
This is a major change on how we represent nested name qualifications in the AST. * The nested name specifier itself and how it's stored is changed. The prefixes for types are handled within the type hierarchy, which makes canonicalization for them super cheap, no memory allocation required. Also translating a type into nested name specifier form becomes a no-op. An identifier is stored as a DependentNameType. The nested name specifier gains a lightweight handle class, to be used instead of passing around pointers, which is similar to what is implemented for TemplateName. There is still one free bit available, and this handle can be used within a PointerUnion and PointerIntPair, which should keep bit-packing aficionados happy. * The ElaboratedType node is removed, all type nodes in which it could previously apply to can now store the elaborated keyword and name qualifier, tail allocating when present. * TagTypes can now point to the exact declaration found when producing these, as opposed to the previous situation of there only existing one TagType per entity. This increases the amount of type sugar retained, and can have several applications, for example in tracking module ownership, and other tools which care about source file origins, such as IWYU. These TagTypes are lazily allocated, in order to limit the increase in AST size. This patch offers a great performance benefit. It greatly improves compilation time for [stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for `test_on2.cpp` in that project, which is the slowest compiling test, this patch improves `-c` compilation time by about 7.2%, with the `-fsyntax-only` improvement being at ~12%. This has great results on compile-time-tracker as well:  This patch also further enables other optimziations in the future, and will reduce the performance impact of template specialization resugaring when that lands. It has some other miscelaneous drive-by fixes. About the review: Yes the patch is huge, sorry about that. Part of the reason is that I started by the nested name specifier part, before the ElaboratedType part, but that had a huge performance downside, as ElaboratedType is a big performance hog. I didn't have the steam to go back and change the patch after the fact. There is also a lot of internal API changes, and it made sense to remove ElaboratedType in one go, versus removing it from one type at a time, as that would present much more churn to the users. Also, the nested name specifier having a different API avoids missing changes related to how prefixes work now, which could make existing code compile but not work. How to review: The important changes are all in `clang/include/clang/AST` and `clang/lib/AST`, with also important changes in `clang/lib/Sema/TreeTransform.h`. The rest and bulk of the changes are mostly consequences of the changes in API. PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just for easier to rebasing. I plan to rename it back after this lands. Fixes #136624 Fixes https://github.com/llvm/llvm-project/issues/43179 Fixes https://github.com/llvm/llvm-project/issues/68670 Fixes https://github.com/llvm/llvm-project/issues/92757
441 lines
17 KiB
C++
441 lines
17 KiB
C++
//===--- DumpAST.cpp - Serialize clang AST to LSP -------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "DumpAST.h"
|
|
#include "Protocol.h"
|
|
#include "SourceCode.h"
|
|
#include "support/Logger.h"
|
|
#include "clang/AST/ASTTypeTraits.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/NestedNameSpecifier.h"
|
|
#include "clang/AST/PrettyPrinter.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/AST/TextNodeDumper.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/Basic/Specifiers.h"
|
|
#include "clang/Tooling/Syntax/Tokens.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <optional>
|
|
|
|
namespace clang {
|
|
namespace clangd {
|
|
namespace {
|
|
|
|
using llvm::raw_ostream;
|
|
template <typename Print> std::string toString(const Print &C) {
|
|
std::string Result;
|
|
llvm::raw_string_ostream OS(Result);
|
|
C(OS);
|
|
return std::move(OS.str());
|
|
}
|
|
|
|
bool isInjectedClassName(Decl *D) {
|
|
if (const auto *CRD = llvm::dyn_cast<CXXRecordDecl>(D))
|
|
return CRD->isInjectedClassName();
|
|
return false;
|
|
}
|
|
|
|
class DumpVisitor : public RecursiveASTVisitor<DumpVisitor> {
|
|
using Base = RecursiveASTVisitor<DumpVisitor>;
|
|
|
|
const syntax::TokenBuffer &Tokens;
|
|
const ASTContext &Ctx;
|
|
|
|
// Pointers are into 'children' vector.
|
|
// They remain valid because while a node is on the stack we only add
|
|
// descendants, not siblings.
|
|
std::vector<ASTNode *> Stack;
|
|
|
|
// Generic logic used to handle traversal of all node kinds.
|
|
|
|
template <typename T>
|
|
bool traverseNodePre(llvm::StringRef Role, const T &Node) {
|
|
if (Stack.empty()) {
|
|
assert(Root.role.empty());
|
|
Stack.push_back(&Root);
|
|
} else {
|
|
Stack.back()->children.emplace_back();
|
|
Stack.push_back(&Stack.back()->children.back());
|
|
}
|
|
auto &N = *Stack.back();
|
|
N.role = Role.str();
|
|
N.kind = getKind(Node);
|
|
N.detail = getDetail(Node);
|
|
N.range = getRange(Node);
|
|
N.arcana = getArcana(Node);
|
|
return true;
|
|
}
|
|
bool traverseNodePost() {
|
|
assert(!Stack.empty());
|
|
Stack.pop_back();
|
|
return true;
|
|
}
|
|
template <typename T, typename Callable>
|
|
bool traverseNode(llvm::StringRef Role, const T &Node, const Callable &Body) {
|
|
traverseNodePre(Role, Node);
|
|
Body();
|
|
return traverseNodePost();
|
|
}
|
|
|
|
// Range: most nodes have getSourceRange(), with a couple of exceptions.
|
|
// We only return it if it's valid at both ends and there are no macros.
|
|
|
|
template <typename T> std::optional<Range> getRange(const T &Node) {
|
|
SourceRange SR = getSourceRange(Node);
|
|
auto Spelled = Tokens.spelledForExpanded(Tokens.expandedTokens(SR));
|
|
if (!Spelled)
|
|
return std::nullopt;
|
|
return halfOpenToRange(
|
|
Tokens.sourceManager(),
|
|
CharSourceRange::getCharRange(Spelled->front().location(),
|
|
Spelled->back().endLocation()));
|
|
}
|
|
template <typename T, typename = decltype(std::declval<T>().getSourceRange())>
|
|
SourceRange getSourceRange(const T &Node) {
|
|
return Node.getSourceRange();
|
|
}
|
|
template <typename T,
|
|
typename = decltype(std::declval<T *>()->getSourceRange())>
|
|
SourceRange getSourceRange(const T *Node) {
|
|
return Node->getSourceRange();
|
|
}
|
|
// TemplateName doesn't have a real Loc node type.
|
|
SourceRange getSourceRange(const TemplateName &Node) { return SourceRange(); }
|
|
// Attr just uses a weird method name. Maybe we should fix it instead?
|
|
SourceRange getSourceRange(const Attr *Node) { return Node->getRange(); }
|
|
|
|
// Kind is usually the class name, without the suffix ("Type" etc).
|
|
// Where there's a set of variants instead, we use the 'Kind' enum values.
|
|
|
|
std::string getKind(const Decl *D) { return D->getDeclKindName(); }
|
|
std::string getKind(const Stmt *S) {
|
|
std::string Result = S->getStmtClassName();
|
|
if (llvm::StringRef(Result).ends_with("Stmt") ||
|
|
llvm::StringRef(Result).ends_with("Expr"))
|
|
Result.resize(Result.size() - 4);
|
|
return Result;
|
|
}
|
|
std::string getKind(const TypeLoc &TL) {
|
|
if (TL.getTypeLocClass() == TypeLoc::Qualified)
|
|
return "Qualified";
|
|
return TL.getType()->getTypeClassName();
|
|
}
|
|
std::string getKind(const TemplateArgumentLoc &TAL) {
|
|
switch (TAL.getArgument().getKind()) {
|
|
#define TEMPLATE_ARGUMENT_KIND(X) \
|
|
case TemplateArgument::X: \
|
|
return #X
|
|
TEMPLATE_ARGUMENT_KIND(Null);
|
|
TEMPLATE_ARGUMENT_KIND(NullPtr);
|
|
TEMPLATE_ARGUMENT_KIND(Expression);
|
|
TEMPLATE_ARGUMENT_KIND(Integral);
|
|
TEMPLATE_ARGUMENT_KIND(Pack);
|
|
TEMPLATE_ARGUMENT_KIND(Type);
|
|
TEMPLATE_ARGUMENT_KIND(Declaration);
|
|
TEMPLATE_ARGUMENT_KIND(Template);
|
|
TEMPLATE_ARGUMENT_KIND(TemplateExpansion);
|
|
TEMPLATE_ARGUMENT_KIND(StructuralValue);
|
|
#undef TEMPLATE_ARGUMENT_KIND
|
|
}
|
|
llvm_unreachable("Unhandled ArgKind enum");
|
|
}
|
|
std::string getKind(NestedNameSpecifierLoc NNSL) {
|
|
switch (NNSL.getNestedNameSpecifier().getKind()) {
|
|
case NestedNameSpecifier::Kind::Null:
|
|
llvm_unreachable("unexpected null nested name specifier");
|
|
#define NNS_KIND(X) \
|
|
case NestedNameSpecifier::Kind::X: \
|
|
return #X
|
|
NNS_KIND(Namespace);
|
|
NNS_KIND(Type);
|
|
NNS_KIND(Global);
|
|
NNS_KIND(MicrosoftSuper);
|
|
#undef NNS_KIND
|
|
}
|
|
llvm_unreachable("Unhandled SpecifierKind enum");
|
|
}
|
|
std::string getKind(const CXXCtorInitializer *CCI) {
|
|
if (CCI->isBaseInitializer())
|
|
return "BaseInitializer";
|
|
if (CCI->isDelegatingInitializer())
|
|
return "DelegatingInitializer";
|
|
if (CCI->isAnyMemberInitializer())
|
|
return "MemberInitializer";
|
|
llvm_unreachable("Unhandled CXXCtorInitializer type");
|
|
}
|
|
std::string getKind(const TemplateName &TN) {
|
|
switch (TN.getKind()) {
|
|
#define TEMPLATE_KIND(X) \
|
|
case TemplateName::X: \
|
|
return #X;
|
|
TEMPLATE_KIND(Template);
|
|
TEMPLATE_KIND(OverloadedTemplate);
|
|
TEMPLATE_KIND(AssumedTemplate);
|
|
TEMPLATE_KIND(QualifiedTemplate);
|
|
TEMPLATE_KIND(DependentTemplate);
|
|
TEMPLATE_KIND(SubstTemplateTemplateParm);
|
|
TEMPLATE_KIND(SubstTemplateTemplateParmPack);
|
|
TEMPLATE_KIND(UsingTemplate);
|
|
TEMPLATE_KIND(DeducedTemplate);
|
|
#undef TEMPLATE_KIND
|
|
}
|
|
llvm_unreachable("Unhandled NameKind enum");
|
|
}
|
|
std::string getKind(const Attr *A) {
|
|
switch (A->getKind()) {
|
|
#define ATTR(X) \
|
|
case attr::X: \
|
|
return #X;
|
|
#include "clang/Basic/AttrList.inc"
|
|
#undef ATTR
|
|
}
|
|
llvm_unreachable("Unhandled attr::Kind enum");
|
|
}
|
|
std::string getKind(const CXXBaseSpecifier &CBS) {
|
|
// There aren't really any variants of CXXBaseSpecifier.
|
|
// To avoid special cases in the API/UI, use public/private as the kind.
|
|
return getAccessSpelling(CBS.getAccessSpecifier()).str();
|
|
}
|
|
std::string getKind(const ConceptReference *CR) {
|
|
// Again there are no variants here.
|
|
// Kind is "Concept", role is "reference"
|
|
return "Concept";
|
|
}
|
|
|
|
// Detail is the single most important fact about the node.
|
|
// Often this is the name, sometimes a "kind" enum like operators or casts.
|
|
// We should avoid unbounded text, like dumping parameter lists.
|
|
|
|
std::string getDetail(const Decl *D) {
|
|
const auto *ND = dyn_cast<NamedDecl>(D);
|
|
if (!ND || llvm::isa_and_nonnull<CXXConstructorDecl>(ND->getAsFunction()) ||
|
|
isa<CXXDestructorDecl>(ND))
|
|
return "";
|
|
std::string Name = toString([&](raw_ostream &OS) { ND->printName(OS); });
|
|
if (Name.empty())
|
|
return "(anonymous)";
|
|
return Name;
|
|
}
|
|
std::string getDetail(const Stmt *S) {
|
|
if (const auto *DRE = dyn_cast<DeclRefExpr>(S))
|
|
return DRE->getNameInfo().getAsString();
|
|
if (const auto *DSDRE = dyn_cast<DependentScopeDeclRefExpr>(S))
|
|
return DSDRE->getNameInfo().getAsString();
|
|
if (const auto *ME = dyn_cast<MemberExpr>(S))
|
|
return ME->getMemberNameInfo().getAsString();
|
|
if (const auto *CE = dyn_cast<CastExpr>(S))
|
|
return CE->getCastKindName();
|
|
if (const auto *BO = dyn_cast<BinaryOperator>(S))
|
|
return BO->getOpcodeStr().str();
|
|
if (const auto *UO = dyn_cast<UnaryOperator>(S))
|
|
return UnaryOperator::getOpcodeStr(UO->getOpcode()).str();
|
|
if (const auto *CCO = dyn_cast<CXXConstructExpr>(S))
|
|
return CCO->getConstructor()->getNameAsString();
|
|
if (const auto *CTE = dyn_cast<CXXThisExpr>(S)) {
|
|
bool Const = CTE->getType()->getPointeeType().isLocalConstQualified();
|
|
if (CTE->isImplicit())
|
|
return Const ? "const, implicit" : "implicit";
|
|
if (Const)
|
|
return "const";
|
|
return "";
|
|
}
|
|
if (isa<IntegerLiteral, FloatingLiteral, FixedPointLiteral,
|
|
CharacterLiteral, ImaginaryLiteral, CXXBoolLiteralExpr>(S))
|
|
return toString([&](raw_ostream &OS) {
|
|
S->printPretty(OS, nullptr, Ctx.getPrintingPolicy());
|
|
});
|
|
if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(S))
|
|
return MTE->isBoundToLvalueReference() ? "lvalue" : "rvalue";
|
|
return "";
|
|
}
|
|
std::string getDetail(const TypeLoc &TL) {
|
|
if (TL.getType().hasLocalQualifiers())
|
|
return TL.getType().getLocalQualifiers().getAsString(
|
|
Ctx.getPrintingPolicy());
|
|
if (const auto *TT = dyn_cast<TagType>(TL.getTypePtr()))
|
|
return getDetail(TT->getOriginalDecl());
|
|
if (const auto *DT = dyn_cast<DeducedType>(TL.getTypePtr()))
|
|
if (DT->isDeduced())
|
|
return DT->getDeducedType().getAsString(Ctx.getPrintingPolicy());
|
|
if (const auto *BT = dyn_cast<BuiltinType>(TL.getTypePtr()))
|
|
return BT->getName(Ctx.getPrintingPolicy()).str();
|
|
if (const auto *TTPT = dyn_cast<TemplateTypeParmType>(TL.getTypePtr()))
|
|
return getDetail(TTPT->getDecl());
|
|
if (const auto *TT = dyn_cast<TypedefType>(TL.getTypePtr()))
|
|
return getDetail(TT->getDecl());
|
|
return "";
|
|
}
|
|
std::string getDetail(NestedNameSpecifierLoc NNSL) {
|
|
NestedNameSpecifier NNS = NNSL.getNestedNameSpecifier();
|
|
if (NNS.getKind() != NestedNameSpecifier::Kind::Namespace)
|
|
return "";
|
|
return NNS.getAsNamespaceAndPrefix().Namespace->getNameAsString() + "::";
|
|
}
|
|
std::string getDetail(const CXXCtorInitializer *CCI) {
|
|
if (FieldDecl *FD = CCI->getAnyMember())
|
|
return getDetail(FD);
|
|
if (TypeLoc TL = CCI->getBaseClassLoc())
|
|
return getDetail(TL);
|
|
return "";
|
|
}
|
|
std::string getDetail(const TemplateArgumentLoc &TAL) {
|
|
if (TAL.getArgument().getKind() == TemplateArgument::Integral)
|
|
return toString(TAL.getArgument().getAsIntegral(), 10);
|
|
return "";
|
|
}
|
|
std::string getDetail(const TemplateName &TN) {
|
|
return toString([&](raw_ostream &OS) {
|
|
TN.print(OS, Ctx.getPrintingPolicy(), TemplateName::Qualified::None);
|
|
});
|
|
}
|
|
std::string getDetail(const Attr *A) {
|
|
return A->getAttrName() ? A->getNormalizedFullName() : A->getSpelling();
|
|
}
|
|
std::string getDetail(const CXXBaseSpecifier &CBS) {
|
|
return CBS.isVirtual() ? "virtual" : "";
|
|
}
|
|
std::string getDetail(const ConceptReference *CR) {
|
|
return CR->getNamedConcept()->getNameAsString();
|
|
}
|
|
|
|
/// Arcana is produced by TextNodeDumper, for the types it supports.
|
|
|
|
template <typename Dump> std::string dump(const Dump &D) {
|
|
return toString([&](raw_ostream &OS) {
|
|
TextNodeDumper Dumper(OS, Ctx, /*ShowColors=*/false);
|
|
D(Dumper);
|
|
});
|
|
}
|
|
template <typename T> std::string getArcana(const T &N) {
|
|
return dump([&](TextNodeDumper &D) { D.Visit(N); });
|
|
}
|
|
std::string getArcana(const NestedNameSpecifierLoc &NNS) { return ""; }
|
|
std::string getArcana(const TemplateName &NNS) { return ""; }
|
|
std::string getArcana(const CXXBaseSpecifier &CBS) { return ""; }
|
|
std::string getArcana(const TemplateArgumentLoc &TAL) {
|
|
return dump([&](TextNodeDumper &D) {
|
|
D.Visit(TAL.getArgument(), TAL.getSourceRange());
|
|
});
|
|
}
|
|
std::string getArcana(const TypeLoc &TL) {
|
|
return dump([&](TextNodeDumper &D) { D.Visit(TL.getType()); });
|
|
}
|
|
|
|
public:
|
|
ASTNode Root;
|
|
DumpVisitor(const syntax::TokenBuffer &Tokens, const ASTContext &Ctx)
|
|
: Tokens(Tokens), Ctx(Ctx) {}
|
|
|
|
// Override traversal to record the nodes we care about.
|
|
// Generally, these are nodes with position information (TypeLoc, not Type).
|
|
|
|
bool TraverseDecl(Decl *D) {
|
|
return !D || isInjectedClassName(D) ||
|
|
traverseNode("declaration", D, [&] { Base::TraverseDecl(D); });
|
|
}
|
|
bool TraverseTypeLoc(TypeLoc TL, bool TraverseQualifier = true) {
|
|
return !TL || traverseNode("type", TL, [&] {
|
|
Base::TraverseTypeLoc(TL, TraverseQualifier);
|
|
});
|
|
}
|
|
bool TraverseTemplateName(const TemplateName &TN) {
|
|
return traverseNode("template name", TN,
|
|
[&] { Base::TraverseTemplateName(TN); });
|
|
}
|
|
bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &TAL) {
|
|
return traverseNode("template argument", TAL,
|
|
[&] { Base::TraverseTemplateArgumentLoc(TAL); });
|
|
}
|
|
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNSL) {
|
|
return !NNSL || traverseNode("specifier", NNSL, [&] {
|
|
Base::TraverseNestedNameSpecifierLoc(NNSL);
|
|
});
|
|
}
|
|
bool TraverseConstructorInitializer(CXXCtorInitializer *CCI) {
|
|
return !CCI || traverseNode("constructor initializer", CCI, [&] {
|
|
Base::TraverseConstructorInitializer(CCI);
|
|
});
|
|
}
|
|
bool TraverseAttr(Attr *A) {
|
|
return !A || traverseNode("attribute", A, [&] { Base::TraverseAttr(A); });
|
|
}
|
|
bool TraverseConceptReference(ConceptReference *C) {
|
|
return !C || traverseNode("reference", C,
|
|
[&] { Base::TraverseConceptReference(C); });
|
|
}
|
|
bool TraverseCXXBaseSpecifier(const CXXBaseSpecifier &CBS) {
|
|
return traverseNode("base", CBS,
|
|
[&] { Base::TraverseCXXBaseSpecifier(CBS); });
|
|
}
|
|
// Stmt is the same, but this form allows the data recursion optimization.
|
|
bool dataTraverseStmtPre(Stmt *S) {
|
|
return S && traverseNodePre(isa<Expr>(S) ? "expression" : "statement", S);
|
|
}
|
|
bool dataTraverseStmtPost(Stmt *X) { return traverseNodePost(); }
|
|
|
|
// QualifiedTypeLoc is handled strangely in RecursiveASTVisitor: the derived
|
|
// TraverseTypeLoc is not called for the inner UnqualTypeLoc.
|
|
// This means we'd never see 'int' in 'const int'! Work around that here.
|
|
// (The reason for the behavior is to avoid traversing the nested Type twice,
|
|
// but we ignore TraverseType anyway).
|
|
bool TraverseQualifiedTypeLoc(QualifiedTypeLoc QTL, bool TraverseQualifier) {
|
|
return TraverseTypeLoc(QTL.getUnqualifiedLoc());
|
|
}
|
|
// Uninteresting parts of the AST that don't have locations within them.
|
|
bool TraverseNestedNameSpecifier(NestedNameSpecifier) { return true; }
|
|
bool TraverseType(QualType) { return true; }
|
|
|
|
// OpaqueValueExpr blocks traversal, we must explicitly traverse it.
|
|
bool TraverseOpaqueValueExpr(OpaqueValueExpr *E) {
|
|
return TraverseStmt(E->getSourceExpr());
|
|
}
|
|
// We only want to traverse the *syntactic form* to understand the selection.
|
|
bool TraversePseudoObjectExpr(PseudoObjectExpr *E) {
|
|
return TraverseStmt(E->getSyntacticForm());
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
ASTNode dumpAST(const DynTypedNode &N, const syntax::TokenBuffer &Tokens,
|
|
const ASTContext &Ctx) {
|
|
DumpVisitor V(Tokens, Ctx);
|
|
// DynTypedNode only works with const, RecursiveASTVisitor only non-const :-(
|
|
if (const auto *D = N.get<Decl>())
|
|
V.TraverseDecl(const_cast<Decl *>(D));
|
|
else if (const auto *S = N.get<Stmt>())
|
|
V.TraverseStmt(const_cast<Stmt *>(S));
|
|
else if (const auto *NNSL = N.get<NestedNameSpecifierLoc>())
|
|
V.TraverseNestedNameSpecifierLoc(
|
|
*const_cast<NestedNameSpecifierLoc *>(NNSL));
|
|
else if (const auto *NNS = N.get<NestedNameSpecifier>())
|
|
V.TraverseNestedNameSpecifier(*NNS);
|
|
else if (const auto *TL = N.get<TypeLoc>())
|
|
V.TraverseTypeLoc(*const_cast<TypeLoc *>(TL));
|
|
else if (const auto *QT = N.get<QualType>())
|
|
V.TraverseType(*const_cast<QualType *>(QT));
|
|
else if (const auto *CCI = N.get<CXXCtorInitializer>())
|
|
V.TraverseConstructorInitializer(const_cast<CXXCtorInitializer *>(CCI));
|
|
else if (const auto *TAL = N.get<TemplateArgumentLoc>())
|
|
V.TraverseTemplateArgumentLoc(*const_cast<TemplateArgumentLoc *>(TAL));
|
|
else if (const auto *CBS = N.get<CXXBaseSpecifier>())
|
|
V.TraverseCXXBaseSpecifier(*const_cast<CXXBaseSpecifier *>(CBS));
|
|
else if (const auto *CR = N.get<ConceptReference>())
|
|
V.TraverseConceptReference(const_cast<ConceptReference *>(CR));
|
|
else
|
|
elog("dumpAST: unhandled DynTypedNode kind {0}",
|
|
N.getNodeKind().asStringRef());
|
|
return std::move(V.Root);
|
|
}
|
|
|
|
} // namespace clangd
|
|
} // namespace clang
|