llvm-project/clang/lib/CIR/CodeGen/CIRGenBuilder.h

499 lines
19 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_LIB_CIR_CODEGEN_CIRGENBUILDER_H
#define LLVM_CLANG_LIB_CIR_CODEGEN_CIRGENBUILDER_H
#include "Address.h"
#include "CIRGenRecordLayout.h"
#include "CIRGenTypeCache.h"
#include "clang/CIR/Dialect/IR/CIRDataLayout.h"
#include "clang/CIR/Interfaces/CIRTypeInterfaces.h"
#include "clang/CIR/MissingFeatures.h"
#include "clang/CIR/Dialect/Builder/CIRBaseBuilder.h"
#include "clang/CIR/MissingFeatures.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
namespace clang::CIRGen {
class CIRGenBuilderTy : public cir::CIRBaseBuilderTy {
const CIRGenTypeCache &typeCache;
llvm::StringMap<unsigned> recordNames;
llvm::StringMap<unsigned> globalsVersioning;
public:
CIRGenBuilderTy(mlir::MLIRContext &mlirContext, const CIRGenTypeCache &tc)
: CIRBaseBuilderTy(mlirContext), typeCache(tc) {}
/// Get a cir::ConstArrayAttr for a string literal.
/// Note: This is different from what is returned by
/// mlir::Builder::getStringAttr() which is an mlir::StringAttr.
mlir::Attribute getString(llvm::StringRef str, mlir::Type eltTy,
std::optional<size_t> size) {
size_t finalSize = size.value_or(str.size());
size_t lastNonZeroPos = str.find_last_not_of('\0');
// If the string is full of null bytes, emit a #cir.zero rather than
// a #cir.const_array.
if (lastNonZeroPos == llvm::StringRef::npos) {
auto arrayTy = cir::ArrayType::get(eltTy, finalSize);
return cir::ZeroAttr::get(arrayTy);
}
// We emit trailing zeros only if there are multiple trailing zeros.
size_t trailingZerosNum = 0;
if (finalSize > lastNonZeroPos + 2)
trailingZerosNum = finalSize - lastNonZeroPos - 1;
auto truncatedArrayTy =
cir::ArrayType::get(eltTy, finalSize - trailingZerosNum);
auto fullArrayTy = cir::ArrayType::get(eltTy, finalSize);
return cir::ConstArrayAttr::get(
fullArrayTy,
mlir::StringAttr::get(str.drop_back(trailingZerosNum),
truncatedArrayTy),
trailingZerosNum);
}
cir::ConstRecordAttr getAnonConstRecord(mlir::ArrayAttr arrayAttr,
bool packed = false,
bool padded = false,
mlir::Type ty = {}) {
llvm::SmallVector<mlir::Type, 4> members;
for (auto &f : arrayAttr) {
auto ta = mlir::cast<mlir::TypedAttr>(f);
members.push_back(ta.getType());
}
if (!ty)
ty = getAnonRecordTy(members, packed, padded);
auto sTy = mlir::cast<cir::RecordType>(ty);
return cir::ConstRecordAttr::get(sTy, arrayAttr);
}
std::string getUniqueAnonRecordName() { return getUniqueRecordName("anon"); }
std::string getUniqueRecordName(const std::string &baseName) {
auto it = recordNames.find(baseName);
if (it == recordNames.end()) {
recordNames[baseName] = 0;
return baseName;
}
return baseName + "." + std::to_string(recordNames[baseName]++);
}
cir::LongDoubleType getLongDoubleTy(const llvm::fltSemantics &format) const {
if (&format == &llvm::APFloat::IEEEdouble())
return cir::LongDoubleType::get(getContext(), typeCache.DoubleTy);
if (&format == &llvm::APFloat::x87DoubleExtended())
return cir::LongDoubleType::get(getContext(), typeCache.FP80Ty);
if (&format == &llvm::APFloat::IEEEquad())
return cir::LongDoubleType::get(getContext(), typeCache.FP128Ty);
if (&format == &llvm::APFloat::PPCDoubleDouble())
llvm_unreachable("NYI: PPC double-double format for long double");
llvm_unreachable("Unsupported format for long double");
}
mlir::Type getPtrToVPtrType() {
return getPointerTo(cir::VPtrType::get(getContext()));
}
/// Get a CIR record kind from a AST declaration tag.
cir::RecordType::RecordKind getRecordKind(const clang::TagTypeKind kind) {
switch (kind) {
case clang::TagTypeKind::Class:
return cir::RecordType::Class;
case clang::TagTypeKind::Struct:
return cir::RecordType::Struct;
case clang::TagTypeKind::Union:
return cir::RecordType::Union;
case clang::TagTypeKind::Interface:
llvm_unreachable("interface records are NYI");
case clang::TagTypeKind::Enum:
llvm_unreachable("enums are not records");
}
llvm_unreachable("Unsupported record kind");
}
/// Get a CIR named record type.
///
/// If a record already exists and is complete, but the client tries to fetch
/// it with a different set of attributes, this method will crash.
cir::RecordType getCompleteRecordTy(llvm::ArrayRef<mlir::Type> members,
llvm::StringRef name, bool packed,
bool padded) {
const auto nameAttr = getStringAttr(name);
auto kind = cir::RecordType::RecordKind::Struct;
assert(!cir::MissingFeatures::astRecordDeclAttr());
// Create or get the record.
auto type =
getType<cir::RecordType>(members, nameAttr, packed, padded, kind);
// If we found an existing type, verify that either it is incomplete or
// it matches the requested attributes.
assert(!type.isIncomplete() ||
(type.getMembers() == members && type.getPacked() == packed &&
type.getPadded() == padded));
// Complete an incomplete record or ensure the existing complete record
// matches the requested attributes.
type.complete(members, packed, padded);
return type;
}
/// Get an incomplete CIR struct type. If we have a complete record
/// declaration, we may create an incomplete type and then add the
/// members, so \p rd here may be complete.
cir::RecordType getIncompleteRecordTy(llvm::StringRef name,
const clang::RecordDecl *rd) {
const mlir::StringAttr nameAttr = getStringAttr(name);
cir::RecordType::RecordKind kind = cir::RecordType::RecordKind::Struct;
if (rd)
kind = getRecordKind(rd->getTagKind());
return getType<cir::RecordType>(nameAttr, kind);
}
// Return true if the value is a null constant such as null pointer, (+0.0)
// for floating-point or zero initializer
bool isNullValue(mlir::Attribute attr) const {
if (mlir::isa<cir::ZeroAttr>(attr))
return true;
if (const auto ptrVal = mlir::dyn_cast<cir::ConstPtrAttr>(attr))
return ptrVal.isNullValue();
if (const auto intVal = mlir::dyn_cast<cir::IntAttr>(attr))
return intVal.isNullValue();
if (const auto boolVal = mlir::dyn_cast<cir::BoolAttr>(attr))
return !boolVal.getValue();
if (auto fpAttr = mlir::dyn_cast<cir::FPAttr>(attr)) {
auto fpVal = fpAttr.getValue();
bool ignored;
llvm::APFloat fv(+0.0);
fv.convert(fpVal.getSemantics(), llvm::APFloat::rmNearestTiesToEven,
&ignored);
return fv.bitwiseIsEqual(fpVal);
}
if (const auto arrayVal = mlir::dyn_cast<cir::ConstArrayAttr>(attr)) {
if (mlir::isa<mlir::StringAttr>(arrayVal.getElts()))
return false;
return llvm::all_of(
mlir::cast<mlir::ArrayAttr>(arrayVal.getElts()),
[&](const mlir::Attribute &elt) { return isNullValue(elt); });
}
return false;
}
//
// Type helpers
// ------------
//
cir::IntType getUIntNTy(int n) {
switch (n) {
case 8:
return getUInt8Ty();
case 16:
return getUInt16Ty();
case 32:
return getUInt32Ty();
case 64:
return getUInt64Ty();
default:
return cir::IntType::get(getContext(), n, false);
}
}
cir::IntType getSIntNTy(int n) {
switch (n) {
case 8:
return getSInt8Ty();
case 16:
return getSInt16Ty();
case 32:
return getSInt32Ty();
case 64:
return getSInt64Ty();
default:
return cir::IntType::get(getContext(), n, true);
}
}
cir::VoidType getVoidTy() { return typeCache.VoidTy; }
cir::IntType getSInt8Ty() { return typeCache.SInt8Ty; }
cir::IntType getSInt16Ty() { return typeCache.SInt16Ty; }
cir::IntType getSInt32Ty() { return typeCache.SInt32Ty; }
cir::IntType getSInt64Ty() { return typeCache.SInt64Ty; }
cir::IntType getUInt8Ty() { return typeCache.UInt8Ty; }
cir::IntType getUInt16Ty() { return typeCache.UInt16Ty; }
cir::IntType getUInt32Ty() { return typeCache.UInt32Ty; }
cir::IntType getUInt64Ty() { return typeCache.UInt64Ty; }
cir::ConstantOp getConstInt(mlir::Location loc, llvm::APSInt intVal);
cir::ConstantOp getConstInt(mlir::Location loc, llvm::APInt intVal);
cir::ConstantOp getConstInt(mlir::Location loc, mlir::Type t, uint64_t c);
cir::ConstantOp getConstFP(mlir::Location loc, mlir::Type t,
llvm::APFloat fpVal);
bool isInt8Ty(mlir::Type i) {
return i == typeCache.UInt8Ty || i == typeCache.SInt8Ty;
}
bool isInt16Ty(mlir::Type i) {
return i == typeCache.UInt16Ty || i == typeCache.SInt16Ty;
}
bool isInt32Ty(mlir::Type i) {
return i == typeCache.UInt32Ty || i == typeCache.SInt32Ty;
}
bool isInt64Ty(mlir::Type i) {
return i == typeCache.UInt64Ty || i == typeCache.SInt64Ty;
}
bool isInt(mlir::Type i) { return mlir::isa<cir::IntType>(i); }
// Fetch the type representing a pointer to unsigned int8 values.
cir::PointerType getUInt8PtrTy() { return typeCache.UInt8PtrTy; }
/// Get a CIR anonymous record type.
cir::RecordType getAnonRecordTy(llvm::ArrayRef<mlir::Type> members,
bool packed = false, bool padded = false) {
assert(!cir::MissingFeatures::astRecordDeclAttr());
auto kind = cir::RecordType::RecordKind::Struct;
return getType<cir::RecordType>(members, packed, padded, kind);
}
//
// Constant creation helpers
// -------------------------
//
cir::ConstantOp getSInt32(int32_t c, mlir::Location loc) {
return getConstantInt(loc, getSInt32Ty(), c);
}
cir::ConstantOp getUInt32(uint32_t c, mlir::Location loc) {
return getConstantInt(loc, getUInt32Ty(), c);
}
// Creates constant nullptr for pointer type ty.
cir::ConstantOp getNullPtr(mlir::Type ty, mlir::Location loc) {
assert(!cir::MissingFeatures::targetCodeGenInfoGetNullPointer());
return cir::ConstantOp::create(*this, loc, getConstPtrAttr(ty, 0));
}
mlir::Value createNeg(mlir::Value value) {
if (auto intTy = mlir::dyn_cast<cir::IntType>(value.getType())) {
// Source is a unsigned integer: first cast it to signed.
if (intTy.isUnsigned())
value = createIntCast(value, getSIntNTy(intTy.getWidth()));
return cir::UnaryOp::create(*this, value.getLoc(), value.getType(),
cir::UnaryOpKind::Minus, value);
}
llvm_unreachable("negation for the given type is NYI");
}
// TODO: split this to createFPExt/createFPTrunc when we have dedicated cast
// operations.
mlir::Value createFloatingCast(mlir::Value v, mlir::Type destType) {
assert(!cir::MissingFeatures::fpConstraints());
return cir::CastOp::create(*this, v.getLoc(), destType,
cir::CastKind::floating, v);
}
mlir::Value createFSub(mlir::Location loc, mlir::Value lhs, mlir::Value rhs) {
assert(!cir::MissingFeatures::metaDataNode());
assert(!cir::MissingFeatures::fpConstraints());
assert(!cir::MissingFeatures::fastMathFlags());
return cir::BinOp::create(*this, loc, cir::BinOpKind::Sub, lhs, rhs);
}
mlir::Value createFAdd(mlir::Location loc, mlir::Value lhs, mlir::Value rhs) {
assert(!cir::MissingFeatures::metaDataNode());
assert(!cir::MissingFeatures::fpConstraints());
assert(!cir::MissingFeatures::fastMathFlags());
return cir::BinOp::create(*this, loc, cir::BinOpKind::Add, lhs, rhs);
}
mlir::Value createFMul(mlir::Location loc, mlir::Value lhs, mlir::Value rhs) {
assert(!cir::MissingFeatures::metaDataNode());
assert(!cir::MissingFeatures::fpConstraints());
assert(!cir::MissingFeatures::fastMathFlags());
return cir::BinOp::create(*this, loc, cir::BinOpKind::Mul, lhs, rhs);
}
mlir::Value createFDiv(mlir::Location loc, mlir::Value lhs, mlir::Value rhs) {
assert(!cir::MissingFeatures::metaDataNode());
assert(!cir::MissingFeatures::fpConstraints());
assert(!cir::MissingFeatures::fastMathFlags());
return cir::BinOp::create(*this, loc, cir::BinOpKind::Div, lhs, rhs);
}
Address createBaseClassAddr(mlir::Location loc, Address addr,
mlir::Type destType, unsigned offset,
bool assumeNotNull) {
if (destType == addr.getElementType())
return addr;
auto ptrTy = getPointerTo(destType);
auto baseAddr =
cir::BaseClassAddrOp::create(*this, loc, ptrTy, addr.getPointer(),
mlir::APInt(64, offset), assumeNotNull);
return Address(baseAddr, destType, addr.getAlignment());
}
/// Cast the element type of the given address to a different type,
/// preserving information like the alignment.
Address createElementBitCast(mlir::Location loc, Address addr,
mlir::Type destType) {
if (destType == addr.getElementType())
return addr;
auto ptrTy = getPointerTo(destType);
return Address(createBitcast(loc, addr.getPointer(), ptrTy), destType,
addr.getAlignment());
}
cir::LoadOp createLoad(mlir::Location loc, Address addr,
bool isVolatile = false) {
mlir::IntegerAttr align = getAlignmentAttr(addr.getAlignment());
return cir::LoadOp::create(*this, loc, addr.getPointer(), /*isDeref=*/false,
/*alignment=*/align,
/*mem_order=*/cir::MemOrderAttr{});
}
cir::StoreOp createStore(mlir::Location loc, mlir::Value val, Address dst,
bool isVolatile = false,
mlir::IntegerAttr align = {},
cir::MemOrderAttr order = {}) {
if (!align)
align = getAlignmentAttr(dst.getAlignment());
return CIRBaseBuilderTy::createStore(loc, val, dst.getPointer(), isVolatile,
align, order);
}
/// Create a cir.complex.real_ptr operation that derives a pointer to the real
/// part of the complex value pointed to by the specified pointer value.
mlir::Value createComplexRealPtr(mlir::Location loc, mlir::Value value) {
auto srcPtrTy = mlir::cast<cir::PointerType>(value.getType());
auto srcComplexTy = mlir::cast<cir::ComplexType>(srcPtrTy.getPointee());
return cir::ComplexRealPtrOp::create(
*this, loc, getPointerTo(srcComplexTy.getElementType()), value);
}
Address createComplexRealPtr(mlir::Location loc, Address addr) {
return Address{createComplexRealPtr(loc, addr.getPointer()),
addr.getAlignment()};
}
/// Create a cir.complex.imag_ptr operation that derives a pointer to the
/// imaginary part of the complex value pointed to by the specified pointer
/// value.
mlir::Value createComplexImagPtr(mlir::Location loc, mlir::Value value) {
auto srcPtrTy = mlir::cast<cir::PointerType>(value.getType());
auto srcComplexTy = mlir::cast<cir::ComplexType>(srcPtrTy.getPointee());
return cir::ComplexImagPtrOp::create(
*this, loc, getPointerTo(srcComplexTy.getElementType()), value);
}
Address createComplexImagPtr(mlir::Location loc, Address addr) {
return Address{createComplexImagPtr(loc, addr.getPointer()),
addr.getAlignment()};
}
/// Create a cir.ptr_stride operation to get access to an array element.
/// \p idx is the index of the element to access, \p shouldDecay is true if
/// the result should decay to a pointer to the element type.
mlir::Value getArrayElement(mlir::Location arrayLocBegin,
mlir::Location arrayLocEnd, mlir::Value arrayPtr,
mlir::Type eltTy, mlir::Value idx,
bool shouldDecay);
/// Returns a decayed pointer to the first element of the array
/// pointed to by \p arrayPtr.
mlir::Value maybeBuildArrayDecay(mlir::Location loc, mlir::Value arrayPtr,
mlir::Type eltTy);
// Convert byte offset to sequence of high-level indices suitable for
// GlobalViewAttr. Ideally we shouldn't deal with low-level offsets at all
// but currently some parts of Clang AST, which we don't want to touch just
// yet, return them.
void computeGlobalViewIndicesFromFlatOffset(
int64_t offset, mlir::Type ty, cir::CIRDataLayout layout,
llvm::SmallVectorImpl<int64_t> &indices);
/// Creates a versioned global variable. If the symbol is already taken, an ID
/// will be appended to the symbol. The returned global must always be queried
/// for its name so it can be referenced correctly.
[[nodiscard]] cir::GlobalOp
createVersionedGlobal(mlir::ModuleOp module, mlir::Location loc,
mlir::StringRef name, mlir::Type type, bool isConstant,
cir::GlobalLinkageKind linkage) {
// Create a unique name if the given name is already taken.
std::string uniqueName;
if (unsigned version = globalsVersioning[name.str()]++)
uniqueName = name.str() + "." + std::to_string(version);
else
uniqueName = name.str();
return createGlobal(module, loc, uniqueName, type, isConstant, linkage);
}
mlir::Value createSetBitfield(mlir::Location loc, mlir::Type resultType,
Address dstAddr, mlir::Type storageType,
mlir::Value src, const CIRGenBitFieldInfo &info,
bool isLvalueVolatile, bool useVolatile) {
unsigned offset = useVolatile ? info.volatileOffset : info.offset;
// If using AAPCS and the field is volatile, load with the size of the
// declared field
storageType =
useVolatile ? cir::IntType::get(storageType.getContext(),
info.volatileStorageSize, info.isSigned)
: storageType;
return cir::SetBitfieldOp::create(
*this, loc, resultType, dstAddr.getPointer(), storageType, src,
info.name, info.size, offset, info.isSigned, isLvalueVolatile,
dstAddr.getAlignment().getAsAlign().value());
}
mlir::Value createGetBitfield(mlir::Location loc, mlir::Type resultType,
Address addr, mlir::Type storageType,
const CIRGenBitFieldInfo &info,
bool isLvalueVolatile, bool useVolatile) {
unsigned offset = useVolatile ? info.volatileOffset : info.offset;
// If using AAPCS and the field is volatile, load with the size of the
// declared field
storageType =
useVolatile ? cir::IntType::get(storageType.getContext(),
info.volatileStorageSize, info.isSigned)
: storageType;
return cir::GetBitfieldOp::create(*this, loc, resultType, addr.getPointer(),
storageType, info.name, info.size, offset,
info.isSigned, isLvalueVolatile,
addr.getAlignment().getAsAlign().value());
}
};
} // namespace clang::CIRGen
#endif