
Span-dependent instructions on RISC-V interact in a complex manner with linker relaxation. The span-dependent assembler algorithm implemented in LLVM has to start with the smallest version of an instruction and then only make it larger, so we compress instructions before emitting them to the streamer. When the instruction is streamed, the information that the instruction (or rather, the fixup on the instruction) is linker relaxable must be accurate, even though the assembler relaxation process may transform a not-linker-relaxable instruction/fixup into one that that is linker relaxable, for instance `c.jal` becoming `qc.e.jal`, or `bne` getting turned into `beq; jal` (the `jal` is linker relaxable). In order for this to work, the following things have to happen: - Any instruction/fixup which might be relaxed to a linker-relaxable instruction/fixup, gets marked as `RelaxCandidate = true` in RISCVMCCodeEmitter. - In RISCVAsmBackend, when emitting the `R_RISCV_RELAX` relocation, we have to check that the relocation/fixup kind is one that may need a relax relocation, as well as that it is marked as linker relaxable (the latter will not be set if relaxation is disabled). - Linker Relaxable instructions streamed to a Relaxable fragment need to mark the fragment and its section as linker relaxable. I also added more debug output for Sections/Fixups which are marked Linker Relaxable. This results in more relocations, when these PC-relative fixups cross an instruction with a fixup that is resolved as not linker-relaxable but caused the fragment to be marked linker relaxable at streaming time (i.e. `c.j`). (cherry picked from commit 9e8f7acd2b3a71dad473565a6a6f3ba51a3e6bca) Fixes: #150071
977 lines
34 KiB
C++
977 lines
34 KiB
C++
//===-- RISCVAsmBackend.cpp - RISC-V Assembler Backend --------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "RISCVAsmBackend.h"
|
|
#include "RISCVFixupKinds.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCAssembler.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCELFObjectWriter.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCObjectWriter.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/MC/MCValue.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/EndianStream.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
// Temporary workaround for old linkers that do not support ULEB128 relocations,
|
|
// which are abused by DWARF v5 DW_LLE_offset_pair/DW_RLE_offset_pair
|
|
// implemented in Clang/LLVM.
|
|
static cl::opt<bool> ULEB128Reloc(
|
|
"riscv-uleb128-reloc", cl::init(true), cl::Hidden,
|
|
cl::desc("Emit R_RISCV_SET_ULEB128/E_RISCV_SUB_ULEB128 if appropriate"));
|
|
|
|
RISCVAsmBackend::RISCVAsmBackend(const MCSubtargetInfo &STI, uint8_t OSABI,
|
|
bool Is64Bit, const MCTargetOptions &Options)
|
|
: MCAsmBackend(llvm::endianness::little), STI(STI), OSABI(OSABI),
|
|
Is64Bit(Is64Bit), TargetOptions(Options) {
|
|
RISCVFeatures::validate(STI.getTargetTriple(), STI.getFeatureBits());
|
|
}
|
|
|
|
std::optional<MCFixupKind> RISCVAsmBackend::getFixupKind(StringRef Name) const {
|
|
if (STI.getTargetTriple().isOSBinFormatELF()) {
|
|
unsigned Type;
|
|
Type = llvm::StringSwitch<unsigned>(Name)
|
|
#define ELF_RELOC(NAME, ID) .Case(#NAME, ID)
|
|
#include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
|
|
#undef ELF_RELOC
|
|
#define ELF_RISCV_NONSTANDARD_RELOC(_VENDOR, NAME, ID) .Case(#NAME, ID)
|
|
#include "llvm/BinaryFormat/ELFRelocs/RISCV_nonstandard.def"
|
|
#undef ELF_RISCV_NONSTANDARD_RELOC
|
|
.Case("BFD_RELOC_NONE", ELF::R_RISCV_NONE)
|
|
.Case("BFD_RELOC_32", ELF::R_RISCV_32)
|
|
.Case("BFD_RELOC_64", ELF::R_RISCV_64)
|
|
.Default(-1u);
|
|
if (Type != -1u)
|
|
return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
MCFixupKindInfo RISCVAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
|
|
const static MCFixupKindInfo Infos[] = {
|
|
// This table *must* be in the order that the fixup_* kinds are defined in
|
|
// RISCVFixupKinds.h.
|
|
//
|
|
// name offset bits flags
|
|
{"fixup_riscv_hi20", 12, 20, 0},
|
|
{"fixup_riscv_lo12_i", 20, 12, 0},
|
|
{"fixup_riscv_12_i", 20, 12, 0},
|
|
{"fixup_riscv_lo12_s", 0, 32, 0},
|
|
{"fixup_riscv_pcrel_hi20", 12, 20, 0},
|
|
{"fixup_riscv_pcrel_lo12_i", 20, 12, 0},
|
|
{"fixup_riscv_pcrel_lo12_s", 0, 32, 0},
|
|
{"fixup_riscv_jal", 12, 20, 0},
|
|
{"fixup_riscv_branch", 0, 32, 0},
|
|
{"fixup_riscv_rvc_jump", 2, 11, 0},
|
|
{"fixup_riscv_rvc_branch", 0, 16, 0},
|
|
{"fixup_riscv_rvc_imm", 0, 16, 0},
|
|
{"fixup_riscv_call", 0, 64, 0},
|
|
{"fixup_riscv_call_plt", 0, 64, 0},
|
|
|
|
{"fixup_riscv_qc_e_branch", 0, 48, 0},
|
|
{"fixup_riscv_qc_e_32", 16, 32, 0},
|
|
{"fixup_riscv_qc_abs20_u", 0, 32, 0},
|
|
{"fixup_riscv_qc_e_call_plt", 0, 48, 0},
|
|
|
|
// Andes fixups
|
|
{"fixup_riscv_nds_branch_10", 0, 32, 0},
|
|
};
|
|
static_assert((std::size(Infos)) == RISCV::NumTargetFixupKinds,
|
|
"Not all fixup kinds added to Infos array");
|
|
|
|
// Fixup kinds from raw relocation types and .reloc directives force
|
|
// relocations and do not use these fields.
|
|
if (mc::isRelocation(Kind))
|
|
return {};
|
|
|
|
if (Kind < FirstTargetFixupKind)
|
|
return MCAsmBackend::getFixupKindInfo(Kind);
|
|
|
|
assert(unsigned(Kind - FirstTargetFixupKind) < RISCV::NumTargetFixupKinds &&
|
|
"Invalid kind!");
|
|
return Infos[Kind - FirstTargetFixupKind];
|
|
}
|
|
|
|
bool RISCVAsmBackend::fixupNeedsRelaxationAdvanced(const MCFixup &Fixup,
|
|
const MCValue &,
|
|
uint64_t Value,
|
|
bool Resolved) const {
|
|
int64_t Offset = int64_t(Value);
|
|
auto Kind = Fixup.getKind();
|
|
|
|
// Return true if the symbol is unresolved.
|
|
if (!Resolved)
|
|
return true;
|
|
|
|
switch (Kind) {
|
|
default:
|
|
return false;
|
|
case RISCV::fixup_riscv_rvc_branch:
|
|
// For compressed branch instructions the immediate must be
|
|
// in the range [-256, 254].
|
|
return Offset > 254 || Offset < -256;
|
|
case RISCV::fixup_riscv_rvc_jump:
|
|
// For compressed jump instructions the immediate must be
|
|
// in the range [-2048, 2046].
|
|
return Offset > 2046 || Offset < -2048;
|
|
case RISCV::fixup_riscv_branch:
|
|
case RISCV::fixup_riscv_qc_e_branch:
|
|
// For conditional branch instructions the immediate must be
|
|
// in the range [-4096, 4094].
|
|
return Offset > 4094 || Offset < -4096;
|
|
case RISCV::fixup_riscv_jal:
|
|
// For jump instructions the immediate must be in the range
|
|
// [-1048576, 1048574]
|
|
return Offset > 1048574 || Offset < -1048576;
|
|
case RISCV::fixup_riscv_rvc_imm:
|
|
// This fixup can never be emitted as a relocation, so always needs to be
|
|
// relaxed.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Given a compressed control flow instruction this function returns
|
|
// the expanded instruction, or the original instruction code if no
|
|
// expansion is available.
|
|
static unsigned getRelaxedOpcode(unsigned Opcode, ArrayRef<MCOperand> Operands,
|
|
const MCSubtargetInfo &STI) {
|
|
switch (Opcode) {
|
|
case RISCV::C_BEQZ:
|
|
return RISCV::BEQ;
|
|
case RISCV::C_BNEZ:
|
|
return RISCV::BNE;
|
|
case RISCV::C_J:
|
|
case RISCV::C_JAL: // fall through.
|
|
// This only relaxes one "step" - i.e. from C.J to JAL, not from C.J to
|
|
// QC.E.J, because we can always relax again if needed.
|
|
return RISCV::JAL;
|
|
case RISCV::C_LI:
|
|
if (!STI.hasFeature(RISCV::FeatureVendorXqcili))
|
|
break;
|
|
// We only need this because `QC.E.LI` can be compressed into a `C.LI`. This
|
|
// happens because the `simm6` MCOperandPredicate accepts bare symbols, and
|
|
// `QC.E.LI` is the only instruction that accepts bare symbols at parse-time
|
|
// and compresses to `C.LI`. `C.LI` does not itself accept bare symbols at
|
|
// parse time.
|
|
//
|
|
// If we have a bare symbol, we need to turn this back to a `QC.E.LI`, as we
|
|
// have no way to emit a relocation on a `C.LI` instruction.
|
|
return RISCV::QC_E_LI;
|
|
case RISCV::JAL: {
|
|
// We can only relax JAL if we have Xqcilb
|
|
if (!STI.hasFeature(RISCV::FeatureVendorXqcilb))
|
|
break;
|
|
|
|
// And only if it is using X0 or X1 for rd.
|
|
MCRegister Reg = Operands[0].getReg();
|
|
if (Reg == RISCV::X0)
|
|
return RISCV::QC_E_J;
|
|
if (Reg == RISCV::X1)
|
|
return RISCV::QC_E_JAL;
|
|
|
|
break;
|
|
}
|
|
case RISCV::BEQ:
|
|
return RISCV::PseudoLongBEQ;
|
|
case RISCV::BNE:
|
|
return RISCV::PseudoLongBNE;
|
|
case RISCV::BLT:
|
|
return RISCV::PseudoLongBLT;
|
|
case RISCV::BGE:
|
|
return RISCV::PseudoLongBGE;
|
|
case RISCV::BLTU:
|
|
return RISCV::PseudoLongBLTU;
|
|
case RISCV::BGEU:
|
|
return RISCV::PseudoLongBGEU;
|
|
case RISCV::QC_BEQI:
|
|
return RISCV::PseudoLongQC_BEQI;
|
|
case RISCV::QC_BNEI:
|
|
return RISCV::PseudoLongQC_BNEI;
|
|
case RISCV::QC_BLTI:
|
|
return RISCV::PseudoLongQC_BLTI;
|
|
case RISCV::QC_BGEI:
|
|
return RISCV::PseudoLongQC_BGEI;
|
|
case RISCV::QC_BLTUI:
|
|
return RISCV::PseudoLongQC_BLTUI;
|
|
case RISCV::QC_BGEUI:
|
|
return RISCV::PseudoLongQC_BGEUI;
|
|
case RISCV::QC_E_BEQI:
|
|
return RISCV::PseudoLongQC_E_BEQI;
|
|
case RISCV::QC_E_BNEI:
|
|
return RISCV::PseudoLongQC_E_BNEI;
|
|
case RISCV::QC_E_BLTI:
|
|
return RISCV::PseudoLongQC_E_BLTI;
|
|
case RISCV::QC_E_BGEI:
|
|
return RISCV::PseudoLongQC_E_BGEI;
|
|
case RISCV::QC_E_BLTUI:
|
|
return RISCV::PseudoLongQC_E_BLTUI;
|
|
case RISCV::QC_E_BGEUI:
|
|
return RISCV::PseudoLongQC_E_BGEUI;
|
|
}
|
|
|
|
// Returning the original opcode means we cannot relax the instruction.
|
|
return Opcode;
|
|
}
|
|
|
|
void RISCVAsmBackend::relaxInstruction(MCInst &Inst,
|
|
const MCSubtargetInfo &STI) const {
|
|
if (STI.hasFeature(RISCV::FeatureExactAssembly))
|
|
return;
|
|
|
|
MCInst Res;
|
|
switch (Inst.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Opcode not expected!");
|
|
case RISCV::C_BEQZ:
|
|
case RISCV::C_BNEZ:
|
|
case RISCV::C_J:
|
|
case RISCV::C_JAL: {
|
|
[[maybe_unused]] bool Success = RISCVRVC::uncompress(Res, Inst, STI);
|
|
assert(Success && "Can't uncompress instruction");
|
|
assert(Res.getOpcode() ==
|
|
getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI) &&
|
|
"Branch Relaxation Error");
|
|
break;
|
|
}
|
|
case RISCV::JAL: {
|
|
// This has to be written manually because the QC.E.J -> JAL is
|
|
// compression-only, so that it is not used when printing disassembly.
|
|
assert(STI.hasFeature(RISCV::FeatureVendorXqcilb) &&
|
|
"JAL is only relaxable with Xqcilb");
|
|
assert((Inst.getOperand(0).getReg() == RISCV::X0 ||
|
|
Inst.getOperand(0).getReg() == RISCV::X1) &&
|
|
"JAL only relaxable with rd=x0 or rd=x1");
|
|
Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI));
|
|
Res.addOperand(Inst.getOperand(1));
|
|
break;
|
|
}
|
|
case RISCV::C_LI: {
|
|
// This should only be hit when trying to relax a `C.LI` into a `QC.E.LI`
|
|
// because the `C.LI` has a bare symbol. We cannot use
|
|
// `RISCVRVC::uncompress` because it will use decompression patterns. The
|
|
// `QC.E.LI` compression pattern to `C.LI` is compression-only (because we
|
|
// don't want `c.li` ever printed as `qc.e.li`, which might be done if the
|
|
// pattern applied to decompression), but that doesn't help much becuase
|
|
// `C.LI` with a bare symbol will decompress to an `ADDI` anyway (because
|
|
// `simm12`'s MCOperandPredicate accepts a bare symbol and that pattern
|
|
// comes first), and we still cannot emit an `ADDI` with a bare symbol.
|
|
assert(STI.hasFeature(RISCV::FeatureVendorXqcili) &&
|
|
"C.LI is only relaxable with Xqcili");
|
|
Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI));
|
|
Res.addOperand(Inst.getOperand(0));
|
|
Res.addOperand(Inst.getOperand(1));
|
|
break;
|
|
}
|
|
case RISCV::BEQ:
|
|
case RISCV::BNE:
|
|
case RISCV::BLT:
|
|
case RISCV::BGE:
|
|
case RISCV::BLTU:
|
|
case RISCV::BGEU:
|
|
case RISCV::QC_BEQI:
|
|
case RISCV::QC_BNEI:
|
|
case RISCV::QC_BLTI:
|
|
case RISCV::QC_BGEI:
|
|
case RISCV::QC_BLTUI:
|
|
case RISCV::QC_BGEUI:
|
|
case RISCV::QC_E_BEQI:
|
|
case RISCV::QC_E_BNEI:
|
|
case RISCV::QC_E_BLTI:
|
|
case RISCV::QC_E_BGEI:
|
|
case RISCV::QC_E_BLTUI:
|
|
case RISCV::QC_E_BGEUI:
|
|
Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI));
|
|
Res.addOperand(Inst.getOperand(0));
|
|
Res.addOperand(Inst.getOperand(1));
|
|
Res.addOperand(Inst.getOperand(2));
|
|
break;
|
|
}
|
|
Inst = std::move(Res);
|
|
}
|
|
|
|
bool RISCVAsmBackend::relaxDwarfLineAddr(MCDwarfLineAddrFragment &DF,
|
|
bool &WasRelaxed) const {
|
|
MCContext &C = getContext();
|
|
|
|
int64_t LineDelta = DF.getLineDelta();
|
|
const MCExpr &AddrDelta = DF.getAddrDelta();
|
|
SmallVector<MCFixup, 1> Fixups;
|
|
size_t OldSize = DF.getContents().size();
|
|
|
|
int64_t Value;
|
|
[[maybe_unused]] bool IsAbsolute =
|
|
AddrDelta.evaluateKnownAbsolute(Value, *Asm);
|
|
assert(IsAbsolute && "CFA with invalid expression");
|
|
|
|
Fixups.clear();
|
|
SmallVector<char> Data;
|
|
raw_svector_ostream OS(Data);
|
|
|
|
// INT64_MAX is a signal that this is actually a DW_LNE_end_sequence.
|
|
if (LineDelta != INT64_MAX) {
|
|
OS << uint8_t(dwarf::DW_LNS_advance_line);
|
|
encodeSLEB128(LineDelta, OS);
|
|
}
|
|
|
|
unsigned Offset;
|
|
std::pair<MCFixupKind, MCFixupKind> Fixup;
|
|
|
|
// According to the DWARF specification, the `DW_LNS_fixed_advance_pc` opcode
|
|
// takes a single unsigned half (unencoded) operand. The maximum encodable
|
|
// value is therefore 65535. Set a conservative upper bound for relaxation.
|
|
if (Value > 60000) {
|
|
unsigned PtrSize = C.getAsmInfo()->getCodePointerSize();
|
|
|
|
OS << uint8_t(dwarf::DW_LNS_extended_op);
|
|
encodeULEB128(PtrSize + 1, OS);
|
|
|
|
OS << uint8_t(dwarf::DW_LNE_set_address);
|
|
Offset = OS.tell();
|
|
assert((PtrSize == 4 || PtrSize == 8) && "Unexpected pointer size");
|
|
Fixup = RISCV::getRelocPairForSize(PtrSize);
|
|
OS.write_zeros(PtrSize);
|
|
} else {
|
|
OS << uint8_t(dwarf::DW_LNS_fixed_advance_pc);
|
|
Offset = OS.tell();
|
|
Fixup = RISCV::getRelocPairForSize(2);
|
|
support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
|
|
}
|
|
|
|
const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta);
|
|
Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(Fixup)));
|
|
Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(Fixup)));
|
|
|
|
if (LineDelta == INT64_MAX) {
|
|
OS << uint8_t(dwarf::DW_LNS_extended_op);
|
|
OS << uint8_t(1);
|
|
OS << uint8_t(dwarf::DW_LNE_end_sequence);
|
|
} else {
|
|
OS << uint8_t(dwarf::DW_LNS_copy);
|
|
}
|
|
|
|
DF.setContents(Data);
|
|
DF.setFixups(Fixups);
|
|
WasRelaxed = OldSize != Data.size();
|
|
return true;
|
|
}
|
|
|
|
bool RISCVAsmBackend::relaxDwarfCFA(MCDwarfCallFrameFragment &DF,
|
|
bool &WasRelaxed) const {
|
|
const MCExpr &AddrDelta = DF.getAddrDelta();
|
|
SmallVector<MCFixup, 2> Fixups;
|
|
size_t OldSize = DF.getContents().size();
|
|
|
|
int64_t Value;
|
|
if (AddrDelta.evaluateAsAbsolute(Value, *Asm))
|
|
return false;
|
|
[[maybe_unused]] bool IsAbsolute =
|
|
AddrDelta.evaluateKnownAbsolute(Value, *Asm);
|
|
assert(IsAbsolute && "CFA with invalid expression");
|
|
|
|
assert(getContext().getAsmInfo()->getMinInstAlignment() == 1 &&
|
|
"expected 1-byte alignment");
|
|
if (Value == 0) {
|
|
DF.clearContents();
|
|
DF.clearFixups();
|
|
WasRelaxed = OldSize != DF.getContents().size();
|
|
return true;
|
|
}
|
|
|
|
auto AddFixups = [&Fixups, &AddrDelta](unsigned Offset,
|
|
std::pair<unsigned, unsigned> Fixup) {
|
|
const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta);
|
|
Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(Fixup)));
|
|
Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(Fixup)));
|
|
};
|
|
|
|
SmallVector<char, 8> Data;
|
|
raw_svector_ostream OS(Data);
|
|
if (isUIntN(6, Value)) {
|
|
OS << uint8_t(dwarf::DW_CFA_advance_loc);
|
|
AddFixups(0, {ELF::R_RISCV_SET6, ELF::R_RISCV_SUB6});
|
|
} else if (isUInt<8>(Value)) {
|
|
OS << uint8_t(dwarf::DW_CFA_advance_loc1);
|
|
support::endian::write<uint8_t>(OS, 0, llvm::endianness::little);
|
|
AddFixups(1, {ELF::R_RISCV_SET8, ELF::R_RISCV_SUB8});
|
|
} else if (isUInt<16>(Value)) {
|
|
OS << uint8_t(dwarf::DW_CFA_advance_loc2);
|
|
support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
|
|
AddFixups(1, {ELF::R_RISCV_SET16, ELF::R_RISCV_SUB16});
|
|
} else if (isUInt<32>(Value)) {
|
|
OS << uint8_t(dwarf::DW_CFA_advance_loc4);
|
|
support::endian::write<uint32_t>(OS, 0, llvm::endianness::little);
|
|
AddFixups(1, {ELF::R_RISCV_SET32, ELF::R_RISCV_SUB32});
|
|
} else {
|
|
llvm_unreachable("unsupported CFA encoding");
|
|
}
|
|
DF.setContents(Data);
|
|
DF.setFixups(Fixups);
|
|
|
|
WasRelaxed = OldSize != Data.size();
|
|
return true;
|
|
}
|
|
|
|
std::pair<bool, bool> RISCVAsmBackend::relaxLEB128(MCLEBFragment &LF,
|
|
int64_t &Value) const {
|
|
if (LF.isSigned())
|
|
return std::make_pair(false, false);
|
|
const MCExpr &Expr = LF.getValue();
|
|
if (ULEB128Reloc) {
|
|
LF.addFixup(MCFixup::create(0, &Expr, FK_Data_leb128));
|
|
}
|
|
return std::make_pair(Expr.evaluateKnownAbsolute(Value, *Asm), false);
|
|
}
|
|
|
|
bool RISCVAsmBackend::mayNeedRelaxation(unsigned Opcode,
|
|
ArrayRef<MCOperand> Operands,
|
|
const MCSubtargetInfo &STI) const {
|
|
// This function has access to two STIs, the member of the AsmBackend, and the
|
|
// one passed as an argument. The latter is more specific, so we query it for
|
|
// specific features.
|
|
if (STI.hasFeature(RISCV::FeatureExactAssembly))
|
|
return false;
|
|
|
|
return getRelaxedOpcode(Opcode, Operands, STI) != Opcode;
|
|
}
|
|
|
|
bool RISCVAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
|
|
const MCSubtargetInfo *STI) const {
|
|
// We mostly follow binutils' convention here: align to even boundary with a
|
|
// 0-fill padding. We emit up to 1 2-byte nop, though we use c.nop if RVC is
|
|
// enabled or 0-fill otherwise. The remainder is now padded with 4-byte nops.
|
|
|
|
// Instructions always are at even addresses. We must be in a data area or
|
|
// be unaligned due to some other reason.
|
|
if (Count % 2) {
|
|
OS.write("\0", 1);
|
|
Count -= 1;
|
|
}
|
|
|
|
if (Count % 4 == 2) {
|
|
// The canonical nop with Zca is c.nop.
|
|
OS.write(STI->hasFeature(RISCV::FeatureStdExtZca) ? "\x01\0" : "\0\0", 2);
|
|
Count -= 2;
|
|
}
|
|
|
|
// The canonical nop on RISC-V is addi x0, x0, 0.
|
|
for (; Count >= 4; Count -= 4)
|
|
OS.write("\x13\0\0\0", 4);
|
|
|
|
return true;
|
|
}
|
|
|
|
static uint64_t adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
|
|
MCContext &Ctx) {
|
|
switch (Fixup.getKind()) {
|
|
default:
|
|
llvm_unreachable("Unknown fixup kind!");
|
|
case FK_Data_1:
|
|
case FK_Data_2:
|
|
case FK_Data_4:
|
|
case FK_Data_8:
|
|
case FK_Data_leb128:
|
|
return Value;
|
|
case RISCV::fixup_riscv_lo12_i:
|
|
case RISCV::fixup_riscv_pcrel_lo12_i:
|
|
return Value & 0xfff;
|
|
case RISCV::fixup_riscv_12_i:
|
|
if (!isInt<12>(Value)) {
|
|
Ctx.reportError(Fixup.getLoc(),
|
|
"operand must be a constant 12-bit integer");
|
|
}
|
|
return Value & 0xfff;
|
|
case RISCV::fixup_riscv_lo12_s:
|
|
case RISCV::fixup_riscv_pcrel_lo12_s:
|
|
return (((Value >> 5) & 0x7f) << 25) | ((Value & 0x1f) << 7);
|
|
case RISCV::fixup_riscv_hi20:
|
|
case RISCV::fixup_riscv_pcrel_hi20:
|
|
// Add 1 if bit 11 is 1, to compensate for low 12 bits being negative.
|
|
return ((Value + 0x800) >> 12) & 0xfffff;
|
|
case RISCV::fixup_riscv_jal: {
|
|
if (!isInt<21>(Value))
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
|
|
if (Value & 0x1)
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
|
|
// Need to produce imm[19|10:1|11|19:12] from the 21-bit Value.
|
|
unsigned Sbit = (Value >> 20) & 0x1;
|
|
unsigned Hi8 = (Value >> 12) & 0xff;
|
|
unsigned Mid1 = (Value >> 11) & 0x1;
|
|
unsigned Lo10 = (Value >> 1) & 0x3ff;
|
|
// Inst{31} = Sbit;
|
|
// Inst{30-21} = Lo10;
|
|
// Inst{20} = Mid1;
|
|
// Inst{19-12} = Hi8;
|
|
Value = (Sbit << 19) | (Lo10 << 9) | (Mid1 << 8) | Hi8;
|
|
return Value;
|
|
}
|
|
case RISCV::fixup_riscv_qc_e_branch:
|
|
case RISCV::fixup_riscv_branch: {
|
|
if (!isInt<13>(Value))
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
|
|
if (Value & 0x1)
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
|
|
// Need to extract imm[12], imm[10:5], imm[4:1], imm[11] from the 13-bit
|
|
// Value.
|
|
unsigned Sbit = (Value >> 12) & 0x1;
|
|
unsigned Hi1 = (Value >> 11) & 0x1;
|
|
unsigned Mid6 = (Value >> 5) & 0x3f;
|
|
unsigned Lo4 = (Value >> 1) & 0xf;
|
|
// Inst{31} = Sbit;
|
|
// Inst{30-25} = Mid6;
|
|
// Inst{11-8} = Lo4;
|
|
// Inst{7} = Hi1;
|
|
Value = (Sbit << 31) | (Mid6 << 25) | (Lo4 << 8) | (Hi1 << 7);
|
|
return Value;
|
|
}
|
|
case RISCV::fixup_riscv_call:
|
|
case RISCV::fixup_riscv_call_plt: {
|
|
// Jalr will add UpperImm with the sign-extended 12-bit LowerImm,
|
|
// we need to add 0x800ULL before extract upper bits to reflect the
|
|
// effect of the sign extension.
|
|
uint64_t UpperImm = (Value + 0x800ULL) & 0xfffff000ULL;
|
|
uint64_t LowerImm = Value & 0xfffULL;
|
|
return UpperImm | ((LowerImm << 20) << 32);
|
|
}
|
|
case RISCV::fixup_riscv_rvc_jump: {
|
|
if (!isInt<12>(Value))
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
|
|
// Need to produce offset[11|4|9:8|10|6|7|3:1|5] from the 11-bit Value.
|
|
unsigned Bit11 = (Value >> 11) & 0x1;
|
|
unsigned Bit4 = (Value >> 4) & 0x1;
|
|
unsigned Bit9_8 = (Value >> 8) & 0x3;
|
|
unsigned Bit10 = (Value >> 10) & 0x1;
|
|
unsigned Bit6 = (Value >> 6) & 0x1;
|
|
unsigned Bit7 = (Value >> 7) & 0x1;
|
|
unsigned Bit3_1 = (Value >> 1) & 0x7;
|
|
unsigned Bit5 = (Value >> 5) & 0x1;
|
|
Value = (Bit11 << 10) | (Bit4 << 9) | (Bit9_8 << 7) | (Bit10 << 6) |
|
|
(Bit6 << 5) | (Bit7 << 4) | (Bit3_1 << 1) | Bit5;
|
|
return Value;
|
|
}
|
|
case RISCV::fixup_riscv_rvc_branch: {
|
|
if (!isInt<9>(Value))
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
|
|
// Need to produce offset[8|4:3], [reg 3 bit], offset[7:6|2:1|5]
|
|
unsigned Bit8 = (Value >> 8) & 0x1;
|
|
unsigned Bit7_6 = (Value >> 6) & 0x3;
|
|
unsigned Bit5 = (Value >> 5) & 0x1;
|
|
unsigned Bit4_3 = (Value >> 3) & 0x3;
|
|
unsigned Bit2_1 = (Value >> 1) & 0x3;
|
|
Value = (Bit8 << 12) | (Bit4_3 << 10) | (Bit7_6 << 5) | (Bit2_1 << 3) |
|
|
(Bit5 << 2);
|
|
return Value;
|
|
}
|
|
case RISCV::fixup_riscv_rvc_imm: {
|
|
if (!isInt<6>(Value))
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
|
|
unsigned Bit5 = (Value >> 5) & 0x1;
|
|
unsigned Bit4_0 = Value & 0x1f;
|
|
Value = (Bit5 << 12) | (Bit4_0 << 2);
|
|
return Value;
|
|
}
|
|
case RISCV::fixup_riscv_qc_e_32: {
|
|
if (!isInt<32>(Value))
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
|
|
return Value & 0xffffffffu;
|
|
}
|
|
case RISCV::fixup_riscv_qc_abs20_u: {
|
|
if (!isInt<20>(Value))
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
|
|
unsigned Bit19 = (Value >> 19) & 0x1;
|
|
unsigned Bit14_0 = Value & 0x7fff;
|
|
unsigned Bit18_15 = (Value >> 15) & 0xf;
|
|
Value = (Bit19 << 31) | (Bit14_0 << 16) | (Bit18_15 << 12);
|
|
return Value;
|
|
}
|
|
case RISCV::fixup_riscv_qc_e_call_plt: {
|
|
if (!isInt<32>(Value))
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
|
|
if (Value & 0x1)
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
|
|
uint64_t Bit31_16 = (Value >> 16) & 0xffff;
|
|
uint64_t Bit12 = (Value >> 12) & 0x1;
|
|
uint64_t Bit10_5 = (Value >> 5) & 0x3f;
|
|
uint64_t Bit15_13 = (Value >> 13) & 0x7;
|
|
uint64_t Bit4_1 = (Value >> 1) & 0xf;
|
|
uint64_t Bit11 = (Value >> 11) & 0x1;
|
|
Value = (Bit31_16 << 32ull) | (Bit12 << 31) | (Bit10_5 << 25) |
|
|
(Bit15_13 << 17) | (Bit4_1 << 8) | (Bit11 << 7);
|
|
return Value;
|
|
}
|
|
case RISCV::fixup_riscv_nds_branch_10: {
|
|
if (!isInt<11>(Value))
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
|
|
if (Value & 0x1)
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
|
|
// Need to extract imm[10], imm[9:5], imm[4:1] from the 11-bit Value.
|
|
unsigned Sbit = (Value >> 10) & 0x1;
|
|
unsigned Hi5 = (Value >> 5) & 0x1f;
|
|
unsigned Lo4 = (Value >> 1) & 0xf;
|
|
// Inst{31} = Sbit;
|
|
// Inst{29-25} = Hi5;
|
|
// Inst{11-8} = Lo4;
|
|
Value = (Sbit << 31) | (Hi5 << 25) | (Lo4 << 8);
|
|
return Value;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool RISCVAsmBackend::isPCRelFixupResolved(const MCSymbol *SymA,
|
|
const MCFragment &F) {
|
|
// If the section does not contain linker-relaxable fragments, PC-relative
|
|
// fixups can be resolved.
|
|
if (!F.getParent()->isLinkerRelaxable())
|
|
return true;
|
|
|
|
// Otherwise, check if the offset between the symbol and fragment is fully
|
|
// resolved, unaffected by linker-relaxable fragments (e.g. instructions or
|
|
// offset-affected MCAlignFragment). Complements the generic
|
|
// isSymbolRefDifferenceFullyResolvedImpl.
|
|
if (!PCRelTemp)
|
|
PCRelTemp = getContext().createTempSymbol();
|
|
PCRelTemp->setFragment(const_cast<MCFragment *>(&F));
|
|
MCValue Res;
|
|
MCExpr::evaluateSymbolicAdd(Asm, false, MCValue::get(SymA),
|
|
MCValue::get(nullptr, PCRelTemp), Res);
|
|
return !Res.getSubSym();
|
|
}
|
|
|
|
// Get the corresponding PC-relative HI fixup that a S_PCREL_LO points to, and
|
|
// optionally the fragment containing it.
|
|
//
|
|
// \returns nullptr if this isn't a S_PCREL_LO pointing to a known PC-relative
|
|
// HI fixup.
|
|
static const MCFixup *getPCRelHiFixup(const MCSpecifierExpr &Expr,
|
|
const MCFragment **DFOut) {
|
|
MCValue AUIPCLoc;
|
|
if (!Expr.getSubExpr()->evaluateAsRelocatable(AUIPCLoc, nullptr))
|
|
return nullptr;
|
|
|
|
const MCSymbol *AUIPCSymbol = AUIPCLoc.getAddSym();
|
|
if (!AUIPCSymbol)
|
|
return nullptr;
|
|
const auto *DF = dyn_cast_or_null<MCDataFragment>(AUIPCSymbol->getFragment());
|
|
|
|
if (!DF)
|
|
return nullptr;
|
|
|
|
uint64_t Offset = AUIPCSymbol->getOffset();
|
|
if (DF->getContents().size() == Offset) {
|
|
DF = dyn_cast_or_null<MCDataFragment>(DF->getNext());
|
|
if (!DF)
|
|
return nullptr;
|
|
Offset = 0;
|
|
}
|
|
|
|
for (const MCFixup &F : DF->getFixups()) {
|
|
if (F.getOffset() != Offset)
|
|
continue;
|
|
auto Kind = F.getKind();
|
|
if (!mc::isRelocation(F.getKind())) {
|
|
if (Kind == RISCV::fixup_riscv_pcrel_hi20) {
|
|
*DFOut = DF;
|
|
return &F;
|
|
}
|
|
break;
|
|
}
|
|
switch (Kind) {
|
|
case ELF::R_RISCV_GOT_HI20:
|
|
case ELF::R_RISCV_TLS_GOT_HI20:
|
|
case ELF::R_RISCV_TLS_GD_HI20:
|
|
case ELF::R_RISCV_TLSDESC_HI20:
|
|
*DFOut = DF;
|
|
return &F;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
std::optional<bool> RISCVAsmBackend::evaluateFixup(const MCFragment &,
|
|
MCFixup &Fixup,
|
|
MCValue &Target,
|
|
uint64_t &Value) {
|
|
const MCFixup *AUIPCFixup;
|
|
const MCFragment *AUIPCDF;
|
|
MCValue AUIPCTarget;
|
|
switch (Fixup.getKind()) {
|
|
default:
|
|
// Use default handling for `Value` and `IsResolved`.
|
|
return {};
|
|
case RISCV::fixup_riscv_pcrel_lo12_i:
|
|
case RISCV::fixup_riscv_pcrel_lo12_s: {
|
|
AUIPCFixup =
|
|
getPCRelHiFixup(cast<MCSpecifierExpr>(*Fixup.getValue()), &AUIPCDF);
|
|
if (!AUIPCFixup) {
|
|
getContext().reportError(Fixup.getLoc(),
|
|
"could not find corresponding %pcrel_hi");
|
|
return true;
|
|
}
|
|
|
|
// MCAssembler::evaluateFixup will emit an error for this case when it sees
|
|
// the %pcrel_hi, so don't duplicate it when also seeing the %pcrel_lo.
|
|
const MCExpr *AUIPCExpr = AUIPCFixup->getValue();
|
|
if (!AUIPCExpr->evaluateAsRelocatable(AUIPCTarget, Asm))
|
|
return true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!AUIPCTarget.getAddSym())
|
|
return false;
|
|
|
|
const MCSymbolELF &SA = cast<MCSymbolELF>(*AUIPCTarget.getAddSym());
|
|
if (SA.isUndefined())
|
|
return false;
|
|
|
|
bool IsResolved = &SA.getSection() == AUIPCDF->getParent() &&
|
|
SA.getBinding() == ELF::STB_LOCAL &&
|
|
SA.getType() != ELF::STT_GNU_IFUNC;
|
|
if (!IsResolved)
|
|
return false;
|
|
|
|
Value = Asm->getSymbolOffset(SA) + AUIPCTarget.getConstant();
|
|
Value -= Asm->getFragmentOffset(*AUIPCDF) + AUIPCFixup->getOffset();
|
|
|
|
return AUIPCFixup->getKind() == RISCV::fixup_riscv_pcrel_hi20 &&
|
|
isPCRelFixupResolved(AUIPCTarget.getAddSym(), *AUIPCDF);
|
|
}
|
|
|
|
void RISCVAsmBackend::maybeAddVendorReloc(const MCFragment &F,
|
|
const MCFixup &Fixup) {
|
|
StringRef VendorIdentifier;
|
|
switch (Fixup.getKind()) {
|
|
default:
|
|
// No Vendor Relocation Required.
|
|
return;
|
|
case RISCV::fixup_riscv_qc_e_branch:
|
|
case RISCV::fixup_riscv_qc_abs20_u:
|
|
case RISCV::fixup_riscv_qc_e_32:
|
|
case RISCV::fixup_riscv_qc_e_call_plt:
|
|
VendorIdentifier = "QUALCOMM";
|
|
break;
|
|
case RISCV::fixup_riscv_nds_branch_10:
|
|
VendorIdentifier = "ANDES";
|
|
break;
|
|
}
|
|
|
|
// Create a local symbol for the vendor relocation to reference. It's fine if
|
|
// the symbol has the same name as an existing symbol.
|
|
MCContext &Ctx = Asm->getContext();
|
|
MCSymbol *VendorSymbol = Ctx.createLocalSymbol(VendorIdentifier);
|
|
auto [It, Inserted] =
|
|
VendorSymbols.try_emplace(VendorIdentifier, VendorSymbol);
|
|
|
|
if (Inserted) {
|
|
// Setup the just-created symbol
|
|
VendorSymbol->setVariableValue(MCConstantExpr::create(0, Ctx));
|
|
Asm->registerSymbol(*VendorSymbol);
|
|
} else {
|
|
// Fetch the existing symbol
|
|
VendorSymbol = It->getValue();
|
|
}
|
|
|
|
MCFixup VendorFixup =
|
|
MCFixup::create(Fixup.getOffset(), nullptr, ELF::R_RISCV_VENDOR);
|
|
// Explicitly create MCValue rather than using an MCExpr and evaluating it so
|
|
// that the absolute vendor symbol is not evaluated to constant 0.
|
|
MCValue VendorTarget = MCValue::get(VendorSymbol);
|
|
uint64_t VendorValue;
|
|
Asm->getWriter().recordRelocation(F, VendorFixup, VendorTarget, VendorValue);
|
|
}
|
|
|
|
static bool relaxableFixupNeedsRelocation(const MCFixupKind Kind) {
|
|
// Some Fixups are marked as LinkerRelaxable by
|
|
// `RISCVMCCodeEmitter::getImmOpValue` only because they may be
|
|
// (assembly-)relaxed into a linker-relaxable instruction. This function
|
|
// should return `false` for those fixups so they do not get a `R_RISCV_RELAX`
|
|
// relocation emitted in addition to the relocation.
|
|
switch (Kind) {
|
|
default:
|
|
break;
|
|
case RISCV::fixup_riscv_rvc_jump:
|
|
case RISCV::fixup_riscv_rvc_branch:
|
|
case RISCV::fixup_riscv_jal:
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool RISCVAsmBackend::addReloc(const MCFragment &F, const MCFixup &Fixup,
|
|
const MCValue &Target, uint64_t &FixedValue,
|
|
bool IsResolved) {
|
|
uint64_t FixedValueA, FixedValueB;
|
|
if (Target.getSubSym()) {
|
|
assert(Target.getSpecifier() == 0 &&
|
|
"relocatable SymA-SymB cannot have relocation specifier");
|
|
unsigned TA = 0, TB = 0;
|
|
switch (Fixup.getKind()) {
|
|
case llvm::FK_Data_1:
|
|
TA = ELF::R_RISCV_ADD8;
|
|
TB = ELF::R_RISCV_SUB8;
|
|
break;
|
|
case llvm::FK_Data_2:
|
|
TA = ELF::R_RISCV_ADD16;
|
|
TB = ELF::R_RISCV_SUB16;
|
|
break;
|
|
case llvm::FK_Data_4:
|
|
TA = ELF::R_RISCV_ADD32;
|
|
TB = ELF::R_RISCV_SUB32;
|
|
break;
|
|
case llvm::FK_Data_8:
|
|
TA = ELF::R_RISCV_ADD64;
|
|
TB = ELF::R_RISCV_SUB64;
|
|
break;
|
|
case llvm::FK_Data_leb128:
|
|
TA = ELF::R_RISCV_SET_ULEB128;
|
|
TB = ELF::R_RISCV_SUB_ULEB128;
|
|
break;
|
|
default:
|
|
llvm_unreachable("unsupported fixup size");
|
|
}
|
|
MCValue A = MCValue::get(Target.getAddSym(), nullptr, Target.getConstant());
|
|
MCValue B = MCValue::get(Target.getSubSym());
|
|
auto FA = MCFixup::create(Fixup.getOffset(), nullptr, TA);
|
|
auto FB = MCFixup::create(Fixup.getOffset(), nullptr, TB);
|
|
Asm->getWriter().recordRelocation(F, FA, A, FixedValueA);
|
|
Asm->getWriter().recordRelocation(F, FB, B, FixedValueB);
|
|
FixedValue = FixedValueA - FixedValueB;
|
|
return false;
|
|
}
|
|
|
|
// If linker relaxation is enabled and supported by the current fixup, then we
|
|
// always want to generate a relocation.
|
|
bool NeedsRelax = Fixup.isLinkerRelaxable() &&
|
|
relaxableFixupNeedsRelocation(Fixup.getKind());
|
|
if (NeedsRelax)
|
|
IsResolved = false;
|
|
|
|
if (IsResolved && Fixup.isPCRel())
|
|
IsResolved = isPCRelFixupResolved(Target.getAddSym(), F);
|
|
|
|
if (!IsResolved) {
|
|
// Some Fixups require a VENDOR relocation, record it (directly) before we
|
|
// add the relocation.
|
|
maybeAddVendorReloc(F, Fixup);
|
|
|
|
Asm->getWriter().recordRelocation(F, Fixup, Target, FixedValue);
|
|
|
|
if (NeedsRelax) {
|
|
// Some Fixups get a RELAX relocation, record it (directly) after we add
|
|
// the relocation.
|
|
MCFixup RelaxFixup =
|
|
MCFixup::create(Fixup.getOffset(), nullptr, ELF::R_RISCV_RELAX);
|
|
MCValue RelaxTarget = MCValue::get(nullptr);
|
|
uint64_t RelaxValue;
|
|
Asm->getWriter().recordRelocation(F, RelaxFixup, RelaxTarget, RelaxValue);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void RISCVAsmBackend::applyFixup(const MCFragment &F, const MCFixup &Fixup,
|
|
const MCValue &Target,
|
|
MutableArrayRef<char> Data, uint64_t Value,
|
|
bool IsResolved) {
|
|
IsResolved = addReloc(F, Fixup, Target, Value, IsResolved);
|
|
MCFixupKind Kind = Fixup.getKind();
|
|
if (mc::isRelocation(Kind))
|
|
return;
|
|
MCContext &Ctx = getContext();
|
|
MCFixupKindInfo Info = getFixupKindInfo(Kind);
|
|
if (!Value)
|
|
return; // Doesn't change encoding.
|
|
// Apply any target-specific value adjustments.
|
|
Value = adjustFixupValue(Fixup, Value, Ctx);
|
|
|
|
// Shift the value into position.
|
|
Value <<= Info.TargetOffset;
|
|
|
|
unsigned Offset = Fixup.getOffset();
|
|
unsigned NumBytes = alignTo(Info.TargetSize + Info.TargetOffset, 8) / 8;
|
|
|
|
assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
|
|
|
|
// For each byte of the fragment that the fixup touches, mask in the
|
|
// bits from the fixup value.
|
|
for (unsigned i = 0; i != NumBytes; ++i) {
|
|
Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
|
|
}
|
|
}
|
|
|
|
// Linker relaxation may change code size. We have to insert Nops
|
|
// for .align directive when linker relaxation enabled. So then Linker
|
|
// could satisfy alignment by removing Nops.
|
|
// The function return the total Nops Size we need to insert.
|
|
bool RISCVAsmBackend::shouldInsertExtraNopBytesForCodeAlign(
|
|
const MCAlignFragment &AF, unsigned &Size) {
|
|
// Calculate Nops Size only when linker relaxation enabled.
|
|
const MCSubtargetInfo *STI = AF.getSubtargetInfo();
|
|
if (!STI->hasFeature(RISCV::FeatureRelax))
|
|
return false;
|
|
|
|
unsigned MinNopLen = STI->hasFeature(RISCV::FeatureStdExtZca) ? 2 : 4;
|
|
|
|
if (AF.getAlignment() <= MinNopLen) {
|
|
return false;
|
|
} else {
|
|
Size = AF.getAlignment().value() - MinNopLen;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// We need to insert R_RISCV_ALIGN relocation type to indicate the
|
|
// position of Nops and the total bytes of the Nops have been inserted
|
|
// when linker relaxation enabled.
|
|
// The function insert fixup_riscv_align fixup which eventually will
|
|
// transfer to R_RISCV_ALIGN relocation type.
|
|
bool RISCVAsmBackend::shouldInsertFixupForCodeAlign(MCAssembler &Asm,
|
|
MCAlignFragment &AF) {
|
|
// Insert the fixup only when linker relaxation enabled.
|
|
const MCSubtargetInfo *STI = AF.getSubtargetInfo();
|
|
if (!STI->hasFeature(RISCV::FeatureRelax))
|
|
return false;
|
|
|
|
// Calculate total Nops we need to insert. If there are none to insert
|
|
// then simply return.
|
|
unsigned Count;
|
|
if (!shouldInsertExtraNopBytesForCodeAlign(AF, Count) || (Count == 0))
|
|
return false;
|
|
|
|
MCContext &Ctx = getContext();
|
|
const MCExpr *Dummy = MCConstantExpr::create(0, Ctx);
|
|
MCFixup Fixup = MCFixup::create(0, Dummy, ELF::R_RISCV_ALIGN);
|
|
|
|
uint64_t FixedValue = 0;
|
|
MCValue NopBytes = MCValue::get(Count);
|
|
Asm.getWriter().recordRelocation(AF, Fixup, NopBytes, FixedValue);
|
|
return true;
|
|
}
|
|
|
|
std::unique_ptr<MCObjectTargetWriter>
|
|
RISCVAsmBackend::createObjectTargetWriter() const {
|
|
return createRISCVELFObjectWriter(OSABI, Is64Bit);
|
|
}
|
|
|
|
MCAsmBackend *llvm::createRISCVAsmBackend(const Target &T,
|
|
const MCSubtargetInfo &STI,
|
|
const MCRegisterInfo &MRI,
|
|
const MCTargetOptions &Options) {
|
|
const Triple &TT = STI.getTargetTriple();
|
|
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
|
|
return new RISCVAsmBackend(STI, OSABI, TT.isArch64Bit(), Options);
|
|
}
|