SymbolInfoTy(Addr, Name, ELF::STT_NOTYPE));
|
|
}
|
|
|
|
// Sort all the symbols. Use a stable sort to stabilize the output.
|
|
for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
|
|
stable_sort(SecSyms.second);
|
|
|
|
if (ShowDisassembly)
|
|
outs() << "\nDisassembly of " << FileName << ":\n";
|
|
|
|
// Dissassemble a text section.
|
|
for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end();
|
|
SI != SE; ++SI) {
|
|
const SectionRef &Section = *SI;
|
|
if (!Section.isText())
|
|
continue;
|
|
|
|
uint64_t ImageLoadAddr = PreferredBaseAddress;
|
|
uint64_t SectionOffset = Section.getAddress() - ImageLoadAddr;
|
|
uint64_t SectSize = Section.getSize();
|
|
if (!SectSize)
|
|
continue;
|
|
|
|
// Register the text section.
|
|
TextSections.insert({SectionOffset, SectSize});
|
|
|
|
if (ShowDisassembly) {
|
|
StringRef SectionName = unwrapOrError(Section.getName(), FileName);
|
|
outs() << "\nDisassembly of section " << SectionName;
|
|
outs() << " [" << format("0x%" PRIx64, SectionOffset) << ", "
|
|
<< format("0x%" PRIx64, SectionOffset + SectSize) << "]:\n\n";
|
|
}
|
|
|
|
// Get the section data.
|
|
ArrayRef<uint8_t> Bytes =
|
|
arrayRefFromStringRef(unwrapOrError(Section.getContents(), FileName));
|
|
|
|
// Get the list of all the symbols in this section.
|
|
SectionSymbolsTy &Symbols = AllSymbols[Section];
|
|
|
|
// Disassemble symbol by symbol.
|
|
for (std::size_t SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
|
|
if (!dissassembleSymbol(SI, Bytes, Symbols, Section))
|
|
exitWithError("disassembling error", FileName);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ProfiledBinary::setupSymbolizer() {
|
|
symbolize::LLVMSymbolizer::Options SymbolizerOpts;
|
|
SymbolizerOpts.PrintFunctions =
|
|
DILineInfoSpecifier::FunctionNameKind::LinkageName;
|
|
SymbolizerOpts.Demangle = false;
|
|
SymbolizerOpts.DefaultArch = TheTriple.getArchName().str();
|
|
SymbolizerOpts.UseSymbolTable = false;
|
|
SymbolizerOpts.RelativeAddresses = false;
|
|
Symbolizer = std::make_unique<symbolize::LLVMSymbolizer>(SymbolizerOpts);
|
|
}
|
|
|
|
FrameLocationStack ProfiledBinary::symbolize(const InstructionPointer &IP) {
|
|
assert(this == IP.Binary &&
|
|
"Binary should only symbolize its own instruction");
|
|
auto Addr = object::SectionedAddress{IP.Offset + PreferredBaseAddress,
|
|
object::SectionedAddress::UndefSection};
|
|
DIInliningInfo InlineStack =
|
|
unwrapOrError(Symbolizer->symbolizeInlinedCode(Path, Addr), getName());
|
|
|
|
FrameLocationStack CallStack;
|
|
|
|
for (int32_t I = InlineStack.getNumberOfFrames() - 1; I >= 0; I--) {
|
|
const auto &CallerFrame = InlineStack.getFrame(I);
|
|
if (CallerFrame.FunctionName == "<invalid>")
|
|
break;
|
|
LineLocation Line(CallerFrame.Line - CallerFrame.StartLine,
|
|
CallerFrame.Discriminator);
|
|
FrameLocation Callsite(CallerFrame.FunctionName, Line);
|
|
CallStack.push_back(Callsite);
|
|
}
|
|
|
|
return CallStack;
|
|
}
|
|
|
|
} // end namespace sampleprof
|
|
} // end namespace llvm
|