llvm-project/clang/lib/Sema/SemaOpenACC.cpp
erichkeane 79079c9469 [OpenACC] Finish implementing 'routine' AST/Sema.
This is the last item of the OpenACC 3.3 spec. It includes the
implicit-name version of 'routine', plus significant refactorings to
make the two work together.  The implicit name version is represented as
an attribute on the function call. This patch also implements the
clauses for the implicit-name version, as well as the A.3.4 warning.
2025-03-21 08:57:54 -07:00

2244 lines
85 KiB
C++

//===--- SemaOpenACC.cpp - Semantic Analysis for OpenACC constructs -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements semantic analysis for OpenACC constructs, and things
/// that are not clause specific.
///
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaOpenACC.h"
#include "clang/AST/DeclOpenACC.h"
#include "clang/AST/StmtOpenACC.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/OpenACCKinds.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/Sema.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"
using namespace clang;
namespace {
bool diagnoseConstructAppertainment(SemaOpenACC &S, OpenACCDirectiveKind K,
SourceLocation StartLoc, bool IsStmt) {
switch (K) {
default:
case OpenACCDirectiveKind::Invalid:
// Nothing to do here, both invalid and unimplemented don't really need to
// do anything.
break;
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::HostData:
case OpenACCDirectiveKind::Wait:
case OpenACCDirectiveKind::Update:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Cache:
case OpenACCDirectiveKind::Atomic:
if (!IsStmt)
return S.Diag(StartLoc, diag::err_acc_construct_appertainment) << K;
break;
}
return false;
}
void CollectActiveReductionClauses(
llvm::SmallVector<OpenACCReductionClause *> &ActiveClauses,
ArrayRef<OpenACCClause *> CurClauses) {
for (auto *CurClause : CurClauses) {
if (auto *RedClause = dyn_cast<OpenACCReductionClause>(CurClause);
RedClause && !RedClause->getVarList().empty())
ActiveClauses.push_back(RedClause);
}
}
// Depth needs to be preserved for all associated statements that aren't
// supposed to modify the compute/combined/loop construct information.
bool PreserveLoopRAIIDepthInAssociatedStmtRAII(OpenACCDirectiveKind DK) {
switch (DK) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Loop:
return false;
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::HostData:
case OpenACCDirectiveKind::Atomic:
return true;
case OpenACCDirectiveKind::Cache:
case OpenACCDirectiveKind::Routine:
case OpenACCDirectiveKind::Declare:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::Wait:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Set:
case OpenACCDirectiveKind::Update:
llvm_unreachable("Doesn't have an associated stmt");
case OpenACCDirectiveKind::Invalid:
llvm_unreachable("Unhandled directive kind?");
}
llvm_unreachable("Unhandled directive kind?");
}
} // namespace
SemaOpenACC::SemaOpenACC(Sema &S) : SemaBase(S) {}
SemaOpenACC::AssociatedStmtRAII::AssociatedStmtRAII(
SemaOpenACC &S, OpenACCDirectiveKind DK, SourceLocation DirLoc,
ArrayRef<const OpenACCClause *> UnInstClauses,
ArrayRef<OpenACCClause *> Clauses)
: SemaRef(S), OldActiveComputeConstructInfo(S.ActiveComputeConstructInfo),
DirKind(DK), OldLoopGangClauseOnKernel(S.LoopGangClauseOnKernel),
OldLoopWorkerClauseLoc(S.LoopWorkerClauseLoc),
OldLoopVectorClauseLoc(S.LoopVectorClauseLoc),
OldLoopWithoutSeqInfo(S.LoopWithoutSeqInfo),
ActiveReductionClauses(S.ActiveReductionClauses),
LoopRAII(SemaRef, PreserveLoopRAIIDepthInAssociatedStmtRAII(DirKind)) {
// Compute constructs end up taking their 'loop'.
if (DirKind == OpenACCDirectiveKind::Parallel ||
DirKind == OpenACCDirectiveKind::Serial ||
DirKind == OpenACCDirectiveKind::Kernels) {
CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
SemaRef.ActiveComputeConstructInfo.Kind = DirKind;
SemaRef.ActiveComputeConstructInfo.Clauses = Clauses;
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
//
// Implement the 'unless within a nested compute region' part.
SemaRef.LoopGangClauseOnKernel = {};
SemaRef.LoopWorkerClauseLoc = {};
SemaRef.LoopVectorClauseLoc = {};
SemaRef.LoopWithoutSeqInfo = {};
} else if (DirKind == OpenACCDirectiveKind::ParallelLoop ||
DirKind == OpenACCDirectiveKind::SerialLoop ||
DirKind == OpenACCDirectiveKind::KernelsLoop) {
SemaRef.ActiveComputeConstructInfo.Kind = DirKind;
SemaRef.ActiveComputeConstructInfo.Clauses = Clauses;
CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
SetCollapseInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
SetTileInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
SemaRef.LoopGangClauseOnKernel = {};
SemaRef.LoopWorkerClauseLoc = {};
SemaRef.LoopVectorClauseLoc = {};
// Set the active 'loop' location if there isn't a 'seq' on it, so we can
// diagnose the for loops.
SemaRef.LoopWithoutSeqInfo = {};
if (Clauses.end() ==
llvm::find_if(Clauses, llvm::IsaPred<OpenACCSeqClause>))
SemaRef.LoopWithoutSeqInfo = {DirKind, DirLoc};
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
//
// We don't bother doing this when this is a template instantiation, as
// there is no reason to do these checks: the existance of a
// gang/kernels/etc cannot be dependent.
if (DirKind == OpenACCDirectiveKind::KernelsLoop && UnInstClauses.empty()) {
// This handles the 'outer loop' part of this.
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCGangClause>);
if (Itr != Clauses.end())
SemaRef.LoopGangClauseOnKernel = {(*Itr)->getBeginLoc(), DirKind};
}
if (UnInstClauses.empty()) {
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCWorkerClause>);
if (Itr != Clauses.end())
SemaRef.LoopWorkerClauseLoc = (*Itr)->getBeginLoc();
auto *Itr2 = llvm::find_if(Clauses, llvm::IsaPred<OpenACCVectorClause>);
if (Itr2 != Clauses.end())
SemaRef.LoopVectorClauseLoc = (*Itr2)->getBeginLoc();
}
} else if (DirKind == OpenACCDirectiveKind::Loop) {
CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
SetCollapseInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
SetTileInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
// Set the active 'loop' location if there isn't a 'seq' on it, so we can
// diagnose the for loops.
SemaRef.LoopWithoutSeqInfo = {};
if (Clauses.end() ==
llvm::find_if(Clauses, llvm::IsaPred<OpenACCSeqClause>))
SemaRef.LoopWithoutSeqInfo = {DirKind, DirLoc};
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
//
// We don't bother doing this when this is a template instantiation, as
// there is no reason to do these checks: the existance of a
// gang/kernels/etc cannot be dependent.
if (SemaRef.getActiveComputeConstructInfo().Kind ==
OpenACCDirectiveKind::Kernels &&
UnInstClauses.empty()) {
// This handles the 'outer loop' part of this.
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCGangClause>);
if (Itr != Clauses.end())
SemaRef.LoopGangClauseOnKernel = {(*Itr)->getBeginLoc(),
OpenACCDirectiveKind::Kernels};
}
if (UnInstClauses.empty()) {
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCWorkerClause>);
if (Itr != Clauses.end())
SemaRef.LoopWorkerClauseLoc = (*Itr)->getBeginLoc();
auto *Itr2 = llvm::find_if(Clauses, llvm::IsaPred<OpenACCVectorClause>);
if (Itr2 != Clauses.end())
SemaRef.LoopVectorClauseLoc = (*Itr2)->getBeginLoc();
}
}
}
void SemaOpenACC::AssociatedStmtRAII::SetCollapseInfoBeforeAssociatedStmt(
ArrayRef<const OpenACCClause *> UnInstClauses,
ArrayRef<OpenACCClause *> Clauses) {
// Reset this checking for loops that aren't covered in a RAII object.
SemaRef.LoopInfo.CurLevelHasLoopAlready = false;
SemaRef.CollapseInfo.CollapseDepthSatisfied = true;
SemaRef.TileInfo.TileDepthSatisfied = true;
// We make sure to take an optional list of uninstantiated clauses, so that
// we can check to make sure we don't 'double diagnose' in the event that
// the value of 'N' was not dependent in a template. We also ensure during
// Sema that there is only 1 collapse on each construct, so we can count on
// the fact that if both find a 'collapse', that they are the same one.
auto *CollapseClauseItr =
llvm::find_if(Clauses, llvm::IsaPred<OpenACCCollapseClause>);
auto *UnInstCollapseClauseItr =
llvm::find_if(UnInstClauses, llvm::IsaPred<OpenACCCollapseClause>);
if (Clauses.end() == CollapseClauseItr)
return;
OpenACCCollapseClause *CollapseClause =
cast<OpenACCCollapseClause>(*CollapseClauseItr);
SemaRef.CollapseInfo.ActiveCollapse = CollapseClause;
Expr *LoopCount = CollapseClause->getLoopCount();
// If the loop count is still instantiation dependent, setting the depth
// counter isn't necessary, so return here.
if (!LoopCount || LoopCount->isInstantiationDependent())
return;
// Suppress diagnostics if we've done a 'transform' where the previous version
// wasn't dependent, meaning we already diagnosed it.
if (UnInstCollapseClauseItr != UnInstClauses.end() &&
!cast<OpenACCCollapseClause>(*UnInstCollapseClauseItr)
->getLoopCount()
->isInstantiationDependent())
return;
SemaRef.CollapseInfo.CollapseDepthSatisfied = false;
SemaRef.CollapseInfo.CurCollapseCount =
cast<ConstantExpr>(LoopCount)->getResultAsAPSInt();
SemaRef.CollapseInfo.DirectiveKind = DirKind;
}
void SemaOpenACC::AssociatedStmtRAII::SetTileInfoBeforeAssociatedStmt(
ArrayRef<const OpenACCClause *> UnInstClauses,
ArrayRef<OpenACCClause *> Clauses) {
// We don't diagnose if this is during instantiation, since the only thing we
// care about is the number of arguments, which we can figure out without
// instantiation, so we don't want to double-diagnose.
if (UnInstClauses.size() > 0)
return;
auto *TileClauseItr =
llvm::find_if(Clauses, llvm::IsaPred<OpenACCTileClause>);
if (Clauses.end() == TileClauseItr)
return;
OpenACCTileClause *TileClause = cast<OpenACCTileClause>(*TileClauseItr);
SemaRef.TileInfo.ActiveTile = TileClause;
SemaRef.TileInfo.TileDepthSatisfied = false;
SemaRef.TileInfo.CurTileCount = TileClause->getSizeExprs().size();
SemaRef.TileInfo.DirectiveKind = DirKind;
}
SemaOpenACC::AssociatedStmtRAII::~AssociatedStmtRAII() {
if (DirKind == OpenACCDirectiveKind::Parallel ||
DirKind == OpenACCDirectiveKind::Serial ||
DirKind == OpenACCDirectiveKind::Kernels ||
DirKind == OpenACCDirectiveKind::Loop ||
DirKind == OpenACCDirectiveKind::ParallelLoop ||
DirKind == OpenACCDirectiveKind::SerialLoop ||
DirKind == OpenACCDirectiveKind::KernelsLoop) {
SemaRef.ActiveComputeConstructInfo = OldActiveComputeConstructInfo;
SemaRef.LoopGangClauseOnKernel = OldLoopGangClauseOnKernel;
SemaRef.LoopWorkerClauseLoc = OldLoopWorkerClauseLoc;
SemaRef.LoopVectorClauseLoc = OldLoopVectorClauseLoc;
SemaRef.LoopWithoutSeqInfo = OldLoopWithoutSeqInfo;
SemaRef.ActiveReductionClauses.swap(ActiveReductionClauses);
} else if (DirKind == OpenACCDirectiveKind::Data ||
DirKind == OpenACCDirectiveKind::HostData) {
// Intentionally doesn't reset the Loop, Compute Construct, or reduction
// effects.
}
}
void SemaOpenACC::ActOnConstruct(OpenACCDirectiveKind K,
SourceLocation DirLoc) {
// Start an evaluation context to parse the clause arguments on.
SemaRef.PushExpressionEvaluationContext(
Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
// There is nothing do do here as all we have at this point is the name of the
// construct itself.
}
ExprResult SemaOpenACC::ActOnIntExpr(OpenACCDirectiveKind DK,
OpenACCClauseKind CK, SourceLocation Loc,
Expr *IntExpr) {
assert(((DK != OpenACCDirectiveKind::Invalid &&
CK == OpenACCClauseKind::Invalid) ||
(DK == OpenACCDirectiveKind::Invalid &&
CK != OpenACCClauseKind::Invalid) ||
(DK == OpenACCDirectiveKind::Invalid &&
CK == OpenACCClauseKind::Invalid)) &&
"Only one of directive or clause kind should be provided");
class IntExprConverter : public Sema::ICEConvertDiagnoser {
OpenACCDirectiveKind DirectiveKind;
OpenACCClauseKind ClauseKind;
Expr *IntExpr;
// gets the index into the diagnostics so we can use this for clauses,
// directives, and sub array.s
unsigned getDiagKind() const {
if (ClauseKind != OpenACCClauseKind::Invalid)
return 0;
if (DirectiveKind != OpenACCDirectiveKind::Invalid)
return 1;
return 2;
}
public:
IntExprConverter(OpenACCDirectiveKind DK, OpenACCClauseKind CK,
Expr *IntExpr)
: ICEConvertDiagnoser(/*AllowScopedEnumerations=*/false,
/*Suppress=*/false,
/*SuppressConversion=*/true),
DirectiveKind(DK), ClauseKind(CK), IntExpr(IntExpr) {}
bool match(QualType T) override {
// OpenACC spec just calls this 'integer expression' as having an
// 'integer type', so fall back on C99's 'integer type'.
return T->isIntegerType();
}
SemaBase::SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_requires_integer)
<< getDiagKind() << ClauseKind << DirectiveKind << T;
}
SemaBase::SemaDiagnosticBuilder
diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_incomplete_class_type)
<< T << IntExpr->getSourceRange();
}
SemaBase::SemaDiagnosticBuilder
diagnoseExplicitConv(Sema &S, SourceLocation Loc, QualType T,
QualType ConvTy) override {
return S.Diag(Loc, diag::err_acc_int_expr_explicit_conversion)
<< T << ConvTy;
}
SemaBase::SemaDiagnosticBuilder noteExplicitConv(Sema &S,
CXXConversionDecl *Conv,
QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_acc_int_expr_conversion)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaBase::SemaDiagnosticBuilder
diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_multiple_conversions) << T;
}
SemaBase::SemaDiagnosticBuilder
noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_acc_int_expr_conversion)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaBase::SemaDiagnosticBuilder
diagnoseConversion(Sema &S, SourceLocation Loc, QualType T,
QualType ConvTy) override {
llvm_unreachable("conversion functions are permitted");
}
} IntExprDiagnoser(DK, CK, IntExpr);
if (!IntExpr)
return ExprError();
ExprResult IntExprResult = SemaRef.PerformContextualImplicitConversion(
Loc, IntExpr, IntExprDiagnoser);
if (IntExprResult.isInvalid())
return ExprError();
IntExpr = IntExprResult.get();
if (!IntExpr->isTypeDependent() && !IntExpr->getType()->isIntegerType())
return ExprError();
// TODO OpenACC: Do we want to perform usual unary conversions here? When
// doing codegen we might find that is necessary, but skip it for now.
return IntExpr;
}
bool SemaOpenACC::CheckVarIsPointerType(OpenACCClauseKind ClauseKind,
Expr *VarExpr) {
// We already know that VarExpr is a proper reference to a variable, so we
// should be able to just take the type of the expression to get the type of
// the referenced variable.
// We've already seen an error, don't diagnose anything else.
if (!VarExpr || VarExpr->containsErrors())
return false;
if (isa<ArraySectionExpr>(VarExpr->IgnoreParenImpCasts()) ||
VarExpr->hasPlaceholderType(BuiltinType::ArraySection)) {
Diag(VarExpr->getExprLoc(), diag::err_array_section_use) << /*OpenACC=*/0;
Diag(VarExpr->getExprLoc(), diag::note_acc_expected_pointer_var);
return true;
}
QualType Ty = VarExpr->getType();
Ty = Ty.getNonReferenceType().getUnqualifiedType();
// Nothing we can do if this is a dependent type.
if (Ty->isDependentType())
return false;
if (!Ty->isPointerType())
return Diag(VarExpr->getExprLoc(), diag::err_acc_var_not_pointer_type)
<< ClauseKind << Ty;
return false;
}
ExprResult SemaOpenACC::ActOnCacheVar(Expr *VarExpr) {
Expr *CurVarExpr = VarExpr->IgnoreParenImpCasts();
if (!isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_cache);
return ExprError();
}
// It isn't clear what 'simple array element or simple subarray' means, so we
// will just allow arbitrary depth.
while (isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
if (auto *SubScrpt = dyn_cast<ArraySubscriptExpr>(CurVarExpr))
CurVarExpr = SubScrpt->getBase()->IgnoreParenImpCasts();
else
CurVarExpr =
cast<ArraySectionExpr>(CurVarExpr)->getBase()->IgnoreParenImpCasts();
}
// References to a VarDecl are fine.
if (const auto *DRE = dyn_cast<DeclRefExpr>(CurVarExpr)) {
if (isa<VarDecl, NonTypeTemplateParmDecl>(
DRE->getFoundDecl()->getCanonicalDecl()))
return VarExpr;
}
if (const auto *ME = dyn_cast<MemberExpr>(CurVarExpr)) {
if (isa<FieldDecl>(ME->getMemberDecl()->getCanonicalDecl())) {
return VarExpr;
}
}
// Nothing really we can do here, as these are dependent. So just return they
// are valid.
if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(CurVarExpr))
return VarExpr;
// There isn't really anything we can do in the case of a recovery expr, so
// skip the diagnostic rather than produce a confusing diagnostic.
if (isa<RecoveryExpr>(CurVarExpr))
return ExprError();
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_cache);
return ExprError();
}
ExprResult SemaOpenACC::ActOnVar(OpenACCDirectiveKind DK, OpenACCClauseKind CK,
Expr *VarExpr) {
// This has unique enough restrictions that we should split it to a separate
// function.
if (DK == OpenACCDirectiveKind::Cache)
return ActOnCacheVar(VarExpr);
Expr *CurVarExpr = VarExpr->IgnoreParenImpCasts();
// 'use_device' doesn't allow array subscript or array sections.
// OpenACC3.3 2.8:
// A 'var' in a 'use_device' clause must be the name of a variable or array.
// OpenACC3.3 2.13:
// A 'var' in a 'declare' directive must be a variable or array name.
if ((CK == OpenACCClauseKind::UseDevice ||
DK == OpenACCDirectiveKind::Declare) &&
isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_use_device_declare)
<< (DK == OpenACCDirectiveKind::Declare);
return ExprError();
}
// Sub-arrays/subscript-exprs are fine as long as the base is a
// VarExpr/MemberExpr. So strip all of those off.
while (isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
if (auto *SubScrpt = dyn_cast<ArraySubscriptExpr>(CurVarExpr))
CurVarExpr = SubScrpt->getBase()->IgnoreParenImpCasts();
else
CurVarExpr =
cast<ArraySectionExpr>(CurVarExpr)->getBase()->IgnoreParenImpCasts();
}
// References to a VarDecl are fine.
if (const auto *DRE = dyn_cast<DeclRefExpr>(CurVarExpr)) {
if (isa<VarDecl, NonTypeTemplateParmDecl>(
DRE->getFoundDecl()->getCanonicalDecl()))
return VarExpr;
}
// If CK is a Reduction, this special cases for OpenACC3.3 2.5.15: "A var in a
// reduction clause must be a scalar variable name, an aggregate variable
// name, an array element, or a subarray.
// If CK is a 'use_device', this also isn't valid, as it isn't the name of a
// variable or array, if not done as a member expr.
// A MemberExpr that references a Field is valid for other clauses.
if (const auto *ME = dyn_cast<MemberExpr>(CurVarExpr)) {
if (isa<FieldDecl>(ME->getMemberDecl()->getCanonicalDecl())) {
if (DK == OpenACCDirectiveKind::Declare ||
CK == OpenACCClauseKind::Reduction ||
CK == OpenACCClauseKind::UseDevice) {
// We can allow 'member expr' if the 'this' is implicit in the case of
// declare, reduction, and use_device.
const auto *This = dyn_cast<CXXThisExpr>(ME->getBase());
if (This && This->isImplicit())
return VarExpr;
} else {
return VarExpr;
}
}
}
// Referring to 'this' is ok for the most part, but for 'use_device'/'declare'
// doesn't fall into 'variable or array name'
if (CK != OpenACCClauseKind::UseDevice &&
DK != OpenACCDirectiveKind::Declare && isa<CXXThisExpr>(CurVarExpr))
return VarExpr;
// Nothing really we can do here, as these are dependent. So just return they
// are valid.
if (isa<DependentScopeDeclRefExpr>(CurVarExpr) ||
(CK != OpenACCClauseKind::Reduction &&
isa<CXXDependentScopeMemberExpr>(CurVarExpr)))
return VarExpr;
// There isn't really anything we can do in the case of a recovery expr, so
// skip the diagnostic rather than produce a confusing diagnostic.
if (isa<RecoveryExpr>(CurVarExpr))
return ExprError();
if (DK == OpenACCDirectiveKind::Declare)
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_use_device_declare)
<< /*declare*/ 1;
else if (CK == OpenACCClauseKind::UseDevice)
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_use_device_declare)
<< /*use_device*/ 0;
else
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref)
<< (CK != OpenACCClauseKind::Reduction);
return ExprError();
}
ExprResult SemaOpenACC::ActOnArraySectionExpr(Expr *Base, SourceLocation LBLoc,
Expr *LowerBound,
SourceLocation ColonLoc,
Expr *Length,
SourceLocation RBLoc) {
ASTContext &Context = getASTContext();
// Handle placeholders.
if (Base->hasPlaceholderType() &&
!Base->hasPlaceholderType(BuiltinType::ArraySection)) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(Base);
if (Result.isInvalid())
return ExprError();
Base = Result.get();
}
if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(LowerBound);
if (Result.isInvalid())
return ExprError();
Result = SemaRef.DefaultLvalueConversion(Result.get());
if (Result.isInvalid())
return ExprError();
LowerBound = Result.get();
}
if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(Length);
if (Result.isInvalid())
return ExprError();
Result = SemaRef.DefaultLvalueConversion(Result.get());
if (Result.isInvalid())
return ExprError();
Length = Result.get();
}
// Check the 'base' value, it must be an array or pointer type, and not to/of
// a function type.
QualType OriginalBaseTy = ArraySectionExpr::getBaseOriginalType(Base);
QualType ResultTy;
if (!Base->isTypeDependent()) {
if (OriginalBaseTy->isAnyPointerType()) {
ResultTy = OriginalBaseTy->getPointeeType();
} else if (OriginalBaseTy->isArrayType()) {
ResultTy = OriginalBaseTy->getAsArrayTypeUnsafe()->getElementType();
} else {
return ExprError(
Diag(Base->getExprLoc(), diag::err_acc_typecheck_subarray_value)
<< Base->getSourceRange());
}
if (ResultTy->isFunctionType()) {
Diag(Base->getExprLoc(), diag::err_acc_subarray_function_type)
<< ResultTy << Base->getSourceRange();
return ExprError();
}
if (SemaRef.RequireCompleteType(Base->getExprLoc(), ResultTy,
diag::err_acc_subarray_incomplete_type,
Base))
return ExprError();
if (!Base->hasPlaceholderType(BuiltinType::ArraySection)) {
ExprResult Result = SemaRef.DefaultFunctionArrayLvalueConversion(Base);
if (Result.isInvalid())
return ExprError();
Base = Result.get();
}
}
auto GetRecovery = [&](Expr *E, QualType Ty) {
ExprResult Recovery =
SemaRef.CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), E, Ty);
return Recovery.isUsable() ? Recovery.get() : nullptr;
};
// Ensure both of the expressions are int-exprs.
if (LowerBound && !LowerBound->isTypeDependent()) {
ExprResult LBRes =
ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Invalid,
LowerBound->getExprLoc(), LowerBound);
if (LBRes.isUsable())
LBRes = SemaRef.DefaultLvalueConversion(LBRes.get());
LowerBound =
LBRes.isUsable() ? LBRes.get() : GetRecovery(LowerBound, Context.IntTy);
}
if (Length && !Length->isTypeDependent()) {
ExprResult LenRes =
ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Invalid,
Length->getExprLoc(), Length);
if (LenRes.isUsable())
LenRes = SemaRef.DefaultLvalueConversion(LenRes.get());
Length =
LenRes.isUsable() ? LenRes.get() : GetRecovery(Length, Context.IntTy);
}
// Length is required if the base type is not an array of known bounds.
if (!Length && (OriginalBaseTy.isNull() ||
(!OriginalBaseTy->isDependentType() &&
!OriginalBaseTy->isConstantArrayType() &&
!OriginalBaseTy->isDependentSizedArrayType()))) {
bool IsArray = !OriginalBaseTy.isNull() && OriginalBaseTy->isArrayType();
Diag(ColonLoc, diag::err_acc_subarray_no_length) << IsArray;
// Fill in a dummy 'length' so that when we instantiate this we don't
// double-diagnose here.
ExprResult Recovery = SemaRef.CreateRecoveryExpr(
ColonLoc, SourceLocation(), ArrayRef<Expr *>(), Context.IntTy);
Length = Recovery.isUsable() ? Recovery.get() : nullptr;
}
// Check the values of each of the arguments, they cannot be negative(we
// assume), and if the array bound is known, must be within range. As we do
// so, do our best to continue with evaluation, we can set the
// value/expression to nullptr/nullopt if they are invalid, and treat them as
// not present for the rest of evaluation.
// We don't have to check for dependence, because the dependent size is
// represented as a different AST node.
std::optional<llvm::APSInt> BaseSize;
if (!OriginalBaseTy.isNull() && OriginalBaseTy->isConstantArrayType()) {
const auto *ArrayTy = Context.getAsConstantArrayType(OriginalBaseTy);
BaseSize = ArrayTy->getSize();
}
auto GetBoundValue = [&](Expr *E) -> std::optional<llvm::APSInt> {
if (!E || E->isInstantiationDependent())
return std::nullopt;
Expr::EvalResult Res;
if (!E->EvaluateAsInt(Res, Context))
return std::nullopt;
return Res.Val.getInt();
};
std::optional<llvm::APSInt> LowerBoundValue = GetBoundValue(LowerBound);
std::optional<llvm::APSInt> LengthValue = GetBoundValue(Length);
// Check lower bound for negative or out of range.
if (LowerBoundValue.has_value()) {
if (LowerBoundValue->isNegative()) {
Diag(LowerBound->getExprLoc(), diag::err_acc_subarray_negative)
<< /*LowerBound=*/0 << toString(*LowerBoundValue, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
} else if (BaseSize.has_value() &&
llvm::APSInt::compareValues(*LowerBoundValue, *BaseSize) >= 0) {
// Lower bound (start index) must be less than the size of the array.
Diag(LowerBound->getExprLoc(), diag::err_acc_subarray_out_of_range)
<< /*LowerBound=*/0 << toString(*LowerBoundValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
}
}
// Check length for negative or out of range.
if (LengthValue.has_value()) {
if (LengthValue->isNegative()) {
Diag(Length->getExprLoc(), diag::err_acc_subarray_negative)
<< /*Length=*/1 << toString(*LengthValue, /*Radix=*/10);
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
} else if (BaseSize.has_value() &&
llvm::APSInt::compareValues(*LengthValue, *BaseSize) > 0) {
// Length must be lessthan or EQUAL to the size of the array.
Diag(Length->getExprLoc(), diag::err_acc_subarray_out_of_range)
<< /*Length=*/1 << toString(*LengthValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
}
}
// Adding two APSInts requires matching sign, so extract that here.
auto AddAPSInt = [](llvm::APSInt LHS, llvm::APSInt RHS) -> llvm::APSInt {
if (LHS.isSigned() == RHS.isSigned())
return LHS + RHS;
unsigned Width = std::max(LHS.getBitWidth(), RHS.getBitWidth()) + 1;
return llvm::APSInt(LHS.sext(Width) + RHS.sext(Width), /*Signed=*/true);
};
// If we know all 3 values, we can diagnose that the total value would be out
// of range.
if (BaseSize.has_value() && LowerBoundValue.has_value() &&
LengthValue.has_value() &&
llvm::APSInt::compareValues(AddAPSInt(*LowerBoundValue, *LengthValue),
*BaseSize) > 0) {
Diag(Base->getExprLoc(),
diag::err_acc_subarray_base_plus_length_out_of_range)
<< toString(*LowerBoundValue, /*Radix=*/10)
<< toString(*LengthValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
}
// If any part of the expression is dependent, return a dependent sub-array.
QualType ArrayExprTy = Context.ArraySectionTy;
if (Base->isTypeDependent() ||
(LowerBound && LowerBound->isInstantiationDependent()) ||
(Length && Length->isInstantiationDependent()))
ArrayExprTy = Context.DependentTy;
return new (Context)
ArraySectionExpr(Base, LowerBound, Length, ArrayExprTy, VK_LValue,
OK_Ordinary, ColonLoc, RBLoc);
}
void SemaOpenACC::ActOnWhileStmt(SourceLocation WhileLoc) {
if (!getLangOpts().OpenACC)
return;
if (!LoopInfo.TopLevelLoopSeen)
return;
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
Diag(WhileLoc, diag::err_acc_invalid_in_loop)
<< /*while loop*/ 1 << CollapseInfo.DirectiveKind
<< OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
CollapseInfo.CurCollapseCount = std::nullopt;
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
Diag(WhileLoc, diag::err_acc_invalid_in_loop)
<< /*while loop*/ 1 << TileInfo.DirectiveKind
<< OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "tile count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
TileInfo.CurTileCount = std::nullopt;
}
}
void SemaOpenACC::ActOnDoStmt(SourceLocation DoLoc) {
if (!getLangOpts().OpenACC)
return;
if (!LoopInfo.TopLevelLoopSeen)
return;
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
Diag(DoLoc, diag::err_acc_invalid_in_loop)
<< /*do loop*/ 2 << CollapseInfo.DirectiveKind
<< OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
CollapseInfo.CurCollapseCount = std::nullopt;
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
Diag(DoLoc, diag::err_acc_invalid_in_loop)
<< /*do loop*/ 2 << TileInfo.DirectiveKind << OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "tile count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
TileInfo.CurTileCount = std::nullopt;
}
}
void SemaOpenACC::ForStmtBeginHelper(SourceLocation ForLoc,
ForStmtBeginChecker &C) {
assert(getLangOpts().OpenACC && "Check enabled when not OpenACC?");
// Enable the while/do-while checking.
LoopInfo.TopLevelLoopSeen = true;
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
C.check();
// OpenACC 3.3 2.9.1:
// Each associated loop, except the innermost, must contain exactly one loop
// or loop nest.
// This checks for more than 1 loop at the current level, the
// 'depth'-satisifed checking manages the 'not zero' case.
if (LoopInfo.CurLevelHasLoopAlready) {
Diag(ForLoc, diag::err_acc_clause_multiple_loops)
<< CollapseInfo.DirectiveKind << OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "No collapse object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
} else {
--(*CollapseInfo.CurCollapseCount);
// Once we've hit zero here, we know we have deep enough 'for' loops to
// get to the bottom.
if (*CollapseInfo.CurCollapseCount == 0)
CollapseInfo.CollapseDepthSatisfied = true;
}
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
C.check();
if (LoopInfo.CurLevelHasLoopAlready) {
Diag(ForLoc, diag::err_acc_clause_multiple_loops)
<< TileInfo.DirectiveKind << OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "No tile object?");
Diag(TileInfo.ActiveTile->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
} else {
--(*TileInfo.CurTileCount);
// Once we've hit zero here, we know we have deep enough 'for' loops to
// get to the bottom.
if (*TileInfo.CurTileCount == 0)
TileInfo.TileDepthSatisfied = true;
}
}
// Set this to 'false' for the body of this loop, so that the next level
// checks independently.
LoopInfo.CurLevelHasLoopAlready = false;
}
namespace {
bool isValidLoopVariableType(QualType LoopVarTy) {
// Just skip if it is dependent, it could be any of the below.
if (LoopVarTy->isDependentType())
return true;
// The loop variable must be of integer,
if (LoopVarTy->isIntegerType())
return true;
// C/C++ pointer,
if (LoopVarTy->isPointerType())
return true;
// or C++ random-access iterator type.
if (const auto *RD = LoopVarTy->getAsCXXRecordDecl()) {
// Note: Only do CXXRecordDecl because RecordDecl can't be a random access
// iterator type!
// We could either do a lot of work to see if this matches
// random-access-iterator, but it seems that just checking that the
// 'iterator_category' typedef is more than sufficient. If programmers are
// willing to lie about this, we can let them.
for (const auto *TD :
llvm::make_filter_range(RD->decls(), llvm::IsaPred<TypedefNameDecl>)) {
const auto *TDND = cast<TypedefNameDecl>(TD)->getCanonicalDecl();
if (TDND->getName() != "iterator_category")
continue;
// If there is no type for this decl, return false.
if (TDND->getUnderlyingType().isNull())
return false;
const CXXRecordDecl *ItrCategoryDecl =
TDND->getUnderlyingType()->getAsCXXRecordDecl();
// If the category isn't a record decl, it isn't the tag type.
if (!ItrCategoryDecl)
return false;
auto IsRandomAccessIteratorTag = [](const CXXRecordDecl *RD) {
if (RD->getName() != "random_access_iterator_tag")
return false;
// Checks just for std::random_access_iterator_tag.
return RD->getEnclosingNamespaceContext()->isStdNamespace();
};
if (IsRandomAccessIteratorTag(ItrCategoryDecl))
return true;
// We can also support types inherited from the
// random_access_iterator_tag.
for (CXXBaseSpecifier BS : ItrCategoryDecl->bases()) {
if (IsRandomAccessIteratorTag(BS.getType()->getAsCXXRecordDecl()))
return true;
}
return false;
}
}
return false;
}
} // namespace
void SemaOpenACC::ForStmtBeginChecker::check() {
if (SemaRef.LoopWithoutSeqInfo.Kind == OpenACCDirectiveKind::Invalid)
return;
if (AlreadyChecked)
return;
AlreadyChecked = true;
// OpenACC3.3 2.1:
// A loop associated with a loop construct that does not have a seq clause
// must be written to meet all the following conditions:
// - The loop variable must be of integer, C/C++ pointer, or C++ random-access
// iterator type.
// - The loop variable must monotonically increase or decrease in the
// direction of its termination condition.
// - The loop trip count must be computable in constant time when entering the
// loop construct.
//
// For a C++ range-based for loop, the loop variable
// identified by the above conditions is the internal iterator, such as a
// pointer, that the compiler generates to iterate the range. it is not the
// variable declared by the for loop.
if (IsRangeFor) {
// If the range-for is being instantiated and didn't change, don't
// re-diagnose.
if (!RangeFor.has_value())
return;
// For a range-for, we can assume everything is 'corect' other than the type
// of the iterator, so check that.
const DeclStmt *RangeStmt = (*RangeFor)->getBeginStmt();
// In some dependent contexts, the autogenerated range statement doesn't get
// included until instantiation, so skip for now.
if (!RangeStmt)
return;
const ValueDecl *InitVar = cast<ValueDecl>(RangeStmt->getSingleDecl());
QualType VarType = InitVar->getType().getNonReferenceType();
if (!isValidLoopVariableType(VarType)) {
SemaRef.Diag(InitVar->getBeginLoc(), diag::err_acc_loop_variable_type)
<< SemaRef.LoopWithoutSeqInfo.Kind << VarType;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return;
}
// Else we are in normal 'ForStmt', so we can diagnose everything.
// We only have to check cond/inc if they have changed, but 'init' needs to
// just suppress its diagnostics if it hasn't changed.
const ValueDecl *InitVar = checkInit();
if (Cond.has_value())
checkCond();
if (Inc.has_value())
checkInc(InitVar);
}
const ValueDecl *SemaOpenACC::ForStmtBeginChecker::checkInit() {
if (!Init) {
if (InitChanged) {
SemaRef.Diag(ForLoc, diag::err_acc_loop_variable)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return nullptr;
}
auto DiagLoopVar = [&]() {
if (InitChanged) {
SemaRef.Diag(Init->getBeginLoc(), diag::err_acc_loop_variable)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return nullptr;
};
if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(Init))
Init = ExprTemp->getSubExpr();
if (const auto *E = dyn_cast<Expr>(Init))
Init = E->IgnoreParenImpCasts();
const ValueDecl *InitVar = nullptr;
if (const auto *BO = dyn_cast<BinaryOperator>(Init)) {
// Allow assignment operator here.
if (!BO->isAssignmentOp())
return DiagLoopVar();
const Expr *LHS = BO->getLHS()->IgnoreParenImpCasts();
if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS))
InitVar = DRE->getDecl();
} else if (const auto *DS = dyn_cast<DeclStmt>(Init)) {
// Allow T t = <whatever>
if (!DS->isSingleDecl())
return DiagLoopVar();
InitVar = dyn_cast<ValueDecl>(DS->getSingleDecl());
// Ensure we have an initializer, unless this is a record/dependent type.
if (InitVar) {
if (!isa<VarDecl>(InitVar))
return DiagLoopVar();
if (!InitVar->getType()->isRecordType() &&
!InitVar->getType()->isDependentType() &&
!cast<VarDecl>(InitVar)->hasInit())
return DiagLoopVar();
}
} else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(Init)) {
// Allow assignment operator call.
if (CE->getOperator() != OO_Equal)
return DiagLoopVar();
const Expr *LHS = CE->getArg(0)->IgnoreParenImpCasts();
if (auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
InitVar = DRE->getDecl();
} else if (auto *ME = dyn_cast<MemberExpr>(LHS)) {
if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()))
InitVar = ME->getMemberDecl();
}
}
if (!InitVar)
return DiagLoopVar();
InitVar = cast<ValueDecl>(InitVar->getCanonicalDecl());
QualType VarType = InitVar->getType().getNonReferenceType();
// Since we have one, all we need to do is ensure it is the right type.
if (!isValidLoopVariableType(VarType)) {
if (InitChanged) {
SemaRef.Diag(InitVar->getBeginLoc(), diag::err_acc_loop_variable_type)
<< SemaRef.LoopWithoutSeqInfo.Kind << VarType;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return nullptr;
}
return InitVar;
}
void SemaOpenACC::ForStmtBeginChecker::checkCond() {
if (!*Cond) {
SemaRef.Diag(ForLoc, diag::err_acc_loop_terminating_condition)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc, diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
// Nothing else to do here. we could probably do some additional work to look
// into the termination condition, but that error-prone. For now, we don't
// implement anything other than 'there is a termination condition', and if
// codegen/MLIR comes up with some necessary restrictions, we can implement
// them here.
}
void SemaOpenACC::ForStmtBeginChecker::checkInc(const ValueDecl *Init) {
if (!*Inc) {
SemaRef.Diag(ForLoc, diag::err_acc_loop_not_monotonic)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc, diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
return;
}
auto DiagIncVar = [this] {
SemaRef.Diag((*Inc)->getBeginLoc(), diag::err_acc_loop_not_monotonic)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc, diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
return;
};
if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(*Inc))
Inc = ExprTemp->getSubExpr();
if (const auto *E = dyn_cast<Expr>(*Inc))
Inc = E->IgnoreParenImpCasts();
auto getDeclFromExpr = [](const Expr *E) -> const ValueDecl * {
E = E->IgnoreParenImpCasts();
if (const auto *FE = dyn_cast<FullExpr>(E))
E = FE->getSubExpr();
E = E->IgnoreParenImpCasts();
if (!E)
return nullptr;
if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
return dyn_cast<ValueDecl>(DRE->getDecl());
if (const auto *ME = dyn_cast<MemberExpr>(E))
if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()))
return ME->getMemberDecl();
return nullptr;
};
const ValueDecl *IncVar = nullptr;
// Here we enforce the monotonically increase/decrease:
if (const auto *UO = dyn_cast<UnaryOperator>(*Inc)) {
// Allow increment/decrement ops.
if (!UO->isIncrementDecrementOp())
return DiagIncVar();
IncVar = getDeclFromExpr(UO->getSubExpr());
} else if (const auto *BO = dyn_cast<BinaryOperator>(*Inc)) {
switch (BO->getOpcode()) {
default:
return DiagIncVar();
case BO_AddAssign:
case BO_SubAssign:
case BO_MulAssign:
case BO_DivAssign:
case BO_Assign:
// += -= *= /= should all be fine here, this should be all of the
// 'monotonical' compound-assign ops.
// Assignment we just give up on, we could do better, and ensure that it
// is a binary/operator expr doing more work, but that seems like a lot
// of work for an error prone check.
break;
}
IncVar = getDeclFromExpr(BO->getLHS());
} else if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(*Inc)) {
switch (CE->getOperator()) {
default:
return DiagIncVar();
case OO_PlusPlus:
case OO_MinusMinus:
case OO_PlusEqual:
case OO_MinusEqual:
case OO_StarEqual:
case OO_SlashEqual:
case OO_Equal:
// += -= *= /= should all be fine here, this should be all of the
// 'monotonical' compound-assign ops.
// Assignment we just give up on, we could do better, and ensure that it
// is a binary/operator expr doing more work, but that seems like a lot
// of work for an error prone check.
break;
}
IncVar = getDeclFromExpr(CE->getArg(0));
} else if (const auto *ME = dyn_cast<CXXMemberCallExpr>(*Inc)) {
IncVar = getDeclFromExpr(ME->getImplicitObjectArgument());
// We can't really do much for member expressions, other than hope they are
// doing the right thing, so give up here.
}
if (!IncVar)
return DiagIncVar();
// InitVar shouldn't be null unless there was an error, so don't diagnose if
// that is the case. Else we should ensure that it refers to the loop
// value.
if (Init && IncVar->getCanonicalDecl() != Init->getCanonicalDecl())
return DiagIncVar();
return;
}
void SemaOpenACC::ActOnForStmtBegin(SourceLocation ForLoc, const Stmt *OldFirst,
const Stmt *First, const Stmt *OldSecond,
const Stmt *Second, const Stmt *OldThird,
const Stmt *Third) {
if (!getLangOpts().OpenACC)
return;
std::optional<const Stmt *> S;
if (OldSecond == Second)
S = std::nullopt;
else
S = Second;
std::optional<const Stmt *> T;
if (OldThird == Third)
S = std::nullopt;
else
S = Third;
bool InitChanged = false;
if (OldFirst != First) {
InitChanged = true;
// VarDecls are always rebuild because they are dependent, so we can do a
// little work to suppress some of the double checking based on whether the
// type is instantiation dependent.
QualType OldVDTy;
QualType NewVDTy;
if (const auto *DS = dyn_cast<DeclStmt>(OldFirst))
if (const VarDecl *VD = dyn_cast_if_present<VarDecl>(
DS->isSingleDecl() ? DS->getSingleDecl() : nullptr))
OldVDTy = VD->getType();
if (const auto *DS = dyn_cast<DeclStmt>(First))
if (const VarDecl *VD = dyn_cast_if_present<VarDecl>(
DS->isSingleDecl() ? DS->getSingleDecl() : nullptr))
NewVDTy = VD->getType();
if (!OldVDTy.isNull() && !NewVDTy.isNull())
InitChanged = OldVDTy->isInstantiationDependentType() !=
NewVDTy->isInstantiationDependentType();
}
ForStmtBeginChecker FSBC{*this, ForLoc, First, InitChanged, S, T};
if (!LoopInfo.TopLevelLoopSeen) {
FSBC.check();
}
ForStmtBeginHelper(ForLoc, FSBC);
}
void SemaOpenACC::ActOnForStmtBegin(SourceLocation ForLoc, const Stmt *First,
const Stmt *Second, const Stmt *Third) {
if (!getLangOpts().OpenACC)
return;
ForStmtBeginChecker FSBC{*this, ForLoc, First, /*InitChanged=*/true,
Second, Third};
if (!LoopInfo.TopLevelLoopSeen) {
FSBC.check();
}
ForStmtBeginHelper(ForLoc, FSBC);
}
void SemaOpenACC::ActOnRangeForStmtBegin(SourceLocation ForLoc,
const Stmt *OldRangeFor,
const Stmt *RangeFor) {
if (!getLangOpts().OpenACC)
return;
std::optional<const CXXForRangeStmt *> RF;
if (OldRangeFor == RangeFor)
RF = std::nullopt;
else
RF = cast<CXXForRangeStmt>(RangeFor);
ForStmtBeginChecker FSBC{*this, ForLoc, RF};
if (!LoopInfo.TopLevelLoopSeen) {
FSBC.check();
}
ForStmtBeginHelper(ForLoc, FSBC);
}
void SemaOpenACC::ActOnRangeForStmtBegin(SourceLocation ForLoc,
const Stmt *RangeFor) {
if (!getLangOpts().OpenACC)
return;
ForStmtBeginChecker FSBC{*this, ForLoc, cast<CXXForRangeStmt>(RangeFor)};
if (!LoopInfo.TopLevelLoopSeen) {
FSBC.check();
}
ForStmtBeginHelper(ForLoc, FSBC);
}
namespace {
SourceLocation FindInterveningCodeInLoop(const Stmt *CurStmt) {
// We should diagnose on anything except `CompoundStmt`, `NullStmt`,
// `ForStmt`, `CXXForRangeStmt`, since those are legal, and `WhileStmt` and
// `DoStmt`, as those are caught as a violation elsewhere.
// For `CompoundStmt` we need to search inside of it.
if (!CurStmt ||
isa<ForStmt, NullStmt, ForStmt, CXXForRangeStmt, WhileStmt, DoStmt>(
CurStmt))
return SourceLocation{};
// Any other construct is an error anyway, so it has already been diagnosed.
if (isa<OpenACCConstructStmt>(CurStmt))
return SourceLocation{};
// Search inside the compound statement, this allows for arbitrary nesting
// of compound statements, as long as there isn't any code inside.
if (const auto *CS = dyn_cast<CompoundStmt>(CurStmt)) {
for (const auto *ChildStmt : CS->children()) {
SourceLocation ChildStmtLoc = FindInterveningCodeInLoop(ChildStmt);
if (ChildStmtLoc.isValid())
return ChildStmtLoc;
}
// Empty/not invalid compound statements are legal.
return SourceLocation{};
}
return CurStmt->getBeginLoc();
}
} // namespace
void SemaOpenACC::ActOnForStmtEnd(SourceLocation ForLoc, StmtResult Body) {
if (!getLangOpts().OpenACC)
return;
// Set this to 'true' so if we find another one at this level we can diagnose.
LoopInfo.CurLevelHasLoopAlready = true;
if (!Body.isUsable())
return;
bool IsActiveCollapse = CollapseInfo.CurCollapseCount &&
*CollapseInfo.CurCollapseCount > 0 &&
!CollapseInfo.ActiveCollapse->hasForce();
bool IsActiveTile = TileInfo.CurTileCount && *TileInfo.CurTileCount > 0;
if (IsActiveCollapse || IsActiveTile) {
SourceLocation OtherStmtLoc = FindInterveningCodeInLoop(Body.get());
if (OtherStmtLoc.isValid() && IsActiveCollapse) {
Diag(OtherStmtLoc, diag::err_acc_intervening_code)
<< OpenACCClauseKind::Collapse << CollapseInfo.DirectiveKind;
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
}
if (OtherStmtLoc.isValid() && IsActiveTile) {
Diag(OtherStmtLoc, diag::err_acc_intervening_code)
<< OpenACCClauseKind::Tile << TileInfo.DirectiveKind;
Diag(TileInfo.ActiveTile->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
}
}
}
namespace {
// Get a list of clause Kinds for diagnosing a list, joined by a commas and an
// 'or'.
std::string GetListOfClauses(llvm::ArrayRef<OpenACCClauseKind> Clauses) {
assert(!Clauses.empty() && "empty clause list not supported");
std::string Output;
llvm::raw_string_ostream OS{Output};
if (Clauses.size() == 1) {
OS << '\'' << Clauses[0] << '\'';
return Output;
}
llvm::ArrayRef<OpenACCClauseKind> AllButLast{Clauses.begin(),
Clauses.end() - 1};
llvm::interleave(
AllButLast, [&](OpenACCClauseKind K) { OS << '\'' << K << '\''; },
[&] { OS << ", "; });
OS << " or \'" << Clauses.back() << '\'';
return Output;
}
// Helper that should mirror ActOnRoutineName to get the FunctionDecl out for
// magic-static checking.
FunctionDecl *getFunctionFromRoutineName(Expr *RoutineName) {
if (!RoutineName)
return nullptr;
RoutineName = RoutineName->IgnoreParenImpCasts();
if (isa<RecoveryExpr>(RoutineName)) {
// There is nothing we can do here, this isn't a function we can count on.
return nullptr;
} else if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(
RoutineName)) {
// The lookup is dependent, so we'll have to figure this out later.
return nullptr;
} else if (auto *DRE = dyn_cast<DeclRefExpr>(RoutineName)) {
ValueDecl *VD = DRE->getDecl();
if (auto *FD = dyn_cast<FunctionDecl>(VD))
return FD;
// Allow lambdas.
if (auto *VarD = dyn_cast<VarDecl>(VD)) {
QualType VarDTy = VarD->getType();
if (!VarDTy.isNull()) {
if (auto *RD = VarDTy->getAsCXXRecordDecl()) {
if (RD->isGenericLambda())
return nullptr;
if (RD->isLambda())
return RD->getLambdaCallOperator();
} else if (VarDTy->isDependentType()) {
// We don't really know what this is going to be.
return nullptr;
}
}
return nullptr;
} else if (isa<OverloadExpr>(RoutineName)) {
return nullptr;
}
}
return nullptr;
}
} // namespace
ExprResult SemaOpenACC::ActOnRoutineName(Expr *RoutineName) {
assert(RoutineName && "Routine name cannot be null here");
RoutineName = RoutineName->IgnoreParenImpCasts();
if (isa<RecoveryExpr>(RoutineName)) {
// This has already been diagnosed, so we can skip it.
return ExprError();
} else if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(
RoutineName)) {
// These are dependent and we can't really check them, so delay until
// instantiation.
return RoutineName;
} else if (const auto *DRE = dyn_cast<DeclRefExpr>(RoutineName)) {
const ValueDecl *VD = DRE->getDecl();
if (isa<FunctionDecl>(VD))
return RoutineName;
// Allow lambdas.
if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
QualType VarDTy = VarD->getType();
if (!VarDTy.isNull()) {
if (const auto *RD = VarDTy->getAsCXXRecordDecl()) {
if (RD->isGenericLambda()) {
Diag(RoutineName->getBeginLoc(), diag::err_acc_routine_overload_set)
<< RoutineName;
return ExprError();
}
if (RD->isLambda())
return RoutineName;
} else if (VarDTy->isDependentType()) {
// If this is a dependent variable, it might be a lambda. So we just
// accept this and catch it next time.
return RoutineName;
}
}
}
Diag(RoutineName->getBeginLoc(), diag::err_acc_routine_not_func)
<< RoutineName;
return ExprError();
} else if (isa<OverloadExpr>(RoutineName)) {
// This happens in function templates, even when the template arguments are
// fully specified. We could possibly do some sort of matching to make sure
// that this is looked up/deduced, but GCC does not do this, so there
// doesn't seem to be a good reason for us to do it either.
Diag(RoutineName->getBeginLoc(), diag::err_acc_routine_overload_set)
<< RoutineName;
return ExprError();
}
Diag(RoutineName->getBeginLoc(), diag::err_acc_routine_not_func)
<< RoutineName;
return ExprError();
}
void SemaOpenACC::ActOnVariableDeclarator(VarDecl *VD) {
if (!VD->isStaticLocal() || !getLangOpts().OpenACC)
return;
// This cast should be safe, since a static-local can only happen in a
// function declaration.
auto *ContextDecl = cast<FunctionDecl>(getCurContext());
// OpenACC 3.3 2.15:
// In C and C++, function static variables are not supported in functions to
// which a routine directive applies.
for (const auto *A : ContextDecl->attrs()) {
if (isa<OpenACCRoutineDeclAttr, OpenACCRoutineAnnotAttr>(A)) {
Diag(VD->getBeginLoc(), diag::err_acc_magic_static_in_routine);
Diag(A->getLocation(), diag::note_acc_construct_here)
<< OpenACCDirectiveKind::Routine;
return;
}
}
MagicStaticLocs.insert({ContextDecl->getCanonicalDecl(), VD->getBeginLoc()});
}
void SemaOpenACC::CheckLastRoutineDeclNameConflict(const NamedDecl *ND) {
// OpenACC 3.3 A.3.4
// When a procedure with that name is in scope and it is not the same
// procedure as the immediately following procedure declaration or
// definition, the resolution of the name can be confusing. Implementations
// should then issue a compile-time warning diagnostic even though the
// application is conforming.
// If we haven't created one, also can't diagnose.
if (!LastRoutineDecl)
return;
// If the currently created function doesn't have a name, we can't diagnose on
// a match.
if (!ND->getDeclName().isIdentifier())
return;
// If the two are in different decl contexts, it doesn't make sense to
// diagnose.
if (LastRoutineDecl->getDeclContext() != ND->getLexicalDeclContext())
return;
// If we don't have a referenced thing yet, we can't diagnose.
FunctionDecl *RoutineTarget =
getFunctionFromRoutineName(LastRoutineDecl->getFunctionReference());
if (!RoutineTarget)
return;
// If the Routine target doesn't have a name, we can't diagnose.
if (!RoutineTarget->getDeclName().isIdentifier())
return;
// Of course don't diagnose if the names don't match.
if (ND->getName() != RoutineTarget->getName())
return;
long NDLine = SemaRef.SourceMgr.getSpellingLineNumber(ND->getBeginLoc());
long LastLine =
SemaRef.SourceMgr.getSpellingLineNumber(LastRoutineDecl->getBeginLoc());
// Do some line-number math to make sure they are within a line of eachother.
// Comments or newlines can be inserted to clarify intent.
if (NDLine - LastLine > 1)
return;
// Don't warn if it actually DOES apply to this function via redecls.
if (ND->getCanonicalDecl() == RoutineTarget->getCanonicalDecl())
return;
Diag(LastRoutineDecl->getFunctionReference()->getBeginLoc(),
diag::warn_acc_confusing_routine_name);
Diag(RoutineTarget->getBeginLoc(), diag::note_previous_decl) << ND;
}
void SemaOpenACC::ActOnVariableInit(VarDecl *VD, QualType InitType) {
if (!VD || !getLangOpts().OpenACC || InitType.isNull())
return;
// To avoid double-diagnostic, just diagnose this during instantiation. We'll
// get 1 warning per instantiation, but this permits us to be more sensible
// for cases where the lookup is confusing.
if (VD->getLexicalDeclContext()->isDependentContext())
return;
const auto *RD = InitType->getAsCXXRecordDecl();
// If this isn't a lambda, no sense in diagnosing.
if (!RD || !RD->isLambda())
return;
CheckLastRoutineDeclNameConflict(VD);
}
void SemaOpenACC::ActOnFunctionDeclarator(FunctionDecl *FD) {
if (!FD || !getLangOpts().OpenACC)
return;
CheckLastRoutineDeclNameConflict(FD);
}
bool SemaOpenACC::ActOnStartStmtDirective(
OpenACCDirectiveKind K, SourceLocation StartLoc,
ArrayRef<const OpenACCClause *> Clauses) {
// Declaration directives an appear in a statement location, so call into that
// function here.
if (K == OpenACCDirectiveKind::Declare || K == OpenACCDirectiveKind::Routine)
return ActOnStartDeclDirective(K, StartLoc, Clauses);
SemaRef.DiscardCleanupsInEvaluationContext();
SemaRef.PopExpressionEvaluationContext();
// OpenACC 3.3 2.9.1:
// Intervening code must not contain other OpenACC directives or calls to API
// routines.
//
// ALL constructs are ill-formed if there is an active 'collapse'
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
Diag(StartLoc, diag::err_acc_invalid_in_loop)
<< /*OpenACC Construct*/ 0 << CollapseInfo.DirectiveKind
<< OpenACCClauseKind::Collapse << K;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
Diag(StartLoc, diag::err_acc_invalid_in_loop)
<< /*OpenACC Construct*/ 0 << TileInfo.DirectiveKind
<< OpenACCClauseKind::Tile << K;
assert(TileInfo.ActiveTile && "Tile count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
}
// OpenACC3.3 2.6.5: At least one copy, copyin, copyout, create, no_create,
// present, deviceptr, attach, or default clause must appear on a 'data'
// construct.
if (K == OpenACCDirectiveKind::Data &&
llvm::find_if(Clauses,
llvm::IsaPred<OpenACCCopyClause, OpenACCCopyInClause,
OpenACCCopyOutClause, OpenACCCreateClause,
OpenACCNoCreateClause, OpenACCPresentClause,
OpenACCDevicePtrClause, OpenACCAttachClause,
OpenACCDefaultClause>) == Clauses.end())
return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
<< K
<< GetListOfClauses(
{OpenACCClauseKind::Copy, OpenACCClauseKind::CopyIn,
OpenACCClauseKind::CopyOut, OpenACCClauseKind::Create,
OpenACCClauseKind::NoCreate, OpenACCClauseKind::Present,
OpenACCClauseKind::DevicePtr, OpenACCClauseKind::Attach,
OpenACCClauseKind::Default});
// OpenACC3.3 2.6.6: At least one copyin, create, or attach clause must appear
// on an enter data directive.
if (K == OpenACCDirectiveKind::EnterData &&
llvm::find_if(Clauses,
llvm::IsaPred<OpenACCCopyInClause, OpenACCCreateClause,
OpenACCAttachClause>) == Clauses.end())
return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
<< K
<< GetListOfClauses({
OpenACCClauseKind::CopyIn,
OpenACCClauseKind::Create,
OpenACCClauseKind::Attach,
});
// OpenACC3.3 2.6.6: At least one copyout, delete, or detach clause must
// appear on an exit data directive.
if (K == OpenACCDirectiveKind::ExitData &&
llvm::find_if(Clauses,
llvm::IsaPred<OpenACCCopyOutClause, OpenACCDeleteClause,
OpenACCDetachClause>) == Clauses.end())
return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
<< K
<< GetListOfClauses({
OpenACCClauseKind::CopyOut,
OpenACCClauseKind::Delete,
OpenACCClauseKind::Detach,
});
// OpenACC3.3 2.8: At least 'one use_device' clause must appear.
if (K == OpenACCDirectiveKind::HostData &&
llvm::find_if(Clauses, llvm::IsaPred<OpenACCUseDeviceClause>) ==
Clauses.end())
return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
<< K << GetListOfClauses({OpenACCClauseKind::UseDevice});
// OpenACC3.3 2.14.3: At least one default_async, device_num, or device_type
// clause must appear.
if (K == OpenACCDirectiveKind::Set &&
llvm::find_if(
Clauses,
llvm::IsaPred<OpenACCDefaultAsyncClause, OpenACCDeviceNumClause,
OpenACCDeviceTypeClause, OpenACCIfClause>) ==
Clauses.end())
return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
<< K
<< GetListOfClauses({OpenACCClauseKind::DefaultAsync,
OpenACCClauseKind::DeviceNum,
OpenACCClauseKind::DeviceType,
OpenACCClauseKind::If});
// OpenACC3.3 2.14.4: At least one self, host, or device clause must appear on
// an update directive.
if (K == OpenACCDirectiveKind::Update &&
llvm::find_if(Clauses, llvm::IsaPred<OpenACCSelfClause, OpenACCHostClause,
OpenACCDeviceClause>) ==
Clauses.end())
return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
<< K
<< GetListOfClauses({OpenACCClauseKind::Self,
OpenACCClauseKind::Host,
OpenACCClauseKind::Device});
return diagnoseConstructAppertainment(*this, K, StartLoc, /*IsStmt=*/true);
}
StmtResult SemaOpenACC::ActOnEndStmtDirective(
OpenACCDirectiveKind K, SourceLocation StartLoc, SourceLocation DirLoc,
SourceLocation LParenLoc, SourceLocation MiscLoc, ArrayRef<Expr *> Exprs,
OpenACCAtomicKind AtomicKind, SourceLocation RParenLoc,
SourceLocation EndLoc, ArrayRef<OpenACCClause *> Clauses,
StmtResult AssocStmt) {
switch (K) {
case OpenACCDirectiveKind::Invalid:
return StmtError();
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels: {
return OpenACCComputeConstruct::Create(
getASTContext(), K, StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop: {
return OpenACCCombinedConstruct::Create(
getASTContext(), K, StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::Loop: {
return OpenACCLoopConstruct::Create(
getASTContext(), ActiveComputeConstructInfo.Kind, StartLoc, DirLoc,
EndLoc, Clauses, AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::Data: {
return OpenACCDataConstruct::Create(
getASTContext(), StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::EnterData: {
return OpenACCEnterDataConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::ExitData: {
return OpenACCExitDataConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::HostData: {
return OpenACCHostDataConstruct::Create(
getASTContext(), StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::Wait: {
return OpenACCWaitConstruct::Create(
getASTContext(), StartLoc, DirLoc, LParenLoc, Exprs.front(), MiscLoc,
Exprs.drop_front(), RParenLoc, EndLoc, Clauses);
}
case OpenACCDirectiveKind::Init: {
return OpenACCInitConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::Shutdown: {
return OpenACCShutdownConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::Set: {
return OpenACCSetConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::Update: {
return OpenACCUpdateConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::Atomic: {
assert(Clauses.empty() && "Atomic doesn't allow clauses");
return OpenACCAtomicConstruct::Create(
getASTContext(), StartLoc, DirLoc, AtomicKind, EndLoc,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::Cache: {
assert(Clauses.empty() && "Cache doesn't allow clauses");
return OpenACCCacheConstruct::Create(getASTContext(), StartLoc, DirLoc,
LParenLoc, MiscLoc, Exprs, RParenLoc,
EndLoc);
}
case OpenACCDirectiveKind::Routine:
llvm_unreachable("routine shouldn't handled here");
case OpenACCDirectiveKind::Declare: {
// Declare and routine arei declaration directives, but can be used here as
// long as we wrap it in a DeclStmt. So make sure we do that here.
DeclGroupRef DR = ActOnEndDeclDirective(K, StartLoc, DirLoc, LParenLoc,
RParenLoc, EndLoc, Clauses);
return SemaRef.ActOnDeclStmt(DeclGroupPtrTy::make(DR), StartLoc, EndLoc);
}
}
llvm_unreachable("Unhandled case in directive handling?");
}
StmtResult SemaOpenACC::ActOnAssociatedStmt(
SourceLocation DirectiveLoc, OpenACCDirectiveKind K,
OpenACCAtomicKind AtKind, ArrayRef<const OpenACCClause *> Clauses,
StmtResult AssocStmt) {
switch (K) {
default:
llvm_unreachable("Unimplemented associated statement application");
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::Wait:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Set:
case OpenACCDirectiveKind::Cache:
llvm_unreachable(
"these don't have associated statements, so shouldn't get here");
case OpenACCDirectiveKind::Atomic:
return CheckAtomicAssociatedStmt(DirectiveLoc, AtKind, AssocStmt);
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::HostData:
// There really isn't any checking here that could happen. As long as we
// have a statement to associate, this should be fine.
// OpenACC 3.3 Section 6:
// Structured Block: in C or C++, an executable statement, possibly
// compound, with a single entry at the top and a single exit at the
// bottom.
// FIXME: Should we reject DeclStmt's here? The standard isn't clear, and
// an interpretation of it is to allow this and treat the initializer as
// the 'structured block'.
return AssocStmt;
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
if (!AssocStmt.isUsable())
return StmtError();
if (!isa<CXXForRangeStmt, ForStmt>(AssocStmt.get())) {
Diag(AssocStmt.get()->getBeginLoc(), diag::err_acc_loop_not_for_loop)
<< K;
Diag(DirectiveLoc, diag::note_acc_construct_here) << K;
return StmtError();
}
if (!CollapseInfo.CollapseDepthSatisfied || !TileInfo.TileDepthSatisfied) {
if (!CollapseInfo.CollapseDepthSatisfied) {
Diag(DirectiveLoc, diag::err_acc_insufficient_loops)
<< OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
}
if (!TileInfo.TileDepthSatisfied) {
Diag(DirectiveLoc, diag::err_acc_insufficient_loops)
<< OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "Collapse count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
}
return StmtError();
}
return AssocStmt.get();
}
llvm_unreachable("Invalid associated statement application");
}
bool SemaOpenACC::ActOnStartDeclDirective(
OpenACCDirectiveKind K, SourceLocation StartLoc,
ArrayRef<const OpenACCClause *> Clauses) {
// OpenCC3.3 2.1 (line 889)
// A program must not depend on the order of evaluation of expressions in
// clause arguments or on any side effects of the evaluations.
SemaRef.DiscardCleanupsInEvaluationContext();
SemaRef.PopExpressionEvaluationContext();
if (K == OpenACCDirectiveKind::Routine &&
llvm::find_if(Clauses,
llvm::IsaPred<OpenACCGangClause, OpenACCWorkerClause,
OpenACCVectorClause, OpenACCSeqClause>) ==
Clauses.end())
return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
<< K
<< GetListOfClauses({
OpenACCClauseKind::Gang,
OpenACCClauseKind::Worker,
OpenACCClauseKind::Vector,
OpenACCClauseKind::Seq,
});
return diagnoseConstructAppertainment(*this, K, StartLoc, /*IsStmt=*/false);
}
DeclGroupRef SemaOpenACC::ActOnEndDeclDirective(
OpenACCDirectiveKind K, SourceLocation StartLoc, SourceLocation DirLoc,
SourceLocation LParenLoc, SourceLocation RParenLoc, SourceLocation EndLoc,
ArrayRef<OpenACCClause *> Clauses) {
switch (K) {
default:
case OpenACCDirectiveKind::Invalid:
return DeclGroupRef{};
case OpenACCDirectiveKind::Declare: {
// OpenACC3.3 2.13: At least one clause must appear on a declare directive.
if (Clauses.empty()) {
Diag(EndLoc, diag::err_acc_declare_required_clauses);
// No reason to add this to the AST, as we would just end up trying to
// instantiate this, which would double-diagnose here, which we wouldn't
// want to do.
return DeclGroupRef{};
}
auto *DeclareDecl = OpenACCDeclareDecl::Create(
getASTContext(), getCurContext(), StartLoc, DirLoc, EndLoc, Clauses);
DeclareDecl->setAccess(AS_public);
getCurContext()->addDecl(DeclareDecl);
return DeclGroupRef{DeclareDecl};
}
case OpenACCDirectiveKind::Routine:
llvm_unreachable("routine shouldn't be handled here");
}
llvm_unreachable("unhandled case in directive handling?");
}
namespace {
// Given the decl on the next line, figure out if it is one that is acceptable
// to `routine`, or looks like the sort of decl we should be diagnosing against.
FunctionDecl *LegalizeNextParsedDecl(Decl *D) {
if (!D)
return nullptr;
// Functions are per-fact acceptable as-is.
if (auto *FD = dyn_cast<FunctionDecl>(D))
return FD;
// Function templates are functions, so attach to the templated decl.
if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D))
return FTD->getTemplatedDecl();
if (auto *FD = dyn_cast<FieldDecl>(D)) {
auto *RD =
FD->getType().isNull() ? nullptr : FD->getType()->getAsCXXRecordDecl();
if (RD && RD->isGenericLambda())
return RD->getDependentLambdaCallOperator()->getTemplatedDecl();
if (RD && RD->isLambda())
return RD->getLambdaCallOperator();
}
// VarDecl we can look at the init instead of the type of the variable, this
// makes us more tolerant of the 'auto' deduced type.
if (auto *VD = dyn_cast<VarDecl>(D)) {
Expr *Init = VD->getInit();
if (!Init || Init->getType().isNull())
return nullptr;
const auto *RD = Init->getType()->getAsCXXRecordDecl();
if (RD && RD->isGenericLambda())
return RD->getDependentLambdaCallOperator()->getTemplatedDecl();
if (RD && RD->isLambda())
return RD->getLambdaCallOperator();
// FIXME: We could try harder in the case where this is a dependent thing
// that ends up being a lambda (that is, the init is an unresolved lookup
// expr), but we can't attach to the call/lookup expr. If we instead try to
// attach to the VarDecl, when we go to instantiate it, attributes are
// instantiated before the init, so we can't actually see the type at any
// point where it would be relevant/able to be checked. We could perhaps do
// some sort of 'after-init' instantiation/checking here, but that doesn't
// seem valuable for a situation that other compilers don't handle.
}
return nullptr;
}
void CreateRoutineDeclAttr(SemaOpenACC &SemaRef, SourceLocation DirLoc,
ArrayRef<const OpenACCClause *> Clauses,
ValueDecl *AddTo) {
OpenACCRoutineDeclAttr *A =
OpenACCRoutineDeclAttr::Create(SemaRef.getASTContext(), DirLoc);
A->Clauses.assign(Clauses.begin(), Clauses.end());
AddTo->addAttr(A);
}
} // namespace
// Variant that adds attributes, because this is the unnamed case.
void SemaOpenACC::CheckRoutineDecl(SourceLocation DirLoc,
ArrayRef<const OpenACCClause *> Clauses,
Decl *NextParsedDecl) {
FunctionDecl *NextParsedFDecl = LegalizeNextParsedDecl(NextParsedDecl);
if (!NextParsedFDecl) {
// If we don't have a valid 'next thing', just diagnose.
SemaRef.Diag(DirLoc, diag::err_acc_decl_for_routine);
return;
}
// OpenACC 3.3 2.15:
// In C and C++, function static variables are not supported in functions to
// which a routine directive applies.
if (auto Itr = MagicStaticLocs.find(NextParsedFDecl->getCanonicalDecl());
Itr != MagicStaticLocs.end()) {
Diag(Itr->second, diag::err_acc_magic_static_in_routine);
Diag(DirLoc, diag::note_acc_construct_here)
<< OpenACCDirectiveKind::Routine;
return;
}
// TODO ERICH: Check bind here.
auto BindItr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCBindClause>);
for (auto *A : NextParsedFDecl->attrs()) {
// OpenACC 3.3 2.15:
// If a procedure has a bind clause on both the declaration and definition
// than they both must bind to the same name.
if (auto *RA = dyn_cast<OpenACCRoutineDeclAttr>(A)) {
auto OtherBindItr =
llvm::find_if(RA->Clauses, llvm::IsaPred<OpenACCBindClause>);
if (OtherBindItr != RA->Clauses.end() &&
(*cast<OpenACCBindClause>(*BindItr)) !=
(*cast<OpenACCBindClause>(*OtherBindItr))) {
Diag((*BindItr)->getBeginLoc(), diag::err_acc_duplicate_unnamed_bind);
Diag((*OtherBindItr)->getEndLoc(), diag::note_acc_previous_clause_here);
return;
}
}
// OpenACC 3.3 2.15:
// A bind clause may not bind to a routine name that has a visible bind
// clause.
// We take the combo of these two 2.15 restrictions to mean that the
// 'declaration'/'definition' quote is an exception to this. So we're going
// to disallow mixing of the two types entirely.
if (auto *RA = dyn_cast<OpenACCRoutineAnnotAttr>(A);
RA && RA->getRange().getEnd().isValid()) {
Diag((*BindItr)->getBeginLoc(), diag::err_acc_duplicate_bind);
Diag(RA->getRange().getEnd(), diag::note_acc_previous_clause_here);
return;
}
}
CreateRoutineDeclAttr(*this, DirLoc, Clauses, NextParsedFDecl);
}
// Variant that adds a decl, because this is the named case.
OpenACCRoutineDecl *SemaOpenACC::CheckRoutineDecl(
SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc,
Expr *FuncRef, SourceLocation RParenLoc,
ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc) {
assert(LParenLoc.isValid());
if (FunctionDecl *FD = getFunctionFromRoutineName(FuncRef)) {
// OpenACC 3.3 2.15:
// In C and C++, function static variables are not supported in functions to
// which a routine directive applies.
if (auto Itr = MagicStaticLocs.find(FD->getCanonicalDecl());
Itr != MagicStaticLocs.end()) {
Diag(Itr->second, diag::err_acc_magic_static_in_routine);
Diag(DirLoc, diag::note_acc_construct_here)
<< OpenACCDirectiveKind::Routine;
return nullptr;
}
// OpenACC 3.3 2.15:
// A bind clause may not bind to a routine name that has a visible bind
// clause.
auto BindItr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCBindClause>);
SourceLocation BindLoc;
if (BindItr != Clauses.end()) {
BindLoc = (*BindItr)->getBeginLoc();
// Since this is adding a 'named' routine, we aren't allowed to combine
// with ANY other visible bind clause. Error if we see either.
for (auto *A : FD->attrs()) {
if (auto *RA = dyn_cast<OpenACCRoutineDeclAttr>(A)) {
auto OtherBindItr =
llvm::find_if(RA->Clauses, llvm::IsaPred<OpenACCBindClause>);
if (OtherBindItr != RA->Clauses.end()) {
Diag((*BindItr)->getBeginLoc(), diag::err_acc_duplicate_bind);
Diag((*OtherBindItr)->getEndLoc(),
diag::note_acc_previous_clause_here);
return nullptr;
}
}
if (auto *RA = dyn_cast<OpenACCRoutineAnnotAttr>(A);
RA && RA->getRange().getEnd().isValid()) {
Diag((*BindItr)->getBeginLoc(), diag::err_acc_duplicate_bind);
Diag(RA->getRange().getEnd(), diag::note_acc_previous_clause_here);
return nullptr;
}
}
}
// Set the end-range to the 'bind' clause here, so we can look it up
// later.
auto *RAA = OpenACCRoutineAnnotAttr::CreateImplicit(getASTContext(),
{DirLoc, BindLoc});
FD->addAttr(RAA);
// In case we are referencing not the 'latest' version, make sure we add
// the attribute to all declarations.
while (FD != FD->getMostRecentDecl()) {
FD = FD->getMostRecentDecl();
FD->addAttr(RAA);
}
}
LastRoutineDecl = OpenACCRoutineDecl::Create(
getASTContext(), getCurContext(), StartLoc, DirLoc, LParenLoc, FuncRef,
RParenLoc, EndLoc, Clauses);
LastRoutineDecl->setAccess(AS_public);
getCurContext()->addDecl(LastRoutineDecl);
return LastRoutineDecl;
}
DeclGroupRef SemaOpenACC::ActOnEndRoutineDeclDirective(
SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc,
Expr *ReferencedFunc, SourceLocation RParenLoc,
ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc,
DeclGroupPtrTy NextDecl) {
assert((!ReferencedFunc || !NextDecl) &&
"Only one of these should be filled");
if (LParenLoc.isInvalid()) {
Decl *NextLineDecl = nullptr;
if (NextDecl && NextDecl.get().isSingleDecl())
NextLineDecl = NextDecl.get().getSingleDecl();
CheckRoutineDecl(DirLoc, Clauses, NextLineDecl);
return NextDecl.get();
}
return DeclGroupRef{CheckRoutineDecl(
StartLoc, DirLoc, LParenLoc, ReferencedFunc, RParenLoc, Clauses, EndLoc)};
}
StmtResult SemaOpenACC::ActOnEndRoutineStmtDirective(
SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc,
Expr *ReferencedFunc, SourceLocation RParenLoc,
ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc,
Stmt *NextStmt) {
assert((!ReferencedFunc || !NextStmt) &&
"Only one of these should be filled");
if (LParenLoc.isInvalid()) {
Decl *NextLineDecl = nullptr;
if (NextStmt)
if (DeclStmt *DS = dyn_cast<DeclStmt>(NextStmt); DS && DS->isSingleDecl())
NextLineDecl = DS->getSingleDecl();
CheckRoutineDecl(DirLoc, Clauses, NextLineDecl);
return NextStmt;
}
DeclGroupRef DR{CheckRoutineDecl(StartLoc, DirLoc, LParenLoc, ReferencedFunc,
RParenLoc, Clauses, EndLoc)};
return SemaRef.ActOnDeclStmt(DeclGroupPtrTy::make(DR), StartLoc, EndLoc);
}
OpenACCRoutineDeclAttr *
SemaOpenACC::mergeRoutineDeclAttr(const OpenACCRoutineDeclAttr &Old) {
OpenACCRoutineDeclAttr *New =
OpenACCRoutineDeclAttr::Create(getASTContext(), Old.getLocation());
// We should jsut be able to copy these, there isn't really any
// merging/inheriting we have to do, so no worry about doing a deep copy.
New->Clauses = Old.Clauses;
return New;
}
ExprResult
SemaOpenACC::BuildOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) {
return OpenACCAsteriskSizeExpr::Create(getASTContext(), AsteriskLoc);
}
ExprResult
SemaOpenACC::ActOnOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) {
return BuildOpenACCAsteriskSizeExpr(AsteriskLoc);
}