
__inline is a vendor specific spelling for inline. clang and gcc treat it the same as inline, and is available in MSVC 2013 which does not implement C99 (VS2015 supports the inline keyword though). This will allow us to build the builtins using MSVC. llvm-svn: 249953
109 lines
4.7 KiB
C++
109 lines
4.7 KiB
C++
//=-lib/fp_extend_impl.inc - low precision -> high precision conversion -*-- -//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is dual licensed under the MIT and the University of Illinois Open
|
|
// Source Licenses. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a fairly generic conversion from a narrower to a wider
|
|
// IEEE-754 floating-point type. The constants and types defined following the
|
|
// includes below parameterize the conversion.
|
|
//
|
|
// It does not support types that don't use the usual IEEE-754 interchange
|
|
// formats; specifically, some work would be needed to adapt it to
|
|
// (for example) the Intel 80-bit format or PowerPC double-double format.
|
|
//
|
|
// Note please, however, that this implementation is only intended to support
|
|
// *widening* operations; if you need to convert to a *narrower* floating-point
|
|
// type (e.g. double -> float), then this routine will not do what you want it
|
|
// to.
|
|
//
|
|
// It also requires that integer types at least as large as both formats
|
|
// are available on the target platform; this may pose a problem when trying
|
|
// to add support for quad on some 32-bit systems, for example. You also may
|
|
// run into trouble finding an appropriate CLZ function for wide source types;
|
|
// you will likely need to roll your own on some platforms.
|
|
//
|
|
// Finally, the following assumptions are made:
|
|
//
|
|
// 1. floating-point types and integer types have the same endianness on the
|
|
// target platform
|
|
//
|
|
// 2. quiet NaNs, if supported, are indicated by the leading bit of the
|
|
// significand field being set
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "fp_extend.h"
|
|
|
|
static __inline dst_t __extendXfYf2__(src_t a) {
|
|
// Various constants whose values follow from the type parameters.
|
|
// Any reasonable optimizer will fold and propagate all of these.
|
|
const int srcBits = sizeof(src_t)*CHAR_BIT;
|
|
const int srcExpBits = srcBits - srcSigBits - 1;
|
|
const int srcInfExp = (1 << srcExpBits) - 1;
|
|
const int srcExpBias = srcInfExp >> 1;
|
|
|
|
const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
|
|
const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
|
|
const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
|
|
const src_rep_t srcAbsMask = srcSignMask - 1;
|
|
const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
|
|
const src_rep_t srcNaNCode = srcQNaN - 1;
|
|
|
|
const int dstBits = sizeof(dst_t)*CHAR_BIT;
|
|
const int dstExpBits = dstBits - dstSigBits - 1;
|
|
const int dstInfExp = (1 << dstExpBits) - 1;
|
|
const int dstExpBias = dstInfExp >> 1;
|
|
|
|
const dst_rep_t dstMinNormal = DST_REP_C(1) << dstSigBits;
|
|
|
|
// Break a into a sign and representation of the absolute value
|
|
const src_rep_t aRep = srcToRep(a);
|
|
const src_rep_t aAbs = aRep & srcAbsMask;
|
|
const src_rep_t sign = aRep & srcSignMask;
|
|
dst_rep_t absResult;
|
|
|
|
// If sizeof(src_rep_t) < sizeof(int), the subtraction result is promoted
|
|
// to (signed) int. To avoid that, explicitly cast to src_rep_t.
|
|
if ((src_rep_t)(aAbs - srcMinNormal) < srcInfinity - srcMinNormal) {
|
|
// a is a normal number.
|
|
// Extend to the destination type by shifting the significand and
|
|
// exponent into the proper position and rebiasing the exponent.
|
|
absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits);
|
|
absResult += (dst_rep_t)(dstExpBias - srcExpBias) << dstSigBits;
|
|
}
|
|
|
|
else if (aAbs >= srcInfinity) {
|
|
// a is NaN or infinity.
|
|
// Conjure the result by beginning with infinity, then setting the qNaN
|
|
// bit (if needed) and right-aligning the rest of the trailing NaN
|
|
// payload field.
|
|
absResult = (dst_rep_t)dstInfExp << dstSigBits;
|
|
absResult |= (dst_rep_t)(aAbs & srcQNaN) << (dstSigBits - srcSigBits);
|
|
absResult |= (dst_rep_t)(aAbs & srcNaNCode) << (dstSigBits - srcSigBits);
|
|
}
|
|
|
|
else if (aAbs) {
|
|
// a is denormal.
|
|
// renormalize the significand and clear the leading bit, then insert
|
|
// the correct adjusted exponent in the destination type.
|
|
const int scale = src_rep_t_clz(aAbs) - src_rep_t_clz(srcMinNormal);
|
|
absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits + scale);
|
|
absResult ^= dstMinNormal;
|
|
const int resultExponent = dstExpBias - srcExpBias - scale + 1;
|
|
absResult |= (dst_rep_t)resultExponent << dstSigBits;
|
|
}
|
|
|
|
else {
|
|
// a is zero.
|
|
absResult = 0;
|
|
}
|
|
|
|
// Apply the signbit to (dst_t)abs(a).
|
|
const dst_rep_t result = absResult | (dst_rep_t)sign << (dstBits - srcBits);
|
|
return dstFromRep(result);
|
|
}
|