
This change adds support for calling virtual functions. This includes adding the cir.vtable.get_virtual_fn_addr operation to lookup the address of the function being called from an object's vtable.
395 lines
13 KiB
C++
395 lines
13 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// These classes implement wrappers around mlir::Value in order to fully
|
|
// represent the range of values for C L- and R- values.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef CLANG_LIB_CIR_CIRGENVALUE_H
|
|
#define CLANG_LIB_CIR_CIRGENVALUE_H
|
|
|
|
#include "Address.h"
|
|
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/Type.h"
|
|
|
|
#include "CIRGenRecordLayout.h"
|
|
#include "mlir/IR/Value.h"
|
|
|
|
#include "clang/CIR/MissingFeatures.h"
|
|
|
|
namespace clang::CIRGen {
|
|
|
|
/// This trivial value class is used to represent the result of an
|
|
/// expression that is evaluated. It can be one of three things: either a
|
|
/// simple MLIR SSA value, a pair of SSA values for complex numbers, or the
|
|
/// address of an aggregate value in memory.
|
|
class RValue {
|
|
enum Flavor { Scalar, Complex, Aggregate };
|
|
|
|
union {
|
|
mlir::Value value;
|
|
|
|
// Stores aggregate address.
|
|
Address aggregateAddr;
|
|
};
|
|
|
|
unsigned isVolatile : 1;
|
|
unsigned flavor : 2;
|
|
|
|
public:
|
|
RValue() : value(nullptr), flavor(Scalar) {}
|
|
|
|
bool isScalar() const { return flavor == Scalar; }
|
|
bool isComplex() const { return flavor == Complex; }
|
|
bool isAggregate() const { return flavor == Aggregate; }
|
|
|
|
bool isVolatileQualified() const { return isVolatile; }
|
|
|
|
/// Return the value of this scalar value.
|
|
mlir::Value getValue() const {
|
|
assert(isScalar() && "Not a scalar!");
|
|
return value;
|
|
}
|
|
|
|
/// Return the value of this complex value.
|
|
mlir::Value getComplexValue() const {
|
|
assert(isComplex() && "Not a complex!");
|
|
return value;
|
|
}
|
|
|
|
/// Return the value of the address of the aggregate.
|
|
Address getAggregateAddress() const {
|
|
assert(isAggregate() && "Not an aggregate!");
|
|
return aggregateAddr;
|
|
}
|
|
|
|
mlir::Value getAggregatePointer(QualType pointeeType) const {
|
|
return getAggregateAddress().getPointer();
|
|
}
|
|
|
|
static RValue getIgnored() {
|
|
// FIXME: should we make this a more explicit state?
|
|
return get(nullptr);
|
|
}
|
|
|
|
static RValue get(mlir::Value v) {
|
|
RValue er;
|
|
er.value = v;
|
|
er.flavor = Scalar;
|
|
er.isVolatile = false;
|
|
return er;
|
|
}
|
|
|
|
static RValue getComplex(mlir::Value v) {
|
|
RValue er;
|
|
er.value = v;
|
|
er.flavor = Complex;
|
|
er.isVolatile = false;
|
|
return er;
|
|
}
|
|
|
|
// volatile or not. Remove default to find all places that probably get this
|
|
// wrong.
|
|
|
|
/// Convert an Address to an RValue. If the Address is not
|
|
/// signed, create an RValue using the unsigned address. Otherwise, resign the
|
|
/// address using the provided type.
|
|
static RValue getAggregate(Address addr, bool isVolatile = false) {
|
|
RValue er;
|
|
er.aggregateAddr = addr;
|
|
er.flavor = Aggregate;
|
|
er.isVolatile = isVolatile;
|
|
return er;
|
|
}
|
|
};
|
|
|
|
/// The source of the alignment of an l-value; an expression of
|
|
/// confidence in the alignment actually matching the estimate.
|
|
enum class AlignmentSource {
|
|
/// The l-value was an access to a declared entity or something
|
|
/// equivalently strong, like the address of an array allocated by a
|
|
/// language runtime.
|
|
Decl,
|
|
|
|
/// The l-value was considered opaque, so the alignment was
|
|
/// determined from a type, but that type was an explicitly-aligned
|
|
/// typedef.
|
|
AttributedType,
|
|
|
|
/// The l-value was considered opaque, so the alignment was
|
|
/// determined from a type.
|
|
Type
|
|
};
|
|
|
|
/// Given that the base address has the given alignment source, what's
|
|
/// our confidence in the alignment of the field?
|
|
static inline AlignmentSource getFieldAlignmentSource(AlignmentSource source) {
|
|
// For now, we don't distinguish fields of opaque pointers from
|
|
// top-level declarations, but maybe we should.
|
|
return AlignmentSource::Decl;
|
|
}
|
|
|
|
class LValueBaseInfo {
|
|
AlignmentSource alignSource;
|
|
|
|
public:
|
|
explicit LValueBaseInfo(AlignmentSource source = AlignmentSource::Type)
|
|
: alignSource(source) {}
|
|
AlignmentSource getAlignmentSource() const { return alignSource; }
|
|
void setAlignmentSource(AlignmentSource source) { alignSource = source; }
|
|
|
|
void mergeForCast(const LValueBaseInfo &info) {
|
|
setAlignmentSource(info.getAlignmentSource());
|
|
}
|
|
};
|
|
|
|
class LValue {
|
|
enum {
|
|
Simple, // This is a normal l-value, use getAddress().
|
|
VectorElt, // This is a vector element l-value (V[i]), use getVector*
|
|
BitField, // This is a bitfield l-value, use getBitfield*.
|
|
ExtVectorElt, // This is an extended vector subset, use getExtVectorComp
|
|
GlobalReg, // This is a register l-value, use getGlobalReg()
|
|
MatrixElt // This is a matrix element, use getVector*
|
|
} lvType;
|
|
clang::QualType type;
|
|
clang::Qualifiers quals;
|
|
|
|
// The alignment to use when accessing this lvalue. (For vector elements,
|
|
// this is the alignment of the whole vector)
|
|
unsigned alignment;
|
|
mlir::Value v;
|
|
mlir::Value vectorIdx; // Index for vector subscript
|
|
mlir::Type elementType;
|
|
LValueBaseInfo baseInfo;
|
|
const CIRGenBitFieldInfo *bitFieldInfo{nullptr};
|
|
|
|
void initialize(clang::QualType type, clang::Qualifiers quals,
|
|
clang::CharUnits alignment, LValueBaseInfo baseInfo) {
|
|
assert((!alignment.isZero() || type->isIncompleteType()) &&
|
|
"initializing l-value with zero alignment!");
|
|
this->type = type;
|
|
this->quals = quals;
|
|
const unsigned maxAlign = 1U << 31;
|
|
this->alignment = alignment.getQuantity() <= maxAlign
|
|
? alignment.getQuantity()
|
|
: maxAlign;
|
|
assert(this->alignment == alignment.getQuantity() &&
|
|
"Alignment exceeds allowed max!");
|
|
this->baseInfo = baseInfo;
|
|
}
|
|
|
|
public:
|
|
bool isSimple() const { return lvType == Simple; }
|
|
bool isVectorElt() const { return lvType == VectorElt; }
|
|
bool isBitField() const { return lvType == BitField; }
|
|
bool isGlobalReg() const { return lvType == GlobalReg; }
|
|
bool isVolatile() const { return quals.hasVolatile(); }
|
|
|
|
bool isVolatileQualified() const { return quals.hasVolatile(); }
|
|
|
|
unsigned getVRQualifiers() const {
|
|
return quals.getCVRQualifiers() & ~clang::Qualifiers::Const;
|
|
}
|
|
|
|
clang::QualType getType() const { return type; }
|
|
|
|
mlir::Value getPointer() const { return v; }
|
|
|
|
clang::CharUnits getAlignment() const {
|
|
return clang::CharUnits::fromQuantity(alignment);
|
|
}
|
|
void setAlignment(clang::CharUnits a) { alignment = a.getQuantity(); }
|
|
|
|
Address getAddress() const {
|
|
return Address(getPointer(), elementType, getAlignment());
|
|
}
|
|
|
|
void setAddress(Address address) {
|
|
assert(isSimple());
|
|
v = address.getPointer();
|
|
elementType = address.getElementType();
|
|
alignment = address.getAlignment().getQuantity();
|
|
assert(!cir::MissingFeatures::addressIsKnownNonNull());
|
|
}
|
|
|
|
const clang::Qualifiers &getQuals() const { return quals; }
|
|
clang::Qualifiers &getQuals() { return quals; }
|
|
|
|
LValueBaseInfo getBaseInfo() const { return baseInfo; }
|
|
void setBaseInfo(LValueBaseInfo info) { baseInfo = info; }
|
|
|
|
static LValue makeAddr(Address address, clang::QualType t,
|
|
LValueBaseInfo baseInfo) {
|
|
// Classic codegen sets the objc gc qualifier here. That requires an
|
|
// ASTContext, which is passed in from CIRGenFunction::makeAddrLValue.
|
|
assert(!cir::MissingFeatures::objCGC());
|
|
|
|
LValue r;
|
|
r.lvType = Simple;
|
|
r.v = address.getPointer();
|
|
r.elementType = address.getElementType();
|
|
r.initialize(t, t.getQualifiers(), address.getAlignment(), baseInfo);
|
|
return r;
|
|
}
|
|
|
|
Address getVectorAddress() const {
|
|
return Address(getVectorPointer(), elementType, getAlignment());
|
|
}
|
|
|
|
mlir::Value getVectorPointer() const {
|
|
assert(isVectorElt());
|
|
return v;
|
|
}
|
|
|
|
mlir::Value getVectorIdx() const {
|
|
assert(isVectorElt());
|
|
return vectorIdx;
|
|
}
|
|
|
|
static LValue makeVectorElt(Address vecAddress, mlir::Value index,
|
|
clang::QualType t, LValueBaseInfo baseInfo) {
|
|
LValue r;
|
|
r.lvType = VectorElt;
|
|
r.v = vecAddress.getPointer();
|
|
r.elementType = vecAddress.getElementType();
|
|
r.vectorIdx = index;
|
|
r.initialize(t, t.getQualifiers(), vecAddress.getAlignment(), baseInfo);
|
|
return r;
|
|
}
|
|
|
|
// bitfield lvalue
|
|
Address getBitFieldAddress() const {
|
|
return Address(getBitFieldPointer(), elementType, getAlignment());
|
|
}
|
|
|
|
mlir::Value getBitFieldPointer() const {
|
|
assert(isBitField());
|
|
return v;
|
|
}
|
|
|
|
const CIRGenBitFieldInfo &getBitFieldInfo() const {
|
|
assert(isBitField());
|
|
return *bitFieldInfo;
|
|
}
|
|
|
|
/// Create a new object to represent a bit-field access.
|
|
///
|
|
/// \param Addr - The base address of the bit-field sequence this
|
|
/// bit-field refers to.
|
|
/// \param Info - The information describing how to perform the bit-field
|
|
/// access.
|
|
static LValue makeBitfield(Address addr, const CIRGenBitFieldInfo &info,
|
|
clang::QualType type, LValueBaseInfo baseInfo) {
|
|
LValue r;
|
|
r.lvType = BitField;
|
|
r.v = addr.getPointer();
|
|
r.elementType = addr.getElementType();
|
|
r.bitFieldInfo = &info;
|
|
r.initialize(type, type.getQualifiers(), addr.getAlignment(), baseInfo);
|
|
return r;
|
|
}
|
|
};
|
|
|
|
/// An aggregate value slot.
|
|
class AggValueSlot {
|
|
|
|
Address addr;
|
|
clang::Qualifiers quals;
|
|
|
|
/// This is set to true if some external code is responsible for setting up a
|
|
/// destructor for the slot. Otherwise the code which constructs it should
|
|
/// push the appropriate cleanup.
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
LLVM_ATTRIBUTE_UNUSED unsigned destructedFlag : 1;
|
|
|
|
/// This is set to true if the memory in the slot is known to be zero before
|
|
/// the assignment into it. This means that zero fields don't need to be set.
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned zeroedFlag : 1;
|
|
|
|
/// This is set to true if the slot might be aliased and it's not undefined
|
|
/// behavior to access it through such an alias. Note that it's always
|
|
/// undefined behavior to access a C++ object that's under construction
|
|
/// through an alias derived from outside the construction process.
|
|
///
|
|
/// This flag controls whether calls that produce the aggregate
|
|
/// value may be evaluated directly into the slot, or whether they
|
|
/// must be evaluated into an unaliased temporary and then memcpy'ed
|
|
/// over. Since it's invalid in general to memcpy a non-POD C++
|
|
/// object, it's important that this flag never be set when
|
|
/// evaluating an expression which constructs such an object.
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
LLVM_ATTRIBUTE_UNUSED unsigned aliasedFlag : 1;
|
|
|
|
/// This is set to true if the tail padding of this slot might overlap
|
|
/// another object that may have already been initialized (and whose
|
|
/// value must be preserved by this initialization). If so, we may only
|
|
/// store up to the dsize of the type. Otherwise we can widen stores to
|
|
/// the size of the type.
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
LLVM_ATTRIBUTE_UNUSED unsigned overlapFlag : 1;
|
|
|
|
public:
|
|
enum IsDestructed_t { IsNotDestructed, IsDestructed };
|
|
enum IsZeroed_t { IsNotZeroed, IsZeroed };
|
|
enum IsAliased_t { IsNotAliased, IsAliased };
|
|
enum Overlap_t { MayOverlap, DoesNotOverlap };
|
|
|
|
/// Returns an aggregate value slot indicating that the aggregate
|
|
/// value is being ignored.
|
|
static AggValueSlot ignored() {
|
|
return forAddr(Address::invalid(), clang::Qualifiers(), IsNotDestructed,
|
|
IsNotAliased, DoesNotOverlap);
|
|
}
|
|
|
|
AggValueSlot(Address addr, clang::Qualifiers quals, bool destructedFlag,
|
|
bool zeroedFlag, bool aliasedFlag, bool overlapFlag)
|
|
: addr(addr), quals(quals), destructedFlag(destructedFlag),
|
|
zeroedFlag(zeroedFlag), aliasedFlag(aliasedFlag),
|
|
overlapFlag(overlapFlag) {}
|
|
|
|
static AggValueSlot forAddr(Address addr, clang::Qualifiers quals,
|
|
IsDestructed_t isDestructed,
|
|
IsAliased_t isAliased, Overlap_t mayOverlap,
|
|
IsZeroed_t isZeroed = IsNotZeroed) {
|
|
return AggValueSlot(addr, quals, isDestructed, isZeroed, isAliased,
|
|
mayOverlap);
|
|
}
|
|
|
|
static AggValueSlot forLValue(const LValue &LV, IsDestructed_t isDestructed,
|
|
IsAliased_t isAliased, Overlap_t mayOverlap,
|
|
IsZeroed_t isZeroed = IsNotZeroed) {
|
|
return forAddr(LV.getAddress(), LV.getQuals(), isDestructed, isAliased,
|
|
mayOverlap, isZeroed);
|
|
}
|
|
|
|
clang::Qualifiers getQualifiers() const { return quals; }
|
|
|
|
Address getAddress() const { return addr; }
|
|
|
|
bool isIgnored() const { return !addr.isValid(); }
|
|
|
|
mlir::Value getPointer() const { return addr.getPointer(); }
|
|
|
|
IsZeroed_t isZeroed() const { return IsZeroed_t(zeroedFlag); }
|
|
|
|
RValue asRValue() const {
|
|
if (isIgnored())
|
|
return RValue::getIgnored();
|
|
assert(!cir::MissingFeatures::aggValueSlot());
|
|
return RValue::getAggregate(getAddress());
|
|
}
|
|
};
|
|
|
|
} // namespace clang::CIRGen
|
|
|
|
#endif // CLANG_LIB_CIR_CIRGENVALUE_H
|