
Add missing listener notifications when erasing nested blocks/operations. This commit also moves some of the functionality from `ConversionPatternRewriter` to `ConversionPatternRewriterImpl`. This is in preparation of the One-Shot Dialect Conversion refactoring: The implementations in `ConversionPatternRewriter` should be as simple as possible, so that a switch between "rollback allowed" and "rollback not allowed" can be inserted at that level. (In the latter case, `ConversionPatternRewriterImpl` can be bypassed to some degree, and `PatternRewriter::eraseBlock` etc. can be used.) Depends on #145018.
3530 lines
135 KiB
C++
3530 lines
135 KiB
C++
//===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Config/mlir-config.h"
|
|
#include "mlir/IR/Block.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/Dominance.h"
|
|
#include "mlir/IR/IRMapping.h"
|
|
#include "mlir/IR/Iterators.h"
|
|
#include "mlir/Interfaces/FunctionInterfaces.h"
|
|
#include "mlir/Rewrite/PatternApplicator.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
#include "llvm/Support/ScopedPrinter.h"
|
|
#include <optional>
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::detail;
|
|
|
|
#define DEBUG_TYPE "dialect-conversion"
|
|
|
|
/// A utility function to log a successful result for the given reason.
|
|
template <typename... Args>
|
|
static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
|
|
LLVM_DEBUG({
|
|
os.unindent();
|
|
os.startLine() << "} -> SUCCESS";
|
|
if (!fmt.empty())
|
|
os.getOStream() << " : "
|
|
<< llvm::formatv(fmt.data(), std::forward<Args>(args)...);
|
|
os.getOStream() << "\n";
|
|
});
|
|
}
|
|
|
|
/// A utility function to log a failure result for the given reason.
|
|
template <typename... Args>
|
|
static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
|
|
LLVM_DEBUG({
|
|
os.unindent();
|
|
os.startLine() << "} -> FAILURE : "
|
|
<< llvm::formatv(fmt.data(), std::forward<Args>(args)...)
|
|
<< "\n";
|
|
});
|
|
}
|
|
|
|
/// Helper function that computes an insertion point where the given value is
|
|
/// defined and can be used without a dominance violation.
|
|
static OpBuilder::InsertPoint computeInsertPoint(Value value) {
|
|
Block *insertBlock = value.getParentBlock();
|
|
Block::iterator insertPt = insertBlock->begin();
|
|
if (OpResult inputRes = dyn_cast<OpResult>(value))
|
|
insertPt = ++inputRes.getOwner()->getIterator();
|
|
return OpBuilder::InsertPoint(insertBlock, insertPt);
|
|
}
|
|
|
|
/// Helper function that computes an insertion point where the given values are
|
|
/// defined and can be used without a dominance violation.
|
|
static OpBuilder::InsertPoint computeInsertPoint(ArrayRef<Value> vals) {
|
|
assert(!vals.empty() && "expected at least one value");
|
|
DominanceInfo domInfo;
|
|
OpBuilder::InsertPoint pt = computeInsertPoint(vals.front());
|
|
for (Value v : vals.drop_front()) {
|
|
// Choose the "later" insertion point.
|
|
OpBuilder::InsertPoint nextPt = computeInsertPoint(v);
|
|
if (domInfo.dominates(pt.getBlock(), pt.getPoint(), nextPt.getBlock(),
|
|
nextPt.getPoint())) {
|
|
// pt is before nextPt => choose nextPt.
|
|
pt = nextPt;
|
|
} else {
|
|
#ifndef NDEBUG
|
|
// nextPt should be before pt => choose pt.
|
|
// If pt, nextPt are no dominance relationship, then there is no valid
|
|
// insertion point at which all given values are defined.
|
|
bool dom = domInfo.dominates(nextPt.getBlock(), nextPt.getPoint(),
|
|
pt.getBlock(), pt.getPoint());
|
|
assert(dom && "unable to find valid insertion point");
|
|
#endif // NDEBUG
|
|
}
|
|
}
|
|
return pt;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionValueMapping
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// A vector of SSA values, optimized for the most common case of a single
|
|
/// value.
|
|
using ValueVector = SmallVector<Value, 1>;
|
|
|
|
namespace {
|
|
|
|
/// Helper class to make it possible to use `ValueVector` as a key in DenseMap.
|
|
struct ValueVectorMapInfo {
|
|
static ValueVector getEmptyKey() { return ValueVector{Value()}; }
|
|
static ValueVector getTombstoneKey() { return ValueVector{Value(), Value()}; }
|
|
static ::llvm::hash_code getHashValue(const ValueVector &val) {
|
|
return ::llvm::hash_combine_range(val);
|
|
}
|
|
static bool isEqual(const ValueVector &LHS, const ValueVector &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
};
|
|
|
|
/// This class wraps a IRMapping to provide recursive lookup
|
|
/// functionality, i.e. we will traverse if the mapped value also has a mapping.
|
|
struct ConversionValueMapping {
|
|
/// Return "true" if an SSA value is mapped to the given value. May return
|
|
/// false positives.
|
|
bool isMappedTo(Value value) const { return mappedTo.contains(value); }
|
|
|
|
/// Lookup the most recently mapped values with the desired types in the
|
|
/// mapping.
|
|
///
|
|
/// Special cases:
|
|
/// - If the desired type range is empty, simply return the most recently
|
|
/// mapped values.
|
|
/// - If there is no mapping to the desired types, also return the most
|
|
/// recently mapped values.
|
|
/// - If there is no mapping for the given values at all, return the given
|
|
/// value.
|
|
ValueVector lookupOrDefault(Value from, TypeRange desiredTypes = {}) const;
|
|
|
|
/// Lookup the given value within the map, or return an empty vector if the
|
|
/// value is not mapped. If it is mapped, this follows the same behavior
|
|
/// as `lookupOrDefault`.
|
|
ValueVector lookupOrNull(Value from, TypeRange desiredTypes = {}) const;
|
|
|
|
template <typename T>
|
|
struct IsValueVector : std::is_same<std::decay_t<T>, ValueVector> {};
|
|
|
|
/// Map a value vector to the one provided.
|
|
template <typename OldVal, typename NewVal>
|
|
std::enable_if_t<IsValueVector<OldVal>::value && IsValueVector<NewVal>::value>
|
|
map(OldVal &&oldVal, NewVal &&newVal) {
|
|
LLVM_DEBUG({
|
|
ValueVector next(newVal);
|
|
while (true) {
|
|
assert(next != oldVal && "inserting cyclic mapping");
|
|
auto it = mapping.find(next);
|
|
if (it == mapping.end())
|
|
break;
|
|
next = it->second;
|
|
}
|
|
});
|
|
mappedTo.insert_range(newVal);
|
|
|
|
mapping[std::forward<OldVal>(oldVal)] = std::forward<NewVal>(newVal);
|
|
}
|
|
|
|
/// Map a value vector or single value to the one provided.
|
|
template <typename OldVal, typename NewVal>
|
|
std::enable_if_t<!IsValueVector<OldVal>::value ||
|
|
!IsValueVector<NewVal>::value>
|
|
map(OldVal &&oldVal, NewVal &&newVal) {
|
|
if constexpr (IsValueVector<OldVal>{}) {
|
|
map(std::forward<OldVal>(oldVal), ValueVector{newVal});
|
|
} else if constexpr (IsValueVector<NewVal>{}) {
|
|
map(ValueVector{oldVal}, std::forward<NewVal>(newVal));
|
|
} else {
|
|
map(ValueVector{oldVal}, ValueVector{newVal});
|
|
}
|
|
}
|
|
|
|
void map(Value oldVal, SmallVector<Value> &&newVal) {
|
|
map(ValueVector{oldVal}, ValueVector(std::move(newVal)));
|
|
}
|
|
|
|
/// Drop the last mapping for the given values.
|
|
void erase(const ValueVector &value) { mapping.erase(value); }
|
|
|
|
private:
|
|
/// Current value mappings.
|
|
DenseMap<ValueVector, ValueVector, ValueVectorMapInfo> mapping;
|
|
|
|
/// All SSA values that are mapped to. May contain false positives.
|
|
DenseSet<Value> mappedTo;
|
|
};
|
|
} // namespace
|
|
|
|
ValueVector
|
|
ConversionValueMapping::lookupOrDefault(Value from,
|
|
TypeRange desiredTypes) const {
|
|
// Try to find the deepest values that have the desired types. If there is no
|
|
// such mapping, simply return the deepest values.
|
|
ValueVector desiredValue;
|
|
ValueVector current{from};
|
|
do {
|
|
// Store the current value if the types match.
|
|
if (TypeRange(ValueRange(current)) == desiredTypes)
|
|
desiredValue = current;
|
|
|
|
// If possible, Replace each value with (one or multiple) mapped values.
|
|
ValueVector next;
|
|
for (Value v : current) {
|
|
auto it = mapping.find({v});
|
|
if (it != mapping.end()) {
|
|
llvm::append_range(next, it->second);
|
|
} else {
|
|
next.push_back(v);
|
|
}
|
|
}
|
|
if (next != current) {
|
|
// If at least one value was replaced, continue the lookup from there.
|
|
current = std::move(next);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise: Check if there is a mapping for the entire vector. Such
|
|
// mappings are materializations. (N:M mapping are not supported for value
|
|
// replacements.)
|
|
//
|
|
// Note: From a correctness point of view, materializations do not have to
|
|
// be stored (and looked up) in the mapping. But for performance reasons,
|
|
// we choose to reuse existing IR (when possible) instead of creating it
|
|
// multiple times.
|
|
auto it = mapping.find(current);
|
|
if (it == mapping.end()) {
|
|
// No mapping found: The lookup stops here.
|
|
break;
|
|
}
|
|
current = it->second;
|
|
} while (true);
|
|
|
|
// If the desired values were found use them, otherwise default to the leaf
|
|
// values.
|
|
// Note: If `desiredTypes` is empty, this function always returns `current`.
|
|
return !desiredValue.empty() ? std::move(desiredValue) : std::move(current);
|
|
}
|
|
|
|
ValueVector ConversionValueMapping::lookupOrNull(Value from,
|
|
TypeRange desiredTypes) const {
|
|
ValueVector result = lookupOrDefault(from, desiredTypes);
|
|
if (result == ValueVector{from} ||
|
|
(!desiredTypes.empty() && TypeRange(ValueRange(result)) != desiredTypes))
|
|
return {};
|
|
return result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rewriter and Translation State
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
/// This class contains a snapshot of the current conversion rewriter state.
|
|
/// This is useful when saving and undoing a set of rewrites.
|
|
struct RewriterState {
|
|
RewriterState(unsigned numRewrites, unsigned numIgnoredOperations,
|
|
unsigned numReplacedOps)
|
|
: numRewrites(numRewrites), numIgnoredOperations(numIgnoredOperations),
|
|
numReplacedOps(numReplacedOps) {}
|
|
|
|
/// The current number of rewrites performed.
|
|
unsigned numRewrites;
|
|
|
|
/// The current number of ignored operations.
|
|
unsigned numIgnoredOperations;
|
|
|
|
/// The current number of replaced ops that are scheduled for erasure.
|
|
unsigned numReplacedOps;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IR rewrites
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void notifyIRErased(RewriterBase::Listener *listener, Operation &op);
|
|
|
|
/// Notify the listener that the given block and its contents are being erased.
|
|
static void notifyIRErased(RewriterBase::Listener *listener, Block &b) {
|
|
for (Operation &op : b)
|
|
notifyIRErased(listener, op);
|
|
listener->notifyBlockErased(&b);
|
|
}
|
|
|
|
/// Notify the listener that the given operation and its contents are being
|
|
/// erased.
|
|
static void notifyIRErased(RewriterBase::Listener *listener, Operation &op) {
|
|
for (Region &r : op.getRegions()) {
|
|
for (Block &b : r) {
|
|
notifyIRErased(listener, b);
|
|
}
|
|
}
|
|
listener->notifyOperationErased(&op);
|
|
}
|
|
|
|
/// An IR rewrite that can be committed (upon success) or rolled back (upon
|
|
/// failure).
|
|
///
|
|
/// The dialect conversion keeps track of IR modifications (requested by the
|
|
/// user through the rewriter API) in `IRRewrite` objects. Some kind of rewrites
|
|
/// are directly applied to the IR as the rewriter API is used, some are applied
|
|
/// partially, and some are delayed until the `IRRewrite` objects are committed.
|
|
class IRRewrite {
|
|
public:
|
|
/// The kind of the rewrite. Rewrites can be undone if the conversion fails.
|
|
/// Enum values are ordered, so that they can be used in `classof`: first all
|
|
/// block rewrites, then all operation rewrites.
|
|
enum class Kind {
|
|
// Block rewrites
|
|
CreateBlock,
|
|
EraseBlock,
|
|
InlineBlock,
|
|
MoveBlock,
|
|
BlockTypeConversion,
|
|
ReplaceBlockArg,
|
|
// Operation rewrites
|
|
MoveOperation,
|
|
ModifyOperation,
|
|
ReplaceOperation,
|
|
CreateOperation,
|
|
UnresolvedMaterialization
|
|
};
|
|
|
|
virtual ~IRRewrite() = default;
|
|
|
|
/// Roll back the rewrite. Operations may be erased during rollback.
|
|
virtual void rollback() = 0;
|
|
|
|
/// Commit the rewrite. At this point, it is certain that the dialect
|
|
/// conversion will succeed. All IR modifications, except for operation/block
|
|
/// erasure, must be performed through the given rewriter.
|
|
///
|
|
/// Instead of erasing operations/blocks, they should merely be unlinked
|
|
/// commit phase and finally be erased during the cleanup phase. This is
|
|
/// because internal dialect conversion state (such as `mapping`) may still
|
|
/// be using them.
|
|
///
|
|
/// Any IR modification that was already performed before the commit phase
|
|
/// (e.g., insertion of an op) must be communicated to the listener that may
|
|
/// be attached to the given rewriter.
|
|
virtual void commit(RewriterBase &rewriter) {}
|
|
|
|
/// Cleanup operations/blocks. Cleanup is called after commit.
|
|
virtual void cleanup(RewriterBase &rewriter) {}
|
|
|
|
Kind getKind() const { return kind; }
|
|
|
|
static bool classof(const IRRewrite *rewrite) { return true; }
|
|
|
|
protected:
|
|
IRRewrite(Kind kind, ConversionPatternRewriterImpl &rewriterImpl)
|
|
: kind(kind), rewriterImpl(rewriterImpl) {}
|
|
|
|
const ConversionConfig &getConfig() const;
|
|
|
|
const Kind kind;
|
|
ConversionPatternRewriterImpl &rewriterImpl;
|
|
};
|
|
|
|
/// A block rewrite.
|
|
class BlockRewrite : public IRRewrite {
|
|
public:
|
|
/// Return the block that this rewrite operates on.
|
|
Block *getBlock() const { return block; }
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() >= Kind::CreateBlock &&
|
|
rewrite->getKind() <= Kind::ReplaceBlockArg;
|
|
}
|
|
|
|
protected:
|
|
BlockRewrite(Kind kind, ConversionPatternRewriterImpl &rewriterImpl,
|
|
Block *block)
|
|
: IRRewrite(kind, rewriterImpl), block(block) {}
|
|
|
|
// The block that this rewrite operates on.
|
|
Block *block;
|
|
};
|
|
|
|
/// Creation of a block. Block creations are immediately reflected in the IR.
|
|
/// There is no extra work to commit the rewrite. During rollback, the newly
|
|
/// created block is erased.
|
|
class CreateBlockRewrite : public BlockRewrite {
|
|
public:
|
|
CreateBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block)
|
|
: BlockRewrite(Kind::CreateBlock, rewriterImpl, block) {}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::CreateBlock;
|
|
}
|
|
|
|
void commit(RewriterBase &rewriter) override {
|
|
// The block was already created and inserted. Just inform the listener.
|
|
if (auto *listener = rewriter.getListener())
|
|
listener->notifyBlockInserted(block, /*previous=*/{}, /*previousIt=*/{});
|
|
}
|
|
|
|
void rollback() override {
|
|
// Unlink all of the operations within this block, they will be deleted
|
|
// separately.
|
|
auto &blockOps = block->getOperations();
|
|
while (!blockOps.empty())
|
|
blockOps.remove(blockOps.begin());
|
|
block->dropAllUses();
|
|
if (block->getParent())
|
|
block->erase();
|
|
else
|
|
delete block;
|
|
}
|
|
};
|
|
|
|
/// Erasure of a block. Block erasures are partially reflected in the IR. Erased
|
|
/// blocks are immediately unlinked, but only erased during cleanup. This makes
|
|
/// it easier to rollback a block erasure: the block is simply inserted into its
|
|
/// original location.
|
|
class EraseBlockRewrite : public BlockRewrite {
|
|
public:
|
|
EraseBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block)
|
|
: BlockRewrite(Kind::EraseBlock, rewriterImpl, block),
|
|
region(block->getParent()), insertBeforeBlock(block->getNextNode()) {}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::EraseBlock;
|
|
}
|
|
|
|
~EraseBlockRewrite() override {
|
|
assert(!block &&
|
|
"rewrite was neither rolled back nor committed/cleaned up");
|
|
}
|
|
|
|
void rollback() override {
|
|
// The block (owned by this rewrite) was not actually erased yet. It was
|
|
// just unlinked. Put it back into its original position.
|
|
assert(block && "expected block");
|
|
auto &blockList = region->getBlocks();
|
|
Region::iterator before = insertBeforeBlock
|
|
? Region::iterator(insertBeforeBlock)
|
|
: blockList.end();
|
|
blockList.insert(before, block);
|
|
block = nullptr;
|
|
}
|
|
|
|
void commit(RewriterBase &rewriter) override {
|
|
assert(block && "expected block");
|
|
|
|
// Notify the listener that the block and its contents are being erased.
|
|
if (auto *listener =
|
|
dyn_cast_or_null<RewriterBase::Listener>(rewriter.getListener()))
|
|
notifyIRErased(listener, *block);
|
|
}
|
|
|
|
void cleanup(RewriterBase &rewriter) override {
|
|
// Erase the contents of the block.
|
|
for (auto &op : llvm::make_early_inc_range(llvm::reverse(*block)))
|
|
rewriter.eraseOp(&op);
|
|
assert(block->empty() && "expected empty block");
|
|
|
|
// Erase the block.
|
|
block->dropAllDefinedValueUses();
|
|
delete block;
|
|
block = nullptr;
|
|
}
|
|
|
|
private:
|
|
// The region in which this block was previously contained.
|
|
Region *region;
|
|
|
|
// The original successor of this block before it was unlinked. "nullptr" if
|
|
// this block was the only block in the region.
|
|
Block *insertBeforeBlock;
|
|
};
|
|
|
|
/// Inlining of a block. This rewrite is immediately reflected in the IR.
|
|
/// Note: This rewrite represents only the inlining of the operations. The
|
|
/// erasure of the inlined block is a separate rewrite.
|
|
class InlineBlockRewrite : public BlockRewrite {
|
|
public:
|
|
InlineBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block,
|
|
Block *sourceBlock, Block::iterator before)
|
|
: BlockRewrite(Kind::InlineBlock, rewriterImpl, block),
|
|
sourceBlock(sourceBlock),
|
|
firstInlinedInst(sourceBlock->empty() ? nullptr
|
|
: &sourceBlock->front()),
|
|
lastInlinedInst(sourceBlock->empty() ? nullptr : &sourceBlock->back()) {
|
|
// If a listener is attached to the dialect conversion, ops must be moved
|
|
// one-by-one. When they are moved in bulk, notifications cannot be sent
|
|
// because the ops that used to be in the source block at the time of the
|
|
// inlining (before the "commit" phase) are unknown at the time when
|
|
// notifications are sent (which is during the "commit" phase).
|
|
assert(!getConfig().listener &&
|
|
"InlineBlockRewrite not supported if listener is attached");
|
|
}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::InlineBlock;
|
|
}
|
|
|
|
void rollback() override {
|
|
// Put the operations from the destination block (owned by the rewrite)
|
|
// back into the source block.
|
|
if (firstInlinedInst) {
|
|
assert(lastInlinedInst && "expected operation");
|
|
sourceBlock->getOperations().splice(sourceBlock->begin(),
|
|
block->getOperations(),
|
|
Block::iterator(firstInlinedInst),
|
|
++Block::iterator(lastInlinedInst));
|
|
}
|
|
}
|
|
|
|
private:
|
|
// The block that originally contained the operations.
|
|
Block *sourceBlock;
|
|
|
|
// The first inlined operation.
|
|
Operation *firstInlinedInst;
|
|
|
|
// The last inlined operation.
|
|
Operation *lastInlinedInst;
|
|
};
|
|
|
|
/// Moving of a block. This rewrite is immediately reflected in the IR.
|
|
class MoveBlockRewrite : public BlockRewrite {
|
|
public:
|
|
MoveBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block,
|
|
Region *region, Block *insertBeforeBlock)
|
|
: BlockRewrite(Kind::MoveBlock, rewriterImpl, block), region(region),
|
|
insertBeforeBlock(insertBeforeBlock) {}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::MoveBlock;
|
|
}
|
|
|
|
void commit(RewriterBase &rewriter) override {
|
|
// The block was already moved. Just inform the listener.
|
|
if (auto *listener = rewriter.getListener()) {
|
|
// Note: `previousIt` cannot be passed because this is a delayed
|
|
// notification and iterators into past IR state cannot be represented.
|
|
listener->notifyBlockInserted(block, /*previous=*/region,
|
|
/*previousIt=*/{});
|
|
}
|
|
}
|
|
|
|
void rollback() override {
|
|
// Move the block back to its original position.
|
|
Region::iterator before =
|
|
insertBeforeBlock ? Region::iterator(insertBeforeBlock) : region->end();
|
|
region->getBlocks().splice(before, block->getParent()->getBlocks(), block);
|
|
}
|
|
|
|
private:
|
|
// The region in which this block was previously contained.
|
|
Region *region;
|
|
|
|
// The original successor of this block before it was moved. "nullptr" if
|
|
// this block was the only block in the region.
|
|
Block *insertBeforeBlock;
|
|
};
|
|
|
|
/// Block type conversion. This rewrite is partially reflected in the IR.
|
|
class BlockTypeConversionRewrite : public BlockRewrite {
|
|
public:
|
|
BlockTypeConversionRewrite(ConversionPatternRewriterImpl &rewriterImpl,
|
|
Block *origBlock, Block *newBlock)
|
|
: BlockRewrite(Kind::BlockTypeConversion, rewriterImpl, origBlock),
|
|
newBlock(newBlock) {}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::BlockTypeConversion;
|
|
}
|
|
|
|
Block *getOrigBlock() const { return block; }
|
|
|
|
Block *getNewBlock() const { return newBlock; }
|
|
|
|
void commit(RewriterBase &rewriter) override;
|
|
|
|
void rollback() override;
|
|
|
|
private:
|
|
/// The new block that was created as part of this signature conversion.
|
|
Block *newBlock;
|
|
};
|
|
|
|
/// Replacing a block argument. This rewrite is not immediately reflected in the
|
|
/// IR. An internal IR mapping is updated, but the actual replacement is delayed
|
|
/// until the rewrite is committed.
|
|
class ReplaceBlockArgRewrite : public BlockRewrite {
|
|
public:
|
|
ReplaceBlockArgRewrite(ConversionPatternRewriterImpl &rewriterImpl,
|
|
Block *block, BlockArgument arg,
|
|
const TypeConverter *converter)
|
|
: BlockRewrite(Kind::ReplaceBlockArg, rewriterImpl, block), arg(arg),
|
|
converter(converter) {}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::ReplaceBlockArg;
|
|
}
|
|
|
|
void commit(RewriterBase &rewriter) override;
|
|
|
|
void rollback() override;
|
|
|
|
private:
|
|
BlockArgument arg;
|
|
|
|
/// The current type converter when the block argument was replaced.
|
|
const TypeConverter *converter;
|
|
};
|
|
|
|
/// An operation rewrite.
|
|
class OperationRewrite : public IRRewrite {
|
|
public:
|
|
/// Return the operation that this rewrite operates on.
|
|
Operation *getOperation() const { return op; }
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() >= Kind::MoveOperation &&
|
|
rewrite->getKind() <= Kind::UnresolvedMaterialization;
|
|
}
|
|
|
|
protected:
|
|
OperationRewrite(Kind kind, ConversionPatternRewriterImpl &rewriterImpl,
|
|
Operation *op)
|
|
: IRRewrite(kind, rewriterImpl), op(op) {}
|
|
|
|
// The operation that this rewrite operates on.
|
|
Operation *op;
|
|
};
|
|
|
|
/// Moving of an operation. This rewrite is immediately reflected in the IR.
|
|
class MoveOperationRewrite : public OperationRewrite {
|
|
public:
|
|
MoveOperationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
|
|
Operation *op, Block *block, Operation *insertBeforeOp)
|
|
: OperationRewrite(Kind::MoveOperation, rewriterImpl, op), block(block),
|
|
insertBeforeOp(insertBeforeOp) {}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::MoveOperation;
|
|
}
|
|
|
|
void commit(RewriterBase &rewriter) override {
|
|
// The operation was already moved. Just inform the listener.
|
|
if (auto *listener = rewriter.getListener()) {
|
|
// Note: `previousIt` cannot be passed because this is a delayed
|
|
// notification and iterators into past IR state cannot be represented.
|
|
listener->notifyOperationInserted(
|
|
op, /*previous=*/OpBuilder::InsertPoint(/*insertBlock=*/block,
|
|
/*insertPt=*/{}));
|
|
}
|
|
}
|
|
|
|
void rollback() override {
|
|
// Move the operation back to its original position.
|
|
Block::iterator before =
|
|
insertBeforeOp ? Block::iterator(insertBeforeOp) : block->end();
|
|
block->getOperations().splice(before, op->getBlock()->getOperations(), op);
|
|
}
|
|
|
|
private:
|
|
// The block in which this operation was previously contained.
|
|
Block *block;
|
|
|
|
// The original successor of this operation before it was moved. "nullptr"
|
|
// if this operation was the only operation in the region.
|
|
Operation *insertBeforeOp;
|
|
};
|
|
|
|
/// In-place modification of an op. This rewrite is immediately reflected in
|
|
/// the IR. The previous state of the operation is stored in this object.
|
|
class ModifyOperationRewrite : public OperationRewrite {
|
|
public:
|
|
ModifyOperationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
|
|
Operation *op)
|
|
: OperationRewrite(Kind::ModifyOperation, rewriterImpl, op),
|
|
name(op->getName()), loc(op->getLoc()), attrs(op->getAttrDictionary()),
|
|
operands(op->operand_begin(), op->operand_end()),
|
|
successors(op->successor_begin(), op->successor_end()) {
|
|
if (OpaqueProperties prop = op->getPropertiesStorage()) {
|
|
// Make a copy of the properties.
|
|
propertiesStorage = operator new(op->getPropertiesStorageSize());
|
|
OpaqueProperties propCopy(propertiesStorage);
|
|
name.initOpProperties(propCopy, /*init=*/prop);
|
|
}
|
|
}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::ModifyOperation;
|
|
}
|
|
|
|
~ModifyOperationRewrite() override {
|
|
assert(!propertiesStorage &&
|
|
"rewrite was neither committed nor rolled back");
|
|
}
|
|
|
|
void commit(RewriterBase &rewriter) override {
|
|
// Notify the listener that the operation was modified in-place.
|
|
if (auto *listener =
|
|
dyn_cast_or_null<RewriterBase::Listener>(rewriter.getListener()))
|
|
listener->notifyOperationModified(op);
|
|
|
|
if (propertiesStorage) {
|
|
OpaqueProperties propCopy(propertiesStorage);
|
|
// Note: The operation may have been erased in the mean time, so
|
|
// OperationName must be stored in this object.
|
|
name.destroyOpProperties(propCopy);
|
|
operator delete(propertiesStorage);
|
|
propertiesStorage = nullptr;
|
|
}
|
|
}
|
|
|
|
void rollback() override {
|
|
op->setLoc(loc);
|
|
op->setAttrs(attrs);
|
|
op->setOperands(operands);
|
|
for (const auto &it : llvm::enumerate(successors))
|
|
op->setSuccessor(it.value(), it.index());
|
|
if (propertiesStorage) {
|
|
OpaqueProperties propCopy(propertiesStorage);
|
|
op->copyProperties(propCopy);
|
|
name.destroyOpProperties(propCopy);
|
|
operator delete(propertiesStorage);
|
|
propertiesStorage = nullptr;
|
|
}
|
|
}
|
|
|
|
private:
|
|
OperationName name;
|
|
LocationAttr loc;
|
|
DictionaryAttr attrs;
|
|
SmallVector<Value, 8> operands;
|
|
SmallVector<Block *, 2> successors;
|
|
void *propertiesStorage = nullptr;
|
|
};
|
|
|
|
/// Replacing an operation. Erasing an operation is treated as a special case
|
|
/// with "null" replacements. This rewrite is not immediately reflected in the
|
|
/// IR. An internal IR mapping is updated, but values are not replaced and the
|
|
/// original op is not erased until the rewrite is committed.
|
|
class ReplaceOperationRewrite : public OperationRewrite {
|
|
public:
|
|
ReplaceOperationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
|
|
Operation *op, const TypeConverter *converter)
|
|
: OperationRewrite(Kind::ReplaceOperation, rewriterImpl, op),
|
|
converter(converter) {}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::ReplaceOperation;
|
|
}
|
|
|
|
void commit(RewriterBase &rewriter) override;
|
|
|
|
void rollback() override;
|
|
|
|
void cleanup(RewriterBase &rewriter) override;
|
|
|
|
private:
|
|
/// An optional type converter that can be used to materialize conversions
|
|
/// between the new and old values if necessary.
|
|
const TypeConverter *converter;
|
|
};
|
|
|
|
class CreateOperationRewrite : public OperationRewrite {
|
|
public:
|
|
CreateOperationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
|
|
Operation *op)
|
|
: OperationRewrite(Kind::CreateOperation, rewriterImpl, op) {}
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::CreateOperation;
|
|
}
|
|
|
|
void commit(RewriterBase &rewriter) override {
|
|
// The operation was already created and inserted. Just inform the listener.
|
|
if (auto *listener = rewriter.getListener())
|
|
listener->notifyOperationInserted(op, /*previous=*/{});
|
|
}
|
|
|
|
void rollback() override;
|
|
};
|
|
|
|
/// The type of materialization.
|
|
enum MaterializationKind {
|
|
/// This materialization materializes a conversion from an illegal type to a
|
|
/// legal one.
|
|
Target,
|
|
|
|
/// This materialization materializes a conversion from a legal type back to
|
|
/// an illegal one.
|
|
Source
|
|
};
|
|
|
|
/// An unresolved materialization, i.e., a "builtin.unrealized_conversion_cast"
|
|
/// op. Unresolved materializations are erased at the end of the dialect
|
|
/// conversion.
|
|
class UnresolvedMaterializationRewrite : public OperationRewrite {
|
|
public:
|
|
UnresolvedMaterializationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
|
|
UnrealizedConversionCastOp op,
|
|
const TypeConverter *converter,
|
|
MaterializationKind kind, Type originalType,
|
|
ValueVector mappedValues);
|
|
|
|
static bool classof(const IRRewrite *rewrite) {
|
|
return rewrite->getKind() == Kind::UnresolvedMaterialization;
|
|
}
|
|
|
|
void rollback() override;
|
|
|
|
UnrealizedConversionCastOp getOperation() const {
|
|
return cast<UnrealizedConversionCastOp>(op);
|
|
}
|
|
|
|
/// Return the type converter of this materialization (which may be null).
|
|
const TypeConverter *getConverter() const {
|
|
return converterAndKind.getPointer();
|
|
}
|
|
|
|
/// Return the kind of this materialization.
|
|
MaterializationKind getMaterializationKind() const {
|
|
return converterAndKind.getInt();
|
|
}
|
|
|
|
/// Return the original type of the SSA value.
|
|
Type getOriginalType() const { return originalType; }
|
|
|
|
private:
|
|
/// The corresponding type converter to use when resolving this
|
|
/// materialization, and the kind of this materialization.
|
|
llvm::PointerIntPair<const TypeConverter *, 2, MaterializationKind>
|
|
converterAndKind;
|
|
|
|
/// The original type of the SSA value. Only used for target
|
|
/// materializations.
|
|
Type originalType;
|
|
|
|
/// The values in the conversion value mapping that are being replaced by the
|
|
/// results of this unresolved materialization.
|
|
ValueVector mappedValues;
|
|
};
|
|
} // namespace
|
|
|
|
#if MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
|
|
/// Return "true" if there is an operation rewrite that matches the specified
|
|
/// rewrite type and operation among the given rewrites.
|
|
template <typename RewriteTy, typename R>
|
|
static bool hasRewrite(R &&rewrites, Operation *op) {
|
|
return any_of(std::forward<R>(rewrites), [&](auto &rewrite) {
|
|
auto *rewriteTy = dyn_cast<RewriteTy>(rewrite.get());
|
|
return rewriteTy && rewriteTy->getOperation() == op;
|
|
});
|
|
}
|
|
|
|
/// Return "true" if there is a block rewrite that matches the specified
|
|
/// rewrite type and block among the given rewrites.
|
|
template <typename RewriteTy, typename R>
|
|
static bool hasRewrite(R &&rewrites, Block *block) {
|
|
return any_of(std::forward<R>(rewrites), [&](auto &rewrite) {
|
|
auto *rewriteTy = dyn_cast<RewriteTy>(rewrite.get());
|
|
return rewriteTy && rewriteTy->getBlock() == block;
|
|
});
|
|
}
|
|
#endif // MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionPatternRewriterImpl
|
|
//===----------------------------------------------------------------------===//
|
|
namespace mlir {
|
|
namespace detail {
|
|
struct ConversionPatternRewriterImpl : public RewriterBase::Listener {
|
|
explicit ConversionPatternRewriterImpl(MLIRContext *ctx,
|
|
const ConversionConfig &config)
|
|
: context(ctx), config(config) {}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// State Management
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Return the current state of the rewriter.
|
|
RewriterState getCurrentState();
|
|
|
|
/// Apply all requested operation rewrites. This method is invoked when the
|
|
/// conversion process succeeds.
|
|
void applyRewrites();
|
|
|
|
/// Reset the state of the rewriter to a previously saved point. Optionally,
|
|
/// the name of the pattern that triggered the rollback can specified for
|
|
/// debugging purposes.
|
|
void resetState(RewriterState state, StringRef patternName = "");
|
|
|
|
/// Append a rewrite. Rewrites are committed upon success and rolled back upon
|
|
/// failure.
|
|
template <typename RewriteTy, typename... Args>
|
|
void appendRewrite(Args &&...args) {
|
|
rewrites.push_back(
|
|
std::make_unique<RewriteTy>(*this, std::forward<Args>(args)...));
|
|
}
|
|
|
|
/// Undo the rewrites (motions, splits) one by one in reverse order until
|
|
/// "numRewritesToKeep" rewrites remains. Optionally, the name of the pattern
|
|
/// that triggered the rollback can specified for debugging purposes.
|
|
void undoRewrites(unsigned numRewritesToKeep = 0, StringRef patternName = "");
|
|
|
|
/// Remap the given values to those with potentially different types. Returns
|
|
/// success if the values could be remapped, failure otherwise. `valueDiagTag`
|
|
/// is the tag used when describing a value within a diagnostic, e.g.
|
|
/// "operand".
|
|
LogicalResult remapValues(StringRef valueDiagTag,
|
|
std::optional<Location> inputLoc,
|
|
PatternRewriter &rewriter, ValueRange values,
|
|
SmallVector<ValueVector> &remapped);
|
|
|
|
/// Return "true" if the given operation is ignored, and does not need to be
|
|
/// converted.
|
|
bool isOpIgnored(Operation *op) const;
|
|
|
|
/// Return "true" if the given operation was replaced or erased.
|
|
bool wasOpReplaced(Operation *op) const;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// IR Rewrites / Type Conversion
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Convert the types of block arguments within the given region.
|
|
FailureOr<Block *>
|
|
convertRegionTypes(ConversionPatternRewriter &rewriter, Region *region,
|
|
const TypeConverter &converter,
|
|
TypeConverter::SignatureConversion *entryConversion);
|
|
|
|
/// Apply the given signature conversion on the given block. The new block
|
|
/// containing the updated signature is returned. If no conversions were
|
|
/// necessary, e.g. if the block has no arguments, `block` is returned.
|
|
/// `converter` is used to generate any necessary cast operations that
|
|
/// translate between the origin argument types and those specified in the
|
|
/// signature conversion.
|
|
Block *applySignatureConversion(
|
|
ConversionPatternRewriter &rewriter, Block *block,
|
|
const TypeConverter *converter,
|
|
TypeConverter::SignatureConversion &signatureConversion);
|
|
|
|
/// Replace the results of the given operation with the given values and
|
|
/// erase the operation.
|
|
///
|
|
/// There can be multiple replacement values for each result (1:N
|
|
/// replacement). If the replacement values are empty, the respective result
|
|
/// is dropped and a source materialization is built if the result still has
|
|
/// uses.
|
|
void replaceOp(Operation *op, SmallVector<SmallVector<Value>> &&newValues);
|
|
|
|
/// Erase the given block and its contents.
|
|
void eraseBlock(Block *block);
|
|
|
|
/// Inline the source block into the destination block before the given
|
|
/// iterator.
|
|
void inlineBlockBefore(Block *source, Block *dest, Block::iterator before);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Materializations
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Build an unresolved materialization operation given a range of output
|
|
/// types and a list of input operands. Returns the inputs if they their
|
|
/// types match the output types.
|
|
///
|
|
/// If a cast op was built, it can optionally be returned with the `castOp`
|
|
/// output argument.
|
|
///
|
|
/// If `valuesToMap` is set to a non-null Value, then that value is mapped to
|
|
/// the results of the unresolved materialization in the conversion value
|
|
/// mapping.
|
|
ValueRange buildUnresolvedMaterialization(
|
|
MaterializationKind kind, OpBuilder::InsertPoint ip, Location loc,
|
|
ValueVector valuesToMap, ValueRange inputs, TypeRange outputTypes,
|
|
Type originalType, const TypeConverter *converter,
|
|
UnrealizedConversionCastOp *castOp = nullptr);
|
|
|
|
/// Find a replacement value for the given SSA value in the conversion value
|
|
/// mapping. The replacement value must have the same type as the given SSA
|
|
/// value. If there is no replacement value with the correct type, find the
|
|
/// latest replacement value (regardless of the type) and build a source
|
|
/// materialization.
|
|
Value findOrBuildReplacementValue(Value value,
|
|
const TypeConverter *converter);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Rewriter Notification Hooks
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
//// Notifies that an op was inserted.
|
|
void notifyOperationInserted(Operation *op,
|
|
OpBuilder::InsertPoint previous) override;
|
|
|
|
/// Notifies that a block was inserted.
|
|
void notifyBlockInserted(Block *block, Region *previous,
|
|
Region::iterator previousIt) override;
|
|
|
|
/// Notifies that a pattern match failed for the given reason.
|
|
void
|
|
notifyMatchFailure(Location loc,
|
|
function_ref<void(Diagnostic &)> reasonCallback) override;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// IR Erasure
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// A rewriter that keeps track of erased ops and blocks. It ensures that no
|
|
/// operation or block is erased multiple times. This rewriter assumes that
|
|
/// no new IR is created between calls to `eraseOp`/`eraseBlock`.
|
|
struct SingleEraseRewriter : public RewriterBase, RewriterBase::Listener {
|
|
public:
|
|
SingleEraseRewriter(
|
|
MLIRContext *context,
|
|
std::function<void(Operation *)> opErasedCallback = nullptr)
|
|
: RewriterBase(context, /*listener=*/this),
|
|
opErasedCallback(opErasedCallback) {}
|
|
|
|
/// Erase the given op (unless it was already erased).
|
|
void eraseOp(Operation *op) override {
|
|
if (wasErased(op))
|
|
return;
|
|
op->dropAllUses();
|
|
RewriterBase::eraseOp(op);
|
|
}
|
|
|
|
/// Erase the given block (unless it was already erased).
|
|
void eraseBlock(Block *block) override {
|
|
if (wasErased(block))
|
|
return;
|
|
assert(block->empty() && "expected empty block");
|
|
block->dropAllDefinedValueUses();
|
|
RewriterBase::eraseBlock(block);
|
|
}
|
|
|
|
bool wasErased(void *ptr) const { return erased.contains(ptr); }
|
|
|
|
void notifyOperationErased(Operation *op) override {
|
|
erased.insert(op);
|
|
if (opErasedCallback)
|
|
opErasedCallback(op);
|
|
}
|
|
|
|
void notifyBlockErased(Block *block) override { erased.insert(block); }
|
|
|
|
private:
|
|
/// Pointers to all erased operations and blocks.
|
|
DenseSet<void *> erased;
|
|
|
|
/// A callback that is invoked when an operation is erased.
|
|
std::function<void(Operation *)> opErasedCallback;
|
|
};
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// State
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// MLIR context.
|
|
MLIRContext *context;
|
|
|
|
// Mapping between replaced values that differ in type. This happens when
|
|
// replacing a value with one of a different type.
|
|
ConversionValueMapping mapping;
|
|
|
|
/// Ordered list of block operations (creations, splits, motions).
|
|
SmallVector<std::unique_ptr<IRRewrite>> rewrites;
|
|
|
|
/// A set of operations that should no longer be considered for legalization.
|
|
/// E.g., ops that are recursively legal. Ops that were replaced/erased are
|
|
/// tracked separately.
|
|
SetVector<Operation *> ignoredOps;
|
|
|
|
/// A set of operations that were replaced/erased. Such ops are not erased
|
|
/// immediately but only when the dialect conversion succeeds. In the mean
|
|
/// time, they should no longer be considered for legalization and any attempt
|
|
/// to modify/access them is invalid rewriter API usage.
|
|
SetVector<Operation *> replacedOps;
|
|
|
|
/// A mapping of all unresolved materializations (UnrealizedConversionCastOp)
|
|
/// to the corresponding rewrite objects.
|
|
DenseMap<UnrealizedConversionCastOp, UnresolvedMaterializationRewrite *>
|
|
unresolvedMaterializations;
|
|
|
|
/// The current type converter, or nullptr if no type converter is currently
|
|
/// active.
|
|
const TypeConverter *currentTypeConverter = nullptr;
|
|
|
|
/// A mapping of regions to type converters that should be used when
|
|
/// converting the arguments of blocks within that region.
|
|
DenseMap<Region *, const TypeConverter *> regionToConverter;
|
|
|
|
/// Dialect conversion configuration.
|
|
const ConversionConfig &config;
|
|
|
|
#ifndef NDEBUG
|
|
/// A set of operations that have pending updates. This tracking isn't
|
|
/// strictly necessary, and is thus only active during debug builds for extra
|
|
/// verification.
|
|
SmallPtrSet<Operation *, 1> pendingRootUpdates;
|
|
|
|
/// A logger used to emit diagnostics during the conversion process.
|
|
llvm::ScopedPrinter logger{llvm::dbgs()};
|
|
#endif
|
|
};
|
|
} // namespace detail
|
|
} // namespace mlir
|
|
|
|
const ConversionConfig &IRRewrite::getConfig() const {
|
|
return rewriterImpl.config;
|
|
}
|
|
|
|
void BlockTypeConversionRewrite::commit(RewriterBase &rewriter) {
|
|
// Inform the listener about all IR modifications that have already taken
|
|
// place: References to the original block have been replaced with the new
|
|
// block.
|
|
if (auto *listener =
|
|
dyn_cast_or_null<RewriterBase::Listener>(rewriter.getListener()))
|
|
for (Operation *op : getNewBlock()->getUsers())
|
|
listener->notifyOperationModified(op);
|
|
}
|
|
|
|
void BlockTypeConversionRewrite::rollback() {
|
|
getNewBlock()->replaceAllUsesWith(getOrigBlock());
|
|
}
|
|
|
|
void ReplaceBlockArgRewrite::commit(RewriterBase &rewriter) {
|
|
Value repl = rewriterImpl.findOrBuildReplacementValue(arg, converter);
|
|
if (!repl)
|
|
return;
|
|
|
|
if (isa<BlockArgument>(repl)) {
|
|
rewriter.replaceAllUsesWith(arg, repl);
|
|
return;
|
|
}
|
|
|
|
// If the replacement value is an operation, we check to make sure that we
|
|
// don't replace uses that are within the parent operation of the
|
|
// replacement value.
|
|
Operation *replOp = cast<OpResult>(repl).getOwner();
|
|
Block *replBlock = replOp->getBlock();
|
|
rewriter.replaceUsesWithIf(arg, repl, [&](OpOperand &operand) {
|
|
Operation *user = operand.getOwner();
|
|
return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
|
|
});
|
|
}
|
|
|
|
void ReplaceBlockArgRewrite::rollback() { rewriterImpl.mapping.erase({arg}); }
|
|
|
|
void ReplaceOperationRewrite::commit(RewriterBase &rewriter) {
|
|
auto *listener =
|
|
dyn_cast_or_null<RewriterBase::Listener>(rewriter.getListener());
|
|
|
|
// Compute replacement values.
|
|
SmallVector<Value> replacements =
|
|
llvm::map_to_vector(op->getResults(), [&](OpResult result) {
|
|
return rewriterImpl.findOrBuildReplacementValue(result, converter);
|
|
});
|
|
|
|
// Notify the listener that the operation is about to be replaced.
|
|
if (listener)
|
|
listener->notifyOperationReplaced(op, replacements);
|
|
|
|
// Replace all uses with the new values.
|
|
for (auto [result, newValue] :
|
|
llvm::zip_equal(op->getResults(), replacements))
|
|
if (newValue)
|
|
rewriter.replaceAllUsesWith(result, newValue);
|
|
|
|
// The original op will be erased, so remove it from the set of unlegalized
|
|
// ops.
|
|
if (getConfig().unlegalizedOps)
|
|
getConfig().unlegalizedOps->erase(op);
|
|
|
|
// Notify the listener that the operation and its contents are being erased.
|
|
if (listener)
|
|
notifyIRErased(listener, *op);
|
|
|
|
// Do not erase the operation yet. It may still be referenced in `mapping`.
|
|
// Just unlink it for now and erase it during cleanup.
|
|
op->getBlock()->getOperations().remove(op);
|
|
}
|
|
|
|
void ReplaceOperationRewrite::rollback() {
|
|
for (auto result : op->getResults())
|
|
rewriterImpl.mapping.erase({result});
|
|
}
|
|
|
|
void ReplaceOperationRewrite::cleanup(RewriterBase &rewriter) {
|
|
rewriter.eraseOp(op);
|
|
}
|
|
|
|
void CreateOperationRewrite::rollback() {
|
|
for (Region ®ion : op->getRegions()) {
|
|
while (!region.getBlocks().empty())
|
|
region.getBlocks().remove(region.getBlocks().begin());
|
|
}
|
|
op->dropAllUses();
|
|
op->erase();
|
|
}
|
|
|
|
UnresolvedMaterializationRewrite::UnresolvedMaterializationRewrite(
|
|
ConversionPatternRewriterImpl &rewriterImpl, UnrealizedConversionCastOp op,
|
|
const TypeConverter *converter, MaterializationKind kind, Type originalType,
|
|
ValueVector mappedValues)
|
|
: OperationRewrite(Kind::UnresolvedMaterialization, rewriterImpl, op),
|
|
converterAndKind(converter, kind), originalType(originalType),
|
|
mappedValues(std::move(mappedValues)) {
|
|
assert((!originalType || kind == MaterializationKind::Target) &&
|
|
"original type is valid only for target materializations");
|
|
rewriterImpl.unresolvedMaterializations[op] = this;
|
|
}
|
|
|
|
void UnresolvedMaterializationRewrite::rollback() {
|
|
if (!mappedValues.empty())
|
|
rewriterImpl.mapping.erase(mappedValues);
|
|
rewriterImpl.unresolvedMaterializations.erase(getOperation());
|
|
op->erase();
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::applyRewrites() {
|
|
// Commit all rewrites.
|
|
IRRewriter rewriter(context, config.listener);
|
|
// Note: New rewrites may be added during the "commit" phase and the
|
|
// `rewrites` vector may reallocate.
|
|
for (size_t i = 0; i < rewrites.size(); ++i)
|
|
rewrites[i]->commit(rewriter);
|
|
|
|
// Clean up all rewrites.
|
|
SingleEraseRewriter eraseRewriter(
|
|
context, /*opErasedCallback=*/[&](Operation *op) {
|
|
if (auto castOp = dyn_cast<UnrealizedConversionCastOp>(op))
|
|
unresolvedMaterializations.erase(castOp);
|
|
});
|
|
for (auto &rewrite : rewrites)
|
|
rewrite->cleanup(eraseRewriter);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// State Management
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
RewriterState ConversionPatternRewriterImpl::getCurrentState() {
|
|
return RewriterState(rewrites.size(), ignoredOps.size(), replacedOps.size());
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::resetState(RewriterState state,
|
|
StringRef patternName) {
|
|
// Undo any rewrites.
|
|
undoRewrites(state.numRewrites, patternName);
|
|
|
|
// Pop all of the recorded ignored operations that are no longer valid.
|
|
while (ignoredOps.size() != state.numIgnoredOperations)
|
|
ignoredOps.pop_back();
|
|
|
|
while (replacedOps.size() != state.numReplacedOps)
|
|
replacedOps.pop_back();
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::undoRewrites(unsigned numRewritesToKeep,
|
|
StringRef patternName) {
|
|
for (auto &rewrite :
|
|
llvm::reverse(llvm::drop_begin(rewrites, numRewritesToKeep))) {
|
|
if (!config.allowPatternRollback &&
|
|
!isa<UnresolvedMaterializationRewrite>(rewrite)) {
|
|
// Unresolved materializations can always be rolled back (erased).
|
|
llvm::report_fatal_error("pattern '" + patternName +
|
|
"' rollback of IR modifications requested");
|
|
}
|
|
rewrite->rollback();
|
|
}
|
|
rewrites.resize(numRewritesToKeep);
|
|
}
|
|
|
|
LogicalResult ConversionPatternRewriterImpl::remapValues(
|
|
StringRef valueDiagTag, std::optional<Location> inputLoc,
|
|
PatternRewriter &rewriter, ValueRange values,
|
|
SmallVector<ValueVector> &remapped) {
|
|
remapped.reserve(llvm::size(values));
|
|
|
|
for (const auto &it : llvm::enumerate(values)) {
|
|
Value operand = it.value();
|
|
Type origType = operand.getType();
|
|
Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
|
|
|
|
if (!currentTypeConverter) {
|
|
// The current pattern does not have a type converter. I.e., it does not
|
|
// distinguish between legal and illegal types. For each operand, simply
|
|
// pass through the most recently mapped values.
|
|
remapped.push_back(mapping.lookupOrDefault(operand));
|
|
continue;
|
|
}
|
|
|
|
// If there is no legal conversion, fail to match this pattern.
|
|
SmallVector<Type, 1> legalTypes;
|
|
if (failed(currentTypeConverter->convertType(origType, legalTypes))) {
|
|
notifyMatchFailure(operandLoc, [=](Diagnostic &diag) {
|
|
diag << "unable to convert type for " << valueDiagTag << " #"
|
|
<< it.index() << ", type was " << origType;
|
|
});
|
|
return failure();
|
|
}
|
|
// If a type is converted to 0 types, there is nothing to do.
|
|
if (legalTypes.empty()) {
|
|
remapped.push_back({});
|
|
continue;
|
|
}
|
|
|
|
ValueVector repl = mapping.lookupOrDefault(operand, legalTypes);
|
|
if (!repl.empty() && TypeRange(ValueRange(repl)) == legalTypes) {
|
|
// Mapped values have the correct type or there is an existing
|
|
// materialization. Or the operand is not mapped at all and has the
|
|
// correct type.
|
|
remapped.push_back(std::move(repl));
|
|
continue;
|
|
}
|
|
|
|
// Create a materialization for the most recently mapped values.
|
|
repl = mapping.lookupOrDefault(operand);
|
|
ValueRange castValues = buildUnresolvedMaterialization(
|
|
MaterializationKind::Target, computeInsertPoint(repl), operandLoc,
|
|
/*valuesToMap=*/repl, /*inputs=*/repl, /*outputTypes=*/legalTypes,
|
|
/*originalType=*/origType, currentTypeConverter);
|
|
remapped.push_back(castValues);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
|
|
// Check to see if this operation is ignored or was replaced.
|
|
return replacedOps.count(op) || ignoredOps.count(op);
|
|
}
|
|
|
|
bool ConversionPatternRewriterImpl::wasOpReplaced(Operation *op) const {
|
|
// Check to see if this operation was replaced.
|
|
return replacedOps.count(op);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Conversion
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
|
|
ConversionPatternRewriter &rewriter, Region *region,
|
|
const TypeConverter &converter,
|
|
TypeConverter::SignatureConversion *entryConversion) {
|
|
regionToConverter[region] = &converter;
|
|
if (region->empty())
|
|
return nullptr;
|
|
|
|
// Convert the arguments of each non-entry block within the region.
|
|
for (Block &block :
|
|
llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) {
|
|
// Compute the signature for the block with the provided converter.
|
|
std::optional<TypeConverter::SignatureConversion> conversion =
|
|
converter.convertBlockSignature(&block);
|
|
if (!conversion)
|
|
return failure();
|
|
// Convert the block with the computed signature.
|
|
applySignatureConversion(rewriter, &block, &converter, *conversion);
|
|
}
|
|
|
|
// Convert the entry block. If an entry signature conversion was provided,
|
|
// use that one. Otherwise, compute the signature with the type converter.
|
|
if (entryConversion)
|
|
return applySignatureConversion(rewriter, ®ion->front(), &converter,
|
|
*entryConversion);
|
|
std::optional<TypeConverter::SignatureConversion> conversion =
|
|
converter.convertBlockSignature(®ion->front());
|
|
if (!conversion)
|
|
return failure();
|
|
return applySignatureConversion(rewriter, ®ion->front(), &converter,
|
|
*conversion);
|
|
}
|
|
|
|
Block *ConversionPatternRewriterImpl::applySignatureConversion(
|
|
ConversionPatternRewriter &rewriter, Block *block,
|
|
const TypeConverter *converter,
|
|
TypeConverter::SignatureConversion &signatureConversion) {
|
|
#if MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
|
|
// A block cannot be converted multiple times.
|
|
if (hasRewrite<BlockTypeConversionRewrite>(rewrites, block))
|
|
llvm::report_fatal_error("block was already converted");
|
|
#endif // MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
|
|
|
|
OpBuilder::InsertionGuard g(rewriter);
|
|
|
|
// If no arguments are being changed or added, there is nothing to do.
|
|
unsigned origArgCount = block->getNumArguments();
|
|
auto convertedTypes = signatureConversion.getConvertedTypes();
|
|
if (llvm::equal(block->getArgumentTypes(), convertedTypes))
|
|
return block;
|
|
|
|
// Compute the locations of all block arguments in the new block.
|
|
SmallVector<Location> newLocs(convertedTypes.size(),
|
|
rewriter.getUnknownLoc());
|
|
for (unsigned i = 0; i < origArgCount; ++i) {
|
|
auto inputMap = signatureConversion.getInputMapping(i);
|
|
if (!inputMap || inputMap->replacedWithValues())
|
|
continue;
|
|
Location origLoc = block->getArgument(i).getLoc();
|
|
for (unsigned j = 0; j < inputMap->size; ++j)
|
|
newLocs[inputMap->inputNo + j] = origLoc;
|
|
}
|
|
|
|
// Insert a new block with the converted block argument types and move all ops
|
|
// from the old block to the new block.
|
|
Block *newBlock =
|
|
rewriter.createBlock(block->getParent(), std::next(block->getIterator()),
|
|
convertedTypes, newLocs);
|
|
|
|
// If a listener is attached to the dialect conversion, ops cannot be moved
|
|
// to the destination block in bulk ("fast path"). This is because at the time
|
|
// the notifications are sent, it is unknown which ops were moved. Instead,
|
|
// ops should be moved one-by-one ("slow path"), so that a separate
|
|
// `MoveOperationRewrite` is enqueued for each moved op. Moving ops in bulk is
|
|
// a bit more efficient, so we try to do that when possible.
|
|
bool fastPath = !config.listener;
|
|
if (fastPath) {
|
|
appendRewrite<InlineBlockRewrite>(newBlock, block, newBlock->end());
|
|
newBlock->getOperations().splice(newBlock->end(), block->getOperations());
|
|
} else {
|
|
while (!block->empty())
|
|
rewriter.moveOpBefore(&block->front(), newBlock, newBlock->end());
|
|
}
|
|
|
|
// Replace all uses of the old block with the new block.
|
|
block->replaceAllUsesWith(newBlock);
|
|
|
|
for (unsigned i = 0; i != origArgCount; ++i) {
|
|
BlockArgument origArg = block->getArgument(i);
|
|
Type origArgType = origArg.getType();
|
|
|
|
std::optional<TypeConverter::SignatureConversion::InputMapping> inputMap =
|
|
signatureConversion.getInputMapping(i);
|
|
if (!inputMap) {
|
|
// This block argument was dropped and no replacement value was provided.
|
|
// Materialize a replacement value "out of thin air".
|
|
buildUnresolvedMaterialization(
|
|
MaterializationKind::Source,
|
|
OpBuilder::InsertPoint(newBlock, newBlock->begin()), origArg.getLoc(),
|
|
/*valuesToMap=*/{origArg}, /*inputs=*/ValueRange(),
|
|
/*outputTypes=*/origArgType, /*originalType=*/Type(), converter);
|
|
appendRewrite<ReplaceBlockArgRewrite>(block, origArg, converter);
|
|
continue;
|
|
}
|
|
|
|
if (inputMap->replacedWithValues()) {
|
|
// This block argument was dropped and replacement values were provided.
|
|
assert(inputMap->size == 0 &&
|
|
"invalid to provide a replacement value when the argument isn't "
|
|
"dropped");
|
|
mapping.map(origArg, inputMap->replacementValues);
|
|
appendRewrite<ReplaceBlockArgRewrite>(block, origArg, converter);
|
|
continue;
|
|
}
|
|
|
|
// This is a 1->1+ mapping.
|
|
auto replArgs =
|
|
newBlock->getArguments().slice(inputMap->inputNo, inputMap->size);
|
|
ValueVector replArgVals = llvm::to_vector_of<Value, 1>(replArgs);
|
|
mapping.map(origArg, std::move(replArgVals));
|
|
appendRewrite<ReplaceBlockArgRewrite>(block, origArg, converter);
|
|
}
|
|
|
|
appendRewrite<BlockTypeConversionRewrite>(/*origBlock=*/block, newBlock);
|
|
|
|
// Erase the old block. (It is just unlinked for now and will be erased during
|
|
// cleanup.)
|
|
rewriter.eraseBlock(block);
|
|
|
|
return newBlock;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Materializations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Build an unresolved materialization operation given an output type and set
|
|
/// of input operands.
|
|
ValueRange ConversionPatternRewriterImpl::buildUnresolvedMaterialization(
|
|
MaterializationKind kind, OpBuilder::InsertPoint ip, Location loc,
|
|
ValueVector valuesToMap, ValueRange inputs, TypeRange outputTypes,
|
|
Type originalType, const TypeConverter *converter,
|
|
UnrealizedConversionCastOp *castOp) {
|
|
assert((!originalType || kind == MaterializationKind::Target) &&
|
|
"original type is valid only for target materializations");
|
|
assert(TypeRange(inputs) != outputTypes &&
|
|
"materialization is not necessary");
|
|
|
|
// Create an unresolved materialization. We use a new OpBuilder to avoid
|
|
// tracking the materialization like we do for other operations.
|
|
OpBuilder builder(outputTypes.front().getContext());
|
|
builder.setInsertionPoint(ip.getBlock(), ip.getPoint());
|
|
auto convertOp =
|
|
builder.create<UnrealizedConversionCastOp>(loc, outputTypes, inputs);
|
|
if (!valuesToMap.empty())
|
|
mapping.map(valuesToMap, convertOp.getResults());
|
|
if (castOp)
|
|
*castOp = convertOp;
|
|
appendRewrite<UnresolvedMaterializationRewrite>(
|
|
convertOp, converter, kind, originalType, std::move(valuesToMap));
|
|
return convertOp.getResults();
|
|
}
|
|
|
|
Value ConversionPatternRewriterImpl::findOrBuildReplacementValue(
|
|
Value value, const TypeConverter *converter) {
|
|
// Try to find a replacement value with the same type in the conversion value
|
|
// mapping. This includes cached materializations. We try to reuse those
|
|
// instead of generating duplicate IR.
|
|
ValueVector repl = mapping.lookupOrNull(value, value.getType());
|
|
if (!repl.empty())
|
|
return repl.front();
|
|
|
|
// Check if the value is dead. No replacement value is needed in that case.
|
|
// This is an approximate check that may have false negatives but does not
|
|
// require computing and traversing an inverse mapping. (We may end up
|
|
// building source materializations that are never used and that fold away.)
|
|
if (llvm::all_of(value.getUsers(),
|
|
[&](Operation *op) { return replacedOps.contains(op); }) &&
|
|
!mapping.isMappedTo(value))
|
|
return Value();
|
|
|
|
// No replacement value was found. Get the latest replacement value
|
|
// (regardless of the type) and build a source materialization to the
|
|
// original type.
|
|
repl = mapping.lookupOrNull(value);
|
|
if (repl.empty()) {
|
|
// No replacement value is registered in the mapping. This means that the
|
|
// value is dropped and no longer needed. (If the value were still needed,
|
|
// a source materialization producing a replacement value "out of thin air"
|
|
// would have already been created during `replaceOp` or
|
|
// `applySignatureConversion`.)
|
|
return Value();
|
|
}
|
|
|
|
// Note: `computeInsertPoint` computes the "earliest" insertion point at
|
|
// which all values in `repl` are defined. It is important to emit the
|
|
// materialization at that location because the same materialization may be
|
|
// reused in a different context. (That's because materializations are cached
|
|
// in the conversion value mapping.) The insertion point of the
|
|
// materialization must be valid for all future users that may be created
|
|
// later in the conversion process.
|
|
Value castValue =
|
|
buildUnresolvedMaterialization(MaterializationKind::Source,
|
|
computeInsertPoint(repl), value.getLoc(),
|
|
/*valuesToMap=*/repl, /*inputs=*/repl,
|
|
/*outputTypes=*/value.getType(),
|
|
/*originalType=*/Type(), converter)
|
|
.front();
|
|
return castValue;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rewriter Notification Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ConversionPatternRewriterImpl::notifyOperationInserted(
|
|
Operation *op, OpBuilder::InsertPoint previous) {
|
|
LLVM_DEBUG({
|
|
logger.startLine() << "** Insert : '" << op->getName() << "'(" << op
|
|
<< ")\n";
|
|
});
|
|
assert(!wasOpReplaced(op->getParentOp()) &&
|
|
"attempting to insert into a block within a replaced/erased op");
|
|
|
|
if (!previous.isSet()) {
|
|
// This is a newly created op.
|
|
appendRewrite<CreateOperationRewrite>(op);
|
|
return;
|
|
}
|
|
Operation *prevOp = previous.getPoint() == previous.getBlock()->end()
|
|
? nullptr
|
|
: &*previous.getPoint();
|
|
appendRewrite<MoveOperationRewrite>(op, previous.getBlock(), prevOp);
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::replaceOp(
|
|
Operation *op, SmallVector<SmallVector<Value>> &&newValues) {
|
|
assert(newValues.size() == op->getNumResults());
|
|
assert(!ignoredOps.contains(op) && "operation was already replaced");
|
|
|
|
// Check if replaced op is an unresolved materialization, i.e., an
|
|
// unrealized_conversion_cast op that was created by the conversion driver.
|
|
bool isUnresolvedMaterialization = false;
|
|
if (auto castOp = dyn_cast<UnrealizedConversionCastOp>(op))
|
|
if (unresolvedMaterializations.contains(castOp))
|
|
isUnresolvedMaterialization = true;
|
|
|
|
// Create mappings for each of the new result values.
|
|
for (auto [repl, result] : llvm::zip_equal(newValues, op->getResults())) {
|
|
if (repl.empty()) {
|
|
// This result was dropped and no replacement value was provided.
|
|
if (isUnresolvedMaterialization) {
|
|
// Do not create another materializations if we are erasing a
|
|
// materialization.
|
|
continue;
|
|
}
|
|
|
|
// Materialize a replacement value "out of thin air".
|
|
buildUnresolvedMaterialization(
|
|
MaterializationKind::Source, computeInsertPoint(result),
|
|
result.getLoc(), /*valuesToMap=*/{result}, /*inputs=*/ValueRange(),
|
|
/*outputTypes=*/result.getType(), /*originalType=*/Type(),
|
|
currentTypeConverter);
|
|
continue;
|
|
} else {
|
|
// Make sure that the user does not mess with unresolved materializations
|
|
// that were inserted by the conversion driver. We keep track of these
|
|
// ops in internal data structures. Erasing them must be allowed because
|
|
// this can happen when the user is erasing an entire block (including
|
|
// its body). But replacing them with another value should be forbidden
|
|
// to avoid problems with the `mapping`.
|
|
assert(!isUnresolvedMaterialization &&
|
|
"attempting to replace an unresolved materialization");
|
|
}
|
|
|
|
// Remap result to replacement value.
|
|
if (repl.empty())
|
|
continue;
|
|
mapping.map(static_cast<Value>(result), std::move(repl));
|
|
}
|
|
|
|
appendRewrite<ReplaceOperationRewrite>(op, currentTypeConverter);
|
|
// Mark this operation and all nested ops as replaced.
|
|
op->walk([&](Operation *op) { replacedOps.insert(op); });
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::eraseBlock(Block *block) {
|
|
assert(!wasOpReplaced(block->getParentOp()) &&
|
|
"attempting to erase a block within a replaced/erased op");
|
|
appendRewrite<EraseBlockRewrite>(block);
|
|
|
|
// Unlink the block from its parent region. The block is kept in the rewrite
|
|
// object and will be actually destroyed when rewrites are applied. This
|
|
// allows us to keep the operations in the block live and undo the removal by
|
|
// re-inserting the block.
|
|
block->getParent()->getBlocks().remove(block);
|
|
|
|
// Mark all nested ops as erased.
|
|
block->walk([&](Operation *op) { replacedOps.insert(op); });
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifyBlockInserted(
|
|
Block *block, Region *previous, Region::iterator previousIt) {
|
|
assert(!wasOpReplaced(block->getParentOp()) &&
|
|
"attempting to insert into a region within a replaced/erased op");
|
|
LLVM_DEBUG(
|
|
{
|
|
Operation *parent = block->getParentOp();
|
|
if (parent) {
|
|
logger.startLine() << "** Insert Block into : '" << parent->getName()
|
|
<< "'(" << parent << ")\n";
|
|
} else {
|
|
logger.startLine()
|
|
<< "** Insert Block into detached Region (nullptr parent op)'\n";
|
|
}
|
|
});
|
|
|
|
if (!previous) {
|
|
// This is a newly created block.
|
|
appendRewrite<CreateBlockRewrite>(block);
|
|
return;
|
|
}
|
|
Block *prevBlock = previousIt == previous->end() ? nullptr : &*previousIt;
|
|
appendRewrite<MoveBlockRewrite>(block, previous, prevBlock);
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::inlineBlockBefore(Block *source,
|
|
Block *dest,
|
|
Block::iterator before) {
|
|
appendRewrite<InlineBlockRewrite>(dest, source, before);
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifyMatchFailure(
|
|
Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
|
|
LLVM_DEBUG({
|
|
Diagnostic diag(loc, DiagnosticSeverity::Remark);
|
|
reasonCallback(diag);
|
|
logger.startLine() << "** Failure : " << diag.str() << "\n";
|
|
if (config.notifyCallback)
|
|
config.notifyCallback(diag);
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionPatternRewriter
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ConversionPatternRewriter::ConversionPatternRewriter(
|
|
MLIRContext *ctx, const ConversionConfig &config)
|
|
: PatternRewriter(ctx),
|
|
impl(new detail::ConversionPatternRewriterImpl(ctx, config)) {
|
|
setListener(impl.get());
|
|
}
|
|
|
|
ConversionPatternRewriter::~ConversionPatternRewriter() = default;
|
|
|
|
void ConversionPatternRewriter::replaceOp(Operation *op, Operation *newOp) {
|
|
assert(op && newOp && "expected non-null op");
|
|
replaceOp(op, newOp->getResults());
|
|
}
|
|
|
|
void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
|
|
assert(op->getNumResults() == newValues.size() &&
|
|
"incorrect # of replacement values");
|
|
LLVM_DEBUG({
|
|
impl->logger.startLine()
|
|
<< "** Replace : '" << op->getName() << "'(" << op << ")\n";
|
|
});
|
|
SmallVector<SmallVector<Value>> newVals =
|
|
llvm::map_to_vector(newValues, [](Value v) -> SmallVector<Value> {
|
|
return v ? SmallVector<Value>{v} : SmallVector<Value>();
|
|
});
|
|
impl->replaceOp(op, std::move(newVals));
|
|
}
|
|
|
|
void ConversionPatternRewriter::replaceOpWithMultiple(
|
|
Operation *op, SmallVector<SmallVector<Value>> &&newValues) {
|
|
assert(op->getNumResults() == newValues.size() &&
|
|
"incorrect # of replacement values");
|
|
LLVM_DEBUG({
|
|
impl->logger.startLine()
|
|
<< "** Replace : '" << op->getName() << "'(" << op << ")\n";
|
|
});
|
|
impl->replaceOp(op, std::move(newValues));
|
|
}
|
|
|
|
void ConversionPatternRewriter::eraseOp(Operation *op) {
|
|
LLVM_DEBUG({
|
|
impl->logger.startLine()
|
|
<< "** Erase : '" << op->getName() << "'(" << op << ")\n";
|
|
});
|
|
SmallVector<SmallVector<Value>> nullRepls(op->getNumResults(), {});
|
|
impl->replaceOp(op, std::move(nullRepls));
|
|
}
|
|
|
|
void ConversionPatternRewriter::eraseBlock(Block *block) {
|
|
impl->eraseBlock(block);
|
|
}
|
|
|
|
Block *ConversionPatternRewriter::applySignatureConversion(
|
|
Block *block, TypeConverter::SignatureConversion &conversion,
|
|
const TypeConverter *converter) {
|
|
assert(!impl->wasOpReplaced(block->getParentOp()) &&
|
|
"attempting to apply a signature conversion to a block within a "
|
|
"replaced/erased op");
|
|
return impl->applySignatureConversion(*this, block, converter, conversion);
|
|
}
|
|
|
|
FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
|
|
Region *region, const TypeConverter &converter,
|
|
TypeConverter::SignatureConversion *entryConversion) {
|
|
assert(!impl->wasOpReplaced(region->getParentOp()) &&
|
|
"attempting to apply a signature conversion to a block within a "
|
|
"replaced/erased op");
|
|
return impl->convertRegionTypes(*this, region, converter, entryConversion);
|
|
}
|
|
|
|
void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
|
|
Value to) {
|
|
LLVM_DEBUG({
|
|
impl->logger.startLine() << "** Replace Argument : '" << from << "'";
|
|
if (Operation *parentOp = from.getOwner()->getParentOp()) {
|
|
impl->logger.getOStream() << " (in region of '" << parentOp->getName()
|
|
<< "' (" << parentOp << ")\n";
|
|
} else {
|
|
impl->logger.getOStream() << " (unlinked block)\n";
|
|
}
|
|
});
|
|
impl->appendRewrite<ReplaceBlockArgRewrite>(from.getOwner(), from,
|
|
impl->currentTypeConverter);
|
|
impl->mapping.map(from, to);
|
|
}
|
|
|
|
Value ConversionPatternRewriter::getRemappedValue(Value key) {
|
|
SmallVector<ValueVector> remappedValues;
|
|
if (failed(impl->remapValues("value", /*inputLoc=*/std::nullopt, *this, key,
|
|
remappedValues)))
|
|
return nullptr;
|
|
assert(remappedValues.front().size() == 1 && "1:N conversion not supported");
|
|
return remappedValues.front().front();
|
|
}
|
|
|
|
LogicalResult
|
|
ConversionPatternRewriter::getRemappedValues(ValueRange keys,
|
|
SmallVectorImpl<Value> &results) {
|
|
if (keys.empty())
|
|
return success();
|
|
SmallVector<ValueVector> remapped;
|
|
if (failed(impl->remapValues("value", /*inputLoc=*/std::nullopt, *this, keys,
|
|
remapped)))
|
|
return failure();
|
|
for (const auto &values : remapped) {
|
|
assert(values.size() == 1 && "1:N conversion not supported");
|
|
results.push_back(values.front());
|
|
}
|
|
return success();
|
|
}
|
|
|
|
void ConversionPatternRewriter::inlineBlockBefore(Block *source, Block *dest,
|
|
Block::iterator before,
|
|
ValueRange argValues) {
|
|
#ifndef NDEBUG
|
|
assert(argValues.size() == source->getNumArguments() &&
|
|
"incorrect # of argument replacement values");
|
|
assert(!impl->wasOpReplaced(source->getParentOp()) &&
|
|
"attempting to inline a block from a replaced/erased op");
|
|
assert(!impl->wasOpReplaced(dest->getParentOp()) &&
|
|
"attempting to inline a block into a replaced/erased op");
|
|
auto opIgnored = [&](Operation *op) { return impl->isOpIgnored(op); };
|
|
// The source block will be deleted, so it should not have any users (i.e.,
|
|
// there should be no predecessors).
|
|
assert(llvm::all_of(source->getUsers(), opIgnored) &&
|
|
"expected 'source' to have no predecessors");
|
|
#endif // NDEBUG
|
|
|
|
// If a listener is attached to the dialect conversion, ops cannot be moved
|
|
// to the destination block in bulk ("fast path"). This is because at the time
|
|
// the notifications are sent, it is unknown which ops were moved. Instead,
|
|
// ops should be moved one-by-one ("slow path"), so that a separate
|
|
// `MoveOperationRewrite` is enqueued for each moved op. Moving ops in bulk is
|
|
// a bit more efficient, so we try to do that when possible.
|
|
bool fastPath = !impl->config.listener;
|
|
|
|
if (fastPath)
|
|
impl->inlineBlockBefore(source, dest, before);
|
|
|
|
// Replace all uses of block arguments.
|
|
for (auto it : llvm::zip(source->getArguments(), argValues))
|
|
replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
|
|
|
|
if (fastPath) {
|
|
// Move all ops at once.
|
|
dest->getOperations().splice(before, source->getOperations());
|
|
} else {
|
|
// Move op by op.
|
|
while (!source->empty())
|
|
moveOpBefore(&source->front(), dest, before);
|
|
}
|
|
|
|
// Erase the source block.
|
|
eraseBlock(source);
|
|
}
|
|
|
|
void ConversionPatternRewriter::startOpModification(Operation *op) {
|
|
assert(!impl->wasOpReplaced(op) &&
|
|
"attempting to modify a replaced/erased op");
|
|
#ifndef NDEBUG
|
|
impl->pendingRootUpdates.insert(op);
|
|
#endif
|
|
impl->appendRewrite<ModifyOperationRewrite>(op);
|
|
}
|
|
|
|
void ConversionPatternRewriter::finalizeOpModification(Operation *op) {
|
|
assert(!impl->wasOpReplaced(op) &&
|
|
"attempting to modify a replaced/erased op");
|
|
PatternRewriter::finalizeOpModification(op);
|
|
// There is nothing to do here, we only need to track the operation at the
|
|
// start of the update.
|
|
#ifndef NDEBUG
|
|
assert(impl->pendingRootUpdates.erase(op) &&
|
|
"operation did not have a pending in-place update");
|
|
#endif
|
|
}
|
|
|
|
void ConversionPatternRewriter::cancelOpModification(Operation *op) {
|
|
#ifndef NDEBUG
|
|
assert(impl->pendingRootUpdates.erase(op) &&
|
|
"operation did not have a pending in-place update");
|
|
#endif
|
|
// Erase the last update for this operation.
|
|
auto it = llvm::find_if(
|
|
llvm::reverse(impl->rewrites), [&](std::unique_ptr<IRRewrite> &rewrite) {
|
|
auto *modifyRewrite = dyn_cast<ModifyOperationRewrite>(rewrite.get());
|
|
return modifyRewrite && modifyRewrite->getOperation() == op;
|
|
});
|
|
assert(it != impl->rewrites.rend() && "no root update started on op");
|
|
(*it)->rollback();
|
|
int updateIdx = std::prev(impl->rewrites.rend()) - it;
|
|
impl->rewrites.erase(impl->rewrites.begin() + updateIdx);
|
|
}
|
|
|
|
detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
|
|
return *impl;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionPattern
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SmallVector<Value> ConversionPattern::getOneToOneAdaptorOperands(
|
|
ArrayRef<ValueRange> operands) const {
|
|
SmallVector<Value> oneToOneOperands;
|
|
oneToOneOperands.reserve(operands.size());
|
|
for (ValueRange operand : operands) {
|
|
if (operand.size() != 1)
|
|
llvm::report_fatal_error("pattern '" + getDebugName() +
|
|
"' does not support 1:N conversion");
|
|
oneToOneOperands.push_back(operand.front());
|
|
}
|
|
return oneToOneOperands;
|
|
}
|
|
|
|
LogicalResult
|
|
ConversionPattern::matchAndRewrite(Operation *op,
|
|
PatternRewriter &rewriter) const {
|
|
auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
|
|
auto &rewriterImpl = dialectRewriter.getImpl();
|
|
|
|
// Track the current conversion pattern type converter in the rewriter.
|
|
llvm::SaveAndRestore currentConverterGuard(rewriterImpl.currentTypeConverter,
|
|
getTypeConverter());
|
|
|
|
// Remap the operands of the operation.
|
|
SmallVector<ValueVector> remapped;
|
|
if (failed(rewriterImpl.remapValues("operand", op->getLoc(), rewriter,
|
|
op->getOperands(), remapped))) {
|
|
return failure();
|
|
}
|
|
SmallVector<ValueRange> remappedAsRange =
|
|
llvm::to_vector_of<ValueRange>(remapped);
|
|
return matchAndRewrite(op, remappedAsRange, dialectRewriter);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OperationLegalizer
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// A set of rewrite patterns that can be used to legalize a given operation.
|
|
using LegalizationPatterns = SmallVector<const Pattern *, 1>;
|
|
|
|
/// This class defines a recursive operation legalizer.
|
|
class OperationLegalizer {
|
|
public:
|
|
using LegalizationAction = ConversionTarget::LegalizationAction;
|
|
|
|
OperationLegalizer(const ConversionTarget &targetInfo,
|
|
const FrozenRewritePatternSet &patterns,
|
|
const ConversionConfig &config);
|
|
|
|
/// Returns true if the given operation is known to be illegal on the target.
|
|
bool isIllegal(Operation *op) const;
|
|
|
|
/// Attempt to legalize the given operation. Returns success if the operation
|
|
/// was legalized, failure otherwise.
|
|
LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
|
|
|
|
/// Returns the conversion target in use by the legalizer.
|
|
const ConversionTarget &getTarget() { return target; }
|
|
|
|
private:
|
|
/// Attempt to legalize the given operation by folding it.
|
|
LogicalResult legalizeWithFold(Operation *op,
|
|
ConversionPatternRewriter &rewriter);
|
|
|
|
/// Attempt to legalize the given operation by applying a pattern. Returns
|
|
/// success if the operation was legalized, failure otherwise.
|
|
LogicalResult legalizeWithPattern(Operation *op,
|
|
ConversionPatternRewriter &rewriter);
|
|
|
|
/// Return true if the given pattern may be applied to the given operation,
|
|
/// false otherwise.
|
|
bool canApplyPattern(Operation *op, const Pattern &pattern,
|
|
ConversionPatternRewriter &rewriter);
|
|
|
|
/// Legalize the resultant IR after successfully applying the given pattern.
|
|
LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern,
|
|
ConversionPatternRewriter &rewriter,
|
|
RewriterState &curState);
|
|
|
|
/// Legalizes the actions registered during the execution of a pattern.
|
|
LogicalResult
|
|
legalizePatternBlockRewrites(Operation *op,
|
|
ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &impl,
|
|
RewriterState &state, RewriterState &newState);
|
|
LogicalResult legalizePatternCreatedOperations(
|
|
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
|
|
RewriterState &state, RewriterState &newState);
|
|
LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &impl,
|
|
RewriterState &state,
|
|
RewriterState &newState);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Cost Model
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Build an optimistic legalization graph given the provided patterns. This
|
|
/// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
|
|
/// patterns for operations that are not directly legal, but may be
|
|
/// transitively legal for the current target given the provided patterns.
|
|
void buildLegalizationGraph(
|
|
LegalizationPatterns &anyOpLegalizerPatterns,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
|
|
|
|
/// Compute the benefit of each node within the computed legalization graph.
|
|
/// This orders the patterns within 'legalizerPatterns' based upon two
|
|
/// criteria:
|
|
/// 1) Prefer patterns that have the lowest legalization depth, i.e.
|
|
/// represent the more direct mapping to the target.
|
|
/// 2) When comparing patterns with the same legalization depth, prefer the
|
|
/// pattern with the highest PatternBenefit. This allows for users to
|
|
/// prefer specific legalizations over others.
|
|
void computeLegalizationGraphBenefit(
|
|
LegalizationPatterns &anyOpLegalizerPatterns,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
|
|
|
|
/// Compute the legalization depth when legalizing an operation of the given
|
|
/// type.
|
|
unsigned computeOpLegalizationDepth(
|
|
OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
|
|
|
|
/// Apply the conversion cost model to the given set of patterns, and return
|
|
/// the smallest legalization depth of any of the patterns. See
|
|
/// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
|
|
unsigned applyCostModelToPatterns(
|
|
LegalizationPatterns &patterns,
|
|
DenseMap<OperationName, unsigned> &minOpPatternDepth,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
|
|
|
|
/// The current set of patterns that have been applied.
|
|
SmallPtrSet<const Pattern *, 8> appliedPatterns;
|
|
|
|
/// The legalization information provided by the target.
|
|
const ConversionTarget ⌖
|
|
|
|
/// The pattern applicator to use for conversions.
|
|
PatternApplicator applicator;
|
|
|
|
/// Dialect conversion configuration.
|
|
const ConversionConfig &config;
|
|
};
|
|
} // namespace
|
|
|
|
OperationLegalizer::OperationLegalizer(const ConversionTarget &targetInfo,
|
|
const FrozenRewritePatternSet &patterns,
|
|
const ConversionConfig &config)
|
|
: target(targetInfo), applicator(patterns), config(config) {
|
|
// The set of patterns that can be applied to illegal operations to transform
|
|
// them into legal ones.
|
|
DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
|
|
LegalizationPatterns anyOpLegalizerPatterns;
|
|
|
|
buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
|
|
computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
|
|
}
|
|
|
|
bool OperationLegalizer::isIllegal(Operation *op) const {
|
|
return target.isIllegal(op);
|
|
}
|
|
|
|
LogicalResult
|
|
OperationLegalizer::legalize(Operation *op,
|
|
ConversionPatternRewriter &rewriter) {
|
|
#ifndef NDEBUG
|
|
const char *logLineComment =
|
|
"//===-------------------------------------------===//\n";
|
|
|
|
auto &logger = rewriter.getImpl().logger;
|
|
#endif
|
|
LLVM_DEBUG({
|
|
logger.getOStream() << "\n";
|
|
logger.startLine() << logLineComment;
|
|
logger.startLine() << "Legalizing operation : '" << op->getName() << "'("
|
|
<< op << ") {\n";
|
|
logger.indent();
|
|
|
|
// If the operation has no regions, just print it here.
|
|
if (op->getNumRegions() == 0) {
|
|
op->print(logger.startLine(), OpPrintingFlags().printGenericOpForm());
|
|
logger.getOStream() << "\n\n";
|
|
}
|
|
});
|
|
|
|
// Check if this operation is legal on the target.
|
|
if (auto legalityInfo = target.isLegal(op)) {
|
|
LLVM_DEBUG({
|
|
logSuccess(
|
|
logger, "operation marked legal by the target{0}",
|
|
legalityInfo->isRecursivelyLegal
|
|
? "; NOTE: operation is recursively legal; skipping internals"
|
|
: "");
|
|
logger.startLine() << logLineComment;
|
|
});
|
|
|
|
// If this operation is recursively legal, mark its children as ignored so
|
|
// that we don't consider them for legalization.
|
|
if (legalityInfo->isRecursivelyLegal) {
|
|
op->walk([&](Operation *nested) {
|
|
if (op != nested)
|
|
rewriter.getImpl().ignoredOps.insert(nested);
|
|
});
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
// Check to see if the operation is ignored and doesn't need to be converted.
|
|
if (rewriter.getImpl().isOpIgnored(op)) {
|
|
LLVM_DEBUG({
|
|
logSuccess(logger, "operation marked 'ignored' during conversion");
|
|
logger.startLine() << logLineComment;
|
|
});
|
|
return success();
|
|
}
|
|
|
|
// If the operation isn't legal, try to fold it in-place.
|
|
// TODO: Should we always try to do this, even if the op is
|
|
// already legal?
|
|
if (succeeded(legalizeWithFold(op, rewriter))) {
|
|
LLVM_DEBUG({
|
|
logSuccess(logger, "operation was folded");
|
|
logger.startLine() << logLineComment;
|
|
});
|
|
return success();
|
|
}
|
|
|
|
// Otherwise, we need to apply a legalization pattern to this operation.
|
|
if (succeeded(legalizeWithPattern(op, rewriter))) {
|
|
LLVM_DEBUG({
|
|
logSuccess(logger, "");
|
|
logger.startLine() << logLineComment;
|
|
});
|
|
return success();
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
logFailure(logger, "no matched legalization pattern");
|
|
logger.startLine() << logLineComment;
|
|
});
|
|
return failure();
|
|
}
|
|
|
|
LogicalResult
|
|
OperationLegalizer::legalizeWithFold(Operation *op,
|
|
ConversionPatternRewriter &rewriter) {
|
|
auto &rewriterImpl = rewriter.getImpl();
|
|
LLVM_DEBUG({
|
|
rewriterImpl.logger.startLine() << "* Fold {\n";
|
|
rewriterImpl.logger.indent();
|
|
});
|
|
(void)rewriterImpl;
|
|
|
|
// Try to fold the operation.
|
|
SmallVector<Value, 2> replacementValues;
|
|
SmallVector<Operation *, 2> newOps;
|
|
rewriter.setInsertionPoint(op);
|
|
if (failed(rewriter.tryFold(op, replacementValues, &newOps))) {
|
|
LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
|
|
return failure();
|
|
}
|
|
|
|
// An empty list of replacement values indicates that the fold was in-place.
|
|
// As the operation changed, a new legalization needs to be attempted.
|
|
if (replacementValues.empty())
|
|
return legalize(op, rewriter);
|
|
|
|
// Recursively legalize any new constant operations.
|
|
for (Operation *newOp : newOps) {
|
|
if (failed(legalize(newOp, rewriter))) {
|
|
LLVM_DEBUG(logFailure(rewriterImpl.logger,
|
|
"failed to legalize generated constant '{0}'",
|
|
newOp->getName()));
|
|
// Legalization failed: erase all materialized constants.
|
|
for (Operation *op : newOps)
|
|
rewriter.eraseOp(op);
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
// Insert a replacement for 'op' with the folded replacement values.
|
|
rewriter.replaceOp(op, replacementValues);
|
|
|
|
LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
OperationLegalizer::legalizeWithPattern(Operation *op,
|
|
ConversionPatternRewriter &rewriter) {
|
|
auto &rewriterImpl = rewriter.getImpl();
|
|
|
|
// Functor that returns if the given pattern may be applied.
|
|
auto canApply = [&](const Pattern &pattern) {
|
|
bool canApply = canApplyPattern(op, pattern, rewriter);
|
|
if (canApply && config.listener)
|
|
config.listener->notifyPatternBegin(pattern, op);
|
|
return canApply;
|
|
};
|
|
|
|
// Functor that cleans up the rewriter state after a pattern failed to match.
|
|
RewriterState curState = rewriterImpl.getCurrentState();
|
|
auto onFailure = [&](const Pattern &pattern) {
|
|
assert(rewriterImpl.pendingRootUpdates.empty() && "dangling root updates");
|
|
LLVM_DEBUG({
|
|
logFailure(rewriterImpl.logger, "pattern failed to match");
|
|
if (rewriterImpl.config.notifyCallback) {
|
|
Diagnostic diag(op->getLoc(), DiagnosticSeverity::Remark);
|
|
diag << "Failed to apply pattern \"" << pattern.getDebugName()
|
|
<< "\" on op:\n"
|
|
<< *op;
|
|
rewriterImpl.config.notifyCallback(diag);
|
|
}
|
|
});
|
|
if (config.listener)
|
|
config.listener->notifyPatternEnd(pattern, failure());
|
|
rewriterImpl.resetState(curState, pattern.getDebugName());
|
|
appliedPatterns.erase(&pattern);
|
|
};
|
|
|
|
// Functor that performs additional legalization when a pattern is
|
|
// successfully applied.
|
|
auto onSuccess = [&](const Pattern &pattern) {
|
|
assert(rewriterImpl.pendingRootUpdates.empty() && "dangling root updates");
|
|
auto result = legalizePatternResult(op, pattern, rewriter, curState);
|
|
appliedPatterns.erase(&pattern);
|
|
if (failed(result)) {
|
|
if (!rewriterImpl.config.allowPatternRollback)
|
|
op->emitError("pattern '")
|
|
<< pattern.getDebugName()
|
|
<< "' produced IR that could not be legalized";
|
|
rewriterImpl.resetState(curState, pattern.getDebugName());
|
|
}
|
|
if (config.listener)
|
|
config.listener->notifyPatternEnd(pattern, result);
|
|
return result;
|
|
};
|
|
|
|
// Try to match and rewrite a pattern on this operation.
|
|
return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
|
|
onSuccess);
|
|
}
|
|
|
|
bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern,
|
|
ConversionPatternRewriter &rewriter) {
|
|
LLVM_DEBUG({
|
|
auto &os = rewriter.getImpl().logger;
|
|
os.getOStream() << "\n";
|
|
os.startLine() << "* Pattern : '" << op->getName() << " -> (";
|
|
llvm::interleaveComma(pattern.getGeneratedOps(), os.getOStream());
|
|
os.getOStream() << ")' {\n";
|
|
os.indent();
|
|
});
|
|
|
|
// Ensure that we don't cycle by not allowing the same pattern to be
|
|
// applied twice in the same recursion stack if it is not known to be safe.
|
|
if (!pattern.hasBoundedRewriteRecursion() &&
|
|
!appliedPatterns.insert(&pattern).second) {
|
|
LLVM_DEBUG(
|
|
logFailure(rewriter.getImpl().logger, "pattern was already applied"));
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
LogicalResult
|
|
OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern,
|
|
ConversionPatternRewriter &rewriter,
|
|
RewriterState &curState) {
|
|
auto &impl = rewriter.getImpl();
|
|
assert(impl.pendingRootUpdates.empty() && "dangling root updates");
|
|
|
|
#if MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
|
|
// Check that the root was either replaced or updated in place.
|
|
auto newRewrites = llvm::drop_begin(impl.rewrites, curState.numRewrites);
|
|
auto replacedRoot = [&] {
|
|
return hasRewrite<ReplaceOperationRewrite>(newRewrites, op);
|
|
};
|
|
auto updatedRootInPlace = [&] {
|
|
return hasRewrite<ModifyOperationRewrite>(newRewrites, op);
|
|
};
|
|
if (!replacedRoot() && !updatedRootInPlace())
|
|
llvm::report_fatal_error("expected pattern to replace the root operation");
|
|
#endif // MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
|
|
|
|
// Legalize each of the actions registered during application.
|
|
RewriterState newState = impl.getCurrentState();
|
|
if (failed(legalizePatternBlockRewrites(op, rewriter, impl, curState,
|
|
newState)) ||
|
|
failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
|
|
failed(legalizePatternCreatedOperations(rewriter, impl, curState,
|
|
newState))) {
|
|
return failure();
|
|
}
|
|
|
|
LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OperationLegalizer::legalizePatternBlockRewrites(
|
|
Operation *op, ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &impl, RewriterState &state,
|
|
RewriterState &newState) {
|
|
SmallPtrSet<Operation *, 16> operationsToIgnore;
|
|
|
|
// If the pattern moved or created any blocks, make sure the types of block
|
|
// arguments get legalized.
|
|
for (int i = state.numRewrites, e = newState.numRewrites; i != e; ++i) {
|
|
BlockRewrite *rewrite = dyn_cast<BlockRewrite>(impl.rewrites[i].get());
|
|
if (!rewrite)
|
|
continue;
|
|
Block *block = rewrite->getBlock();
|
|
if (isa<BlockTypeConversionRewrite, EraseBlockRewrite,
|
|
ReplaceBlockArgRewrite>(rewrite))
|
|
continue;
|
|
// Only check blocks outside of the current operation.
|
|
Operation *parentOp = block->getParentOp();
|
|
if (!parentOp || parentOp == op || block->getNumArguments() == 0)
|
|
continue;
|
|
|
|
// If the region of the block has a type converter, try to convert the block
|
|
// directly.
|
|
if (auto *converter = impl.regionToConverter.lookup(block->getParent())) {
|
|
std::optional<TypeConverter::SignatureConversion> conversion =
|
|
converter->convertBlockSignature(block);
|
|
if (!conversion) {
|
|
LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
|
|
"block"));
|
|
return failure();
|
|
}
|
|
impl.applySignatureConversion(rewriter, block, converter, *conversion);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, check that this operation isn't one generated by this pattern.
|
|
// This is because we will attempt to legalize the parent operation, and
|
|
// blocks in regions created by this pattern will already be legalized later
|
|
// on. If we haven't built the set yet, build it now.
|
|
if (operationsToIgnore.empty()) {
|
|
for (unsigned i = state.numRewrites, e = impl.rewrites.size(); i != e;
|
|
++i) {
|
|
auto *createOp =
|
|
dyn_cast<CreateOperationRewrite>(impl.rewrites[i].get());
|
|
if (!createOp)
|
|
continue;
|
|
operationsToIgnore.insert(createOp->getOperation());
|
|
}
|
|
}
|
|
|
|
// If this operation should be considered for re-legalization, try it.
|
|
if (operationsToIgnore.insert(parentOp).second &&
|
|
failed(legalize(parentOp, rewriter))) {
|
|
LLVM_DEBUG(logFailure(impl.logger,
|
|
"operation '{0}'({1}) became illegal after rewrite",
|
|
parentOp->getName(), parentOp));
|
|
return failure();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
|
|
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
|
|
RewriterState &state, RewriterState &newState) {
|
|
for (int i = state.numRewrites, e = newState.numRewrites; i != e; ++i) {
|
|
auto *createOp = dyn_cast<CreateOperationRewrite>(impl.rewrites[i].get());
|
|
if (!createOp)
|
|
continue;
|
|
Operation *op = createOp->getOperation();
|
|
if (failed(legalize(op, rewriter))) {
|
|
LLVM_DEBUG(logFailure(impl.logger,
|
|
"failed to legalize generated operation '{0}'({1})",
|
|
op->getName(), op));
|
|
return failure();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OperationLegalizer::legalizePatternRootUpdates(
|
|
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
|
|
RewriterState &state, RewriterState &newState) {
|
|
for (int i = state.numRewrites, e = newState.numRewrites; i != e; ++i) {
|
|
auto *rewrite = dyn_cast<ModifyOperationRewrite>(impl.rewrites[i].get());
|
|
if (!rewrite)
|
|
continue;
|
|
Operation *op = rewrite->getOperation();
|
|
if (failed(legalize(op, rewriter))) {
|
|
LLVM_DEBUG(logFailure(
|
|
impl.logger, "failed to legalize operation updated in-place '{0}'",
|
|
op->getName()));
|
|
return failure();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Cost Model
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void OperationLegalizer::buildLegalizationGraph(
|
|
LegalizationPatterns &anyOpLegalizerPatterns,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
|
|
// A mapping between an operation and a set of operations that can be used to
|
|
// generate it.
|
|
DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
|
|
// A mapping between an operation and any currently invalid patterns it has.
|
|
DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns;
|
|
// A worklist of patterns to consider for legality.
|
|
SetVector<const Pattern *> patternWorklist;
|
|
|
|
// Build the mapping from operations to the parent ops that may generate them.
|
|
applicator.walkAllPatterns([&](const Pattern &pattern) {
|
|
std::optional<OperationName> root = pattern.getRootKind();
|
|
|
|
// If the pattern has no specific root, we can't analyze the relationship
|
|
// between the root op and generated operations. Given that, add all such
|
|
// patterns to the legalization set.
|
|
if (!root) {
|
|
anyOpLegalizerPatterns.push_back(&pattern);
|
|
return;
|
|
}
|
|
|
|
// Skip operations that are always known to be legal.
|
|
if (target.getOpAction(*root) == LegalizationAction::Legal)
|
|
return;
|
|
|
|
// Add this pattern to the invalid set for the root op and record this root
|
|
// as a parent for any generated operations.
|
|
invalidPatterns[*root].insert(&pattern);
|
|
for (auto op : pattern.getGeneratedOps())
|
|
parentOps[op].insert(*root);
|
|
|
|
// Add this pattern to the worklist.
|
|
patternWorklist.insert(&pattern);
|
|
});
|
|
|
|
// If there are any patterns that don't have a specific root kind, we can't
|
|
// make direct assumptions about what operations will never be legalized.
|
|
// Note: Technically we could, but it would require an analysis that may
|
|
// recurse into itself. It would be better to perform this kind of filtering
|
|
// at a higher level than here anyways.
|
|
if (!anyOpLegalizerPatterns.empty()) {
|
|
for (const Pattern *pattern : patternWorklist)
|
|
legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
|
|
return;
|
|
}
|
|
|
|
while (!patternWorklist.empty()) {
|
|
auto *pattern = patternWorklist.pop_back_val();
|
|
|
|
// Check to see if any of the generated operations are invalid.
|
|
if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
|
|
std::optional<LegalizationAction> action = target.getOpAction(op);
|
|
return !legalizerPatterns.count(op) &&
|
|
(!action || action == LegalizationAction::Illegal);
|
|
}))
|
|
continue;
|
|
|
|
// Otherwise, if all of the generated operation are valid, this op is now
|
|
// legal so add all of the child patterns to the worklist.
|
|
legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
|
|
invalidPatterns[*pattern->getRootKind()].erase(pattern);
|
|
|
|
// Add any invalid patterns of the parent operations to see if they have now
|
|
// become legal.
|
|
for (auto op : parentOps[*pattern->getRootKind()])
|
|
patternWorklist.set_union(invalidPatterns[op]);
|
|
}
|
|
}
|
|
|
|
void OperationLegalizer::computeLegalizationGraphBenefit(
|
|
LegalizationPatterns &anyOpLegalizerPatterns,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
|
|
// The smallest pattern depth, when legalizing an operation.
|
|
DenseMap<OperationName, unsigned> minOpPatternDepth;
|
|
|
|
// For each operation that is transitively legal, compute a cost for it.
|
|
for (auto &opIt : legalizerPatterns)
|
|
if (!minOpPatternDepth.count(opIt.first))
|
|
computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
|
|
legalizerPatterns);
|
|
|
|
// Apply the cost model to the patterns that can match any operation. Those
|
|
// with a specific operation type are already resolved when computing the op
|
|
// legalization depth.
|
|
if (!anyOpLegalizerPatterns.empty())
|
|
applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
|
|
legalizerPatterns);
|
|
|
|
// Apply a cost model to the pattern applicator. We order patterns first by
|
|
// depth then benefit. `legalizerPatterns` contains per-op patterns by
|
|
// decreasing benefit.
|
|
applicator.applyCostModel([&](const Pattern &pattern) {
|
|
ArrayRef<const Pattern *> orderedPatternList;
|
|
if (std::optional<OperationName> rootName = pattern.getRootKind())
|
|
orderedPatternList = legalizerPatterns[*rootName];
|
|
else
|
|
orderedPatternList = anyOpLegalizerPatterns;
|
|
|
|
// If the pattern is not found, then it was removed and cannot be matched.
|
|
auto *it = llvm::find(orderedPatternList, &pattern);
|
|
if (it == orderedPatternList.end())
|
|
return PatternBenefit::impossibleToMatch();
|
|
|
|
// Patterns found earlier in the list have higher benefit.
|
|
return PatternBenefit(std::distance(it, orderedPatternList.end()));
|
|
});
|
|
}
|
|
|
|
unsigned OperationLegalizer::computeOpLegalizationDepth(
|
|
OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
|
|
// Check for existing depth.
|
|
auto depthIt = minOpPatternDepth.find(op);
|
|
if (depthIt != minOpPatternDepth.end())
|
|
return depthIt->second;
|
|
|
|
// If a mapping for this operation does not exist, then this operation
|
|
// is always legal. Return 0 as the depth for a directly legal operation.
|
|
auto opPatternsIt = legalizerPatterns.find(op);
|
|
if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
|
|
return 0u;
|
|
|
|
// Record this initial depth in case we encounter this op again when
|
|
// recursively computing the depth.
|
|
minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());
|
|
|
|
// Apply the cost model to the operation patterns, and update the minimum
|
|
// depth.
|
|
unsigned minDepth = applyCostModelToPatterns(
|
|
opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
|
|
minOpPatternDepth[op] = minDepth;
|
|
return minDepth;
|
|
}
|
|
|
|
unsigned OperationLegalizer::applyCostModelToPatterns(
|
|
LegalizationPatterns &patterns,
|
|
DenseMap<OperationName, unsigned> &minOpPatternDepth,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
|
|
unsigned minDepth = std::numeric_limits<unsigned>::max();
|
|
|
|
// Compute the depth for each pattern within the set.
|
|
SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth;
|
|
patternsByDepth.reserve(patterns.size());
|
|
for (const Pattern *pattern : patterns) {
|
|
unsigned depth = 1;
|
|
for (auto generatedOp : pattern->getGeneratedOps()) {
|
|
unsigned generatedOpDepth = computeOpLegalizationDepth(
|
|
generatedOp, minOpPatternDepth, legalizerPatterns);
|
|
depth = std::max(depth, generatedOpDepth + 1);
|
|
}
|
|
patternsByDepth.emplace_back(pattern, depth);
|
|
|
|
// Update the minimum depth of the pattern list.
|
|
minDepth = std::min(minDepth, depth);
|
|
}
|
|
|
|
// If the operation only has one legalization pattern, there is no need to
|
|
// sort them.
|
|
if (patternsByDepth.size() == 1)
|
|
return minDepth;
|
|
|
|
// Sort the patterns by those likely to be the most beneficial.
|
|
llvm::stable_sort(patternsByDepth,
|
|
[](const std::pair<const Pattern *, unsigned> &lhs,
|
|
const std::pair<const Pattern *, unsigned> &rhs) {
|
|
// First sort by the smaller pattern legalization
|
|
// depth.
|
|
if (lhs.second != rhs.second)
|
|
return lhs.second < rhs.second;
|
|
|
|
// Then sort by the larger pattern benefit.
|
|
auto lhsBenefit = lhs.first->getBenefit();
|
|
auto rhsBenefit = rhs.first->getBenefit();
|
|
return lhsBenefit > rhsBenefit;
|
|
});
|
|
|
|
// Update the legalization pattern to use the new sorted list.
|
|
patterns.clear();
|
|
for (auto &patternIt : patternsByDepth)
|
|
patterns.push_back(patternIt.first);
|
|
return minDepth;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OperationConverter
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
enum OpConversionMode {
|
|
/// In this mode, the conversion will ignore failed conversions to allow
|
|
/// illegal operations to co-exist in the IR.
|
|
Partial,
|
|
|
|
/// In this mode, all operations must be legal for the given target for the
|
|
/// conversion to succeed.
|
|
Full,
|
|
|
|
/// In this mode, operations are analyzed for legality. No actual rewrites are
|
|
/// applied to the operations on success.
|
|
Analysis,
|
|
};
|
|
} // namespace
|
|
|
|
namespace mlir {
|
|
// This class converts operations to a given conversion target via a set of
|
|
// rewrite patterns. The conversion behaves differently depending on the
|
|
// conversion mode.
|
|
struct OperationConverter {
|
|
explicit OperationConverter(const ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns,
|
|
const ConversionConfig &config,
|
|
OpConversionMode mode)
|
|
: config(config), opLegalizer(target, patterns, this->config),
|
|
mode(mode) {}
|
|
|
|
/// Converts the given operations to the conversion target.
|
|
LogicalResult convertOperations(ArrayRef<Operation *> ops);
|
|
|
|
private:
|
|
/// Converts an operation with the given rewriter.
|
|
LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
|
|
|
|
/// Dialect conversion configuration.
|
|
ConversionConfig config;
|
|
|
|
/// The legalizer to use when converting operations.
|
|
OperationLegalizer opLegalizer;
|
|
|
|
/// The conversion mode to use when legalizing operations.
|
|
OpConversionMode mode;
|
|
};
|
|
} // namespace mlir
|
|
|
|
LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
|
|
Operation *op) {
|
|
// Legalize the given operation.
|
|
if (failed(opLegalizer.legalize(op, rewriter))) {
|
|
// Handle the case of a failed conversion for each of the different modes.
|
|
// Full conversions expect all operations to be converted.
|
|
if (mode == OpConversionMode::Full)
|
|
return op->emitError()
|
|
<< "failed to legalize operation '" << op->getName() << "'";
|
|
// Partial conversions allow conversions to fail iff the operation was not
|
|
// explicitly marked as illegal. If the user provided a `unlegalizedOps`
|
|
// set, non-legalizable ops are added to that set.
|
|
if (mode == OpConversionMode::Partial) {
|
|
if (opLegalizer.isIllegal(op))
|
|
return op->emitError()
|
|
<< "failed to legalize operation '" << op->getName()
|
|
<< "' that was explicitly marked illegal";
|
|
if (config.unlegalizedOps)
|
|
config.unlegalizedOps->insert(op);
|
|
}
|
|
} else if (mode == OpConversionMode::Analysis) {
|
|
// Analysis conversions don't fail if any operations fail to legalize,
|
|
// they are only interested in the operations that were successfully
|
|
// legalized.
|
|
if (config.legalizableOps)
|
|
config.legalizableOps->insert(op);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult
|
|
legalizeUnresolvedMaterialization(RewriterBase &rewriter,
|
|
UnresolvedMaterializationRewrite *rewrite) {
|
|
UnrealizedConversionCastOp op = rewrite->getOperation();
|
|
assert(!op.use_empty() &&
|
|
"expected that dead materializations have already been DCE'd");
|
|
Operation::operand_range inputOperands = op.getOperands();
|
|
|
|
// Try to materialize the conversion.
|
|
if (const TypeConverter *converter = rewrite->getConverter()) {
|
|
rewriter.setInsertionPoint(op);
|
|
SmallVector<Value> newMaterialization;
|
|
switch (rewrite->getMaterializationKind()) {
|
|
case MaterializationKind::Target:
|
|
newMaterialization = converter->materializeTargetConversion(
|
|
rewriter, op->getLoc(), op.getResultTypes(), inputOperands,
|
|
rewrite->getOriginalType());
|
|
break;
|
|
case MaterializationKind::Source:
|
|
assert(op->getNumResults() == 1 && "expected single result");
|
|
Value sourceMat = converter->materializeSourceConversion(
|
|
rewriter, op->getLoc(), op.getResultTypes().front(), inputOperands);
|
|
if (sourceMat)
|
|
newMaterialization.push_back(sourceMat);
|
|
break;
|
|
}
|
|
if (!newMaterialization.empty()) {
|
|
#ifndef NDEBUG
|
|
ValueRange newMaterializationRange(newMaterialization);
|
|
assert(TypeRange(newMaterializationRange) == op.getResultTypes() &&
|
|
"materialization callback produced value of incorrect type");
|
|
#endif // NDEBUG
|
|
rewriter.replaceOp(op, newMaterialization);
|
|
return success();
|
|
}
|
|
}
|
|
|
|
InFlightDiagnostic diag = op->emitError()
|
|
<< "failed to legalize unresolved materialization "
|
|
"from ("
|
|
<< inputOperands.getTypes() << ") to ("
|
|
<< op.getResultTypes()
|
|
<< ") that remained live after conversion";
|
|
diag.attachNote(op->getUsers().begin()->getLoc())
|
|
<< "see existing live user here: " << *op->getUsers().begin();
|
|
return failure();
|
|
}
|
|
|
|
LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) {
|
|
if (ops.empty())
|
|
return success();
|
|
const ConversionTarget &target = opLegalizer.getTarget();
|
|
|
|
// Compute the set of operations and blocks to convert.
|
|
SmallVector<Operation *> toConvert;
|
|
for (auto *op : ops) {
|
|
op->walk<WalkOrder::PreOrder, ForwardDominanceIterator<>>(
|
|
[&](Operation *op) {
|
|
toConvert.push_back(op);
|
|
// Don't check this operation's children for conversion if the
|
|
// operation is recursively legal.
|
|
auto legalityInfo = target.isLegal(op);
|
|
if (legalityInfo && legalityInfo->isRecursivelyLegal)
|
|
return WalkResult::skip();
|
|
return WalkResult::advance();
|
|
});
|
|
}
|
|
|
|
// Convert each operation and discard rewrites on failure.
|
|
ConversionPatternRewriter rewriter(ops.front()->getContext(), config);
|
|
ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
|
|
|
|
for (auto *op : toConvert) {
|
|
if (failed(convert(rewriter, op))) {
|
|
// Dialect conversion failed.
|
|
if (rewriterImpl.config.allowPatternRollback) {
|
|
// Rollback is allowed: restore the original IR.
|
|
rewriterImpl.undoRewrites();
|
|
} else {
|
|
// Rollback is not allowed: apply all modifications that have been
|
|
// performed so far.
|
|
rewriterImpl.applyRewrites();
|
|
}
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
// After a successful conversion, apply rewrites.
|
|
rewriterImpl.applyRewrites();
|
|
|
|
// Gather all unresolved materializations.
|
|
SmallVector<UnrealizedConversionCastOp> allCastOps;
|
|
const DenseMap<UnrealizedConversionCastOp, UnresolvedMaterializationRewrite *>
|
|
&materializations = rewriterImpl.unresolvedMaterializations;
|
|
for (auto it : materializations)
|
|
allCastOps.push_back(it.first);
|
|
|
|
// Reconcile all UnrealizedConversionCastOps that were inserted by the
|
|
// dialect conversion frameworks. (Not the one that were inserted by
|
|
// patterns.)
|
|
SmallVector<UnrealizedConversionCastOp> remainingCastOps;
|
|
reconcileUnrealizedCasts(allCastOps, &remainingCastOps);
|
|
|
|
// Try to legalize all unresolved materializations.
|
|
if (config.buildMaterializations) {
|
|
IRRewriter rewriter(rewriterImpl.context, config.listener);
|
|
for (UnrealizedConversionCastOp castOp : remainingCastOps) {
|
|
auto it = materializations.find(castOp);
|
|
assert(it != materializations.end() && "inconsistent state");
|
|
if (failed(legalizeUnresolvedMaterialization(rewriter, it->second)))
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Reconcile Unrealized Casts
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void mlir::reconcileUnrealizedCasts(
|
|
ArrayRef<UnrealizedConversionCastOp> castOps,
|
|
SmallVectorImpl<UnrealizedConversionCastOp> *remainingCastOps) {
|
|
SetVector<UnrealizedConversionCastOp> worklist(llvm::from_range, castOps);
|
|
// This set is maintained only if `remainingCastOps` is provided.
|
|
DenseSet<Operation *> erasedOps;
|
|
|
|
// Helper function that adds all operands to the worklist that are an
|
|
// unrealized_conversion_cast op result.
|
|
auto enqueueOperands = [&](UnrealizedConversionCastOp castOp) {
|
|
for (Value v : castOp.getInputs())
|
|
if (auto inputCastOp = v.getDefiningOp<UnrealizedConversionCastOp>())
|
|
worklist.insert(inputCastOp);
|
|
};
|
|
|
|
// Helper function that return the unrealized_conversion_cast op that
|
|
// defines all inputs of the given op (in the same order). Return "nullptr"
|
|
// if there is no such op.
|
|
auto getInputCast =
|
|
[](UnrealizedConversionCastOp castOp) -> UnrealizedConversionCastOp {
|
|
if (castOp.getInputs().empty())
|
|
return {};
|
|
auto inputCastOp =
|
|
castOp.getInputs().front().getDefiningOp<UnrealizedConversionCastOp>();
|
|
if (!inputCastOp)
|
|
return {};
|
|
if (inputCastOp.getOutputs() != castOp.getInputs())
|
|
return {};
|
|
return inputCastOp;
|
|
};
|
|
|
|
// Process ops in the worklist bottom-to-top.
|
|
while (!worklist.empty()) {
|
|
UnrealizedConversionCastOp castOp = worklist.pop_back_val();
|
|
if (castOp->use_empty()) {
|
|
// DCE: If the op has no users, erase it. Add the operands to the
|
|
// worklist to find additional DCE opportunities.
|
|
enqueueOperands(castOp);
|
|
if (remainingCastOps)
|
|
erasedOps.insert(castOp.getOperation());
|
|
castOp->erase();
|
|
continue;
|
|
}
|
|
|
|
// Traverse the chain of input cast ops to see if an op with the same
|
|
// input types can be found.
|
|
UnrealizedConversionCastOp nextCast = castOp;
|
|
while (nextCast) {
|
|
if (nextCast.getInputs().getTypes() == castOp.getResultTypes()) {
|
|
// Found a cast where the input types match the output types of the
|
|
// matched op. We can directly use those inputs and the matched op can
|
|
// be removed.
|
|
enqueueOperands(castOp);
|
|
castOp.replaceAllUsesWith(nextCast.getInputs());
|
|
if (remainingCastOps)
|
|
erasedOps.insert(castOp.getOperation());
|
|
castOp->erase();
|
|
break;
|
|
}
|
|
nextCast = getInputCast(nextCast);
|
|
}
|
|
}
|
|
|
|
if (remainingCastOps)
|
|
for (UnrealizedConversionCastOp op : castOps)
|
|
if (!erasedOps.contains(op.getOperation()))
|
|
remainingCastOps->push_back(op);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Conversion
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
|
|
ArrayRef<Type> types) {
|
|
assert(!types.empty() && "expected valid types");
|
|
remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
|
|
addInputs(types);
|
|
}
|
|
|
|
void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
|
|
assert(!types.empty() &&
|
|
"1->0 type remappings don't need to be added explicitly");
|
|
argTypes.append(types.begin(), types.end());
|
|
}
|
|
|
|
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
|
|
unsigned newInputNo,
|
|
unsigned newInputCount) {
|
|
assert(!remappedInputs[origInputNo] && "input has already been remapped");
|
|
assert(newInputCount != 0 && "expected valid input count");
|
|
remappedInputs[origInputNo] =
|
|
InputMapping{newInputNo, newInputCount, /*replacementValues=*/{}};
|
|
}
|
|
|
|
void TypeConverter::SignatureConversion::remapInput(
|
|
unsigned origInputNo, ArrayRef<Value> replacements) {
|
|
assert(!remappedInputs[origInputNo] && "input has already been remapped");
|
|
remappedInputs[origInputNo] = InputMapping{
|
|
origInputNo, /*size=*/0,
|
|
SmallVector<Value, 1>(replacements.begin(), replacements.end())};
|
|
}
|
|
|
|
LogicalResult TypeConverter::convertType(Type t,
|
|
SmallVectorImpl<Type> &results) const {
|
|
assert(t && "expected non-null type");
|
|
|
|
{
|
|
std::shared_lock<decltype(cacheMutex)> cacheReadLock(cacheMutex,
|
|
std::defer_lock);
|
|
if (t.getContext()->isMultithreadingEnabled())
|
|
cacheReadLock.lock();
|
|
auto existingIt = cachedDirectConversions.find(t);
|
|
if (existingIt != cachedDirectConversions.end()) {
|
|
if (existingIt->second)
|
|
results.push_back(existingIt->second);
|
|
return success(existingIt->second != nullptr);
|
|
}
|
|
auto multiIt = cachedMultiConversions.find(t);
|
|
if (multiIt != cachedMultiConversions.end()) {
|
|
results.append(multiIt->second.begin(), multiIt->second.end());
|
|
return success();
|
|
}
|
|
}
|
|
// Walk the added converters in reverse order to apply the most recently
|
|
// registered first.
|
|
size_t currentCount = results.size();
|
|
|
|
std::unique_lock<decltype(cacheMutex)> cacheWriteLock(cacheMutex,
|
|
std::defer_lock);
|
|
|
|
for (const ConversionCallbackFn &converter : llvm::reverse(conversions)) {
|
|
if (std::optional<LogicalResult> result = converter(t, results)) {
|
|
if (t.getContext()->isMultithreadingEnabled())
|
|
cacheWriteLock.lock();
|
|
if (!succeeded(*result)) {
|
|
assert(results.size() == currentCount &&
|
|
"failed type conversion should not change results");
|
|
cachedDirectConversions.try_emplace(t, nullptr);
|
|
return failure();
|
|
}
|
|
auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
|
|
if (newTypes.size() == 1)
|
|
cachedDirectConversions.try_emplace(t, newTypes.front());
|
|
else
|
|
cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
|
|
return success();
|
|
} else {
|
|
assert(results.size() == currentCount &&
|
|
"failed type conversion should not change results");
|
|
}
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
Type TypeConverter::convertType(Type t) const {
|
|
// Use the multi-type result version to convert the type.
|
|
SmallVector<Type, 1> results;
|
|
if (failed(convertType(t, results)))
|
|
return nullptr;
|
|
|
|
// Check to ensure that only one type was produced.
|
|
return results.size() == 1 ? results.front() : nullptr;
|
|
}
|
|
|
|
LogicalResult
|
|
TypeConverter::convertTypes(TypeRange types,
|
|
SmallVectorImpl<Type> &results) const {
|
|
for (Type type : types)
|
|
if (failed(convertType(type, results)))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
bool TypeConverter::isLegal(Type type) const {
|
|
return convertType(type) == type;
|
|
}
|
|
bool TypeConverter::isLegal(Operation *op) const {
|
|
return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
|
|
}
|
|
|
|
bool TypeConverter::isLegal(Region *region) const {
|
|
return llvm::all_of(*region, [this](Block &block) {
|
|
return isLegal(block.getArgumentTypes());
|
|
});
|
|
}
|
|
|
|
bool TypeConverter::isSignatureLegal(FunctionType ty) const {
|
|
return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
|
|
}
|
|
|
|
LogicalResult
|
|
TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
|
|
SignatureConversion &result) const {
|
|
// Try to convert the given input type.
|
|
SmallVector<Type, 1> convertedTypes;
|
|
if (failed(convertType(type, convertedTypes)))
|
|
return failure();
|
|
|
|
// If this argument is being dropped, there is nothing left to do.
|
|
if (convertedTypes.empty())
|
|
return success();
|
|
|
|
// Otherwise, add the new inputs.
|
|
result.addInputs(inputNo, convertedTypes);
|
|
return success();
|
|
}
|
|
LogicalResult
|
|
TypeConverter::convertSignatureArgs(TypeRange types,
|
|
SignatureConversion &result,
|
|
unsigned origInputOffset) const {
|
|
for (unsigned i = 0, e = types.size(); i != e; ++i)
|
|
if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
Value TypeConverter::materializeSourceConversion(OpBuilder &builder,
|
|
Location loc, Type resultType,
|
|
ValueRange inputs) const {
|
|
for (const SourceMaterializationCallbackFn &fn :
|
|
llvm::reverse(sourceMaterializations))
|
|
if (Value result = fn(builder, resultType, inputs, loc))
|
|
return result;
|
|
return nullptr;
|
|
}
|
|
|
|
Value TypeConverter::materializeTargetConversion(OpBuilder &builder,
|
|
Location loc, Type resultType,
|
|
ValueRange inputs,
|
|
Type originalType) const {
|
|
SmallVector<Value> result = materializeTargetConversion(
|
|
builder, loc, TypeRange(resultType), inputs, originalType);
|
|
if (result.empty())
|
|
return nullptr;
|
|
assert(result.size() == 1 && "expected single result");
|
|
return result.front();
|
|
}
|
|
|
|
SmallVector<Value> TypeConverter::materializeTargetConversion(
|
|
OpBuilder &builder, Location loc, TypeRange resultTypes, ValueRange inputs,
|
|
Type originalType) const {
|
|
for (const TargetMaterializationCallbackFn &fn :
|
|
llvm::reverse(targetMaterializations)) {
|
|
SmallVector<Value> result =
|
|
fn(builder, resultTypes, inputs, loc, originalType);
|
|
if (result.empty())
|
|
continue;
|
|
assert(TypeRange(ValueRange(result)) == resultTypes &&
|
|
"callback produced incorrect number of values or values with "
|
|
"incorrect types");
|
|
return result;
|
|
}
|
|
return {};
|
|
}
|
|
|
|
std::optional<TypeConverter::SignatureConversion>
|
|
TypeConverter::convertBlockSignature(Block *block) const {
|
|
SignatureConversion conversion(block->getNumArguments());
|
|
if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
|
|
return std::nullopt;
|
|
return conversion;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type attribute conversion
|
|
//===----------------------------------------------------------------------===//
|
|
TypeConverter::AttributeConversionResult
|
|
TypeConverter::AttributeConversionResult::result(Attribute attr) {
|
|
return AttributeConversionResult(attr, resultTag);
|
|
}
|
|
|
|
TypeConverter::AttributeConversionResult
|
|
TypeConverter::AttributeConversionResult::na() {
|
|
return AttributeConversionResult(nullptr, naTag);
|
|
}
|
|
|
|
TypeConverter::AttributeConversionResult
|
|
TypeConverter::AttributeConversionResult::abort() {
|
|
return AttributeConversionResult(nullptr, abortTag);
|
|
}
|
|
|
|
bool TypeConverter::AttributeConversionResult::hasResult() const {
|
|
return impl.getInt() == resultTag;
|
|
}
|
|
|
|
bool TypeConverter::AttributeConversionResult::isNa() const {
|
|
return impl.getInt() == naTag;
|
|
}
|
|
|
|
bool TypeConverter::AttributeConversionResult::isAbort() const {
|
|
return impl.getInt() == abortTag;
|
|
}
|
|
|
|
Attribute TypeConverter::AttributeConversionResult::getResult() const {
|
|
assert(hasResult() && "Cannot get result from N/A or abort");
|
|
return impl.getPointer();
|
|
}
|
|
|
|
std::optional<Attribute>
|
|
TypeConverter::convertTypeAttribute(Type type, Attribute attr) const {
|
|
for (const TypeAttributeConversionCallbackFn &fn :
|
|
llvm::reverse(typeAttributeConversions)) {
|
|
AttributeConversionResult res = fn(type, attr);
|
|
if (res.hasResult())
|
|
return res.getResult();
|
|
if (res.isAbort())
|
|
return std::nullopt;
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FunctionOpInterfaceSignatureConversion
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static LogicalResult convertFuncOpTypes(FunctionOpInterface funcOp,
|
|
const TypeConverter &typeConverter,
|
|
ConversionPatternRewriter &rewriter) {
|
|
FunctionType type = dyn_cast<FunctionType>(funcOp.getFunctionType());
|
|
if (!type)
|
|
return failure();
|
|
|
|
// Convert the original function types.
|
|
TypeConverter::SignatureConversion result(type.getNumInputs());
|
|
SmallVector<Type, 1> newResults;
|
|
if (failed(typeConverter.convertSignatureArgs(type.getInputs(), result)) ||
|
|
failed(typeConverter.convertTypes(type.getResults(), newResults)) ||
|
|
failed(rewriter.convertRegionTypes(&funcOp.getFunctionBody(),
|
|
typeConverter, &result)))
|
|
return failure();
|
|
|
|
// Update the function signature in-place.
|
|
auto newType = FunctionType::get(rewriter.getContext(),
|
|
result.getConvertedTypes(), newResults);
|
|
|
|
rewriter.modifyOpInPlace(funcOp, [&] { funcOp.setType(newType); });
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Create a default conversion pattern that rewrites the type signature of a
|
|
/// FunctionOpInterface op. This only supports ops which use FunctionType to
|
|
/// represent their type.
|
|
namespace {
|
|
struct FunctionOpInterfaceSignatureConversion : public ConversionPattern {
|
|
FunctionOpInterfaceSignatureConversion(StringRef functionLikeOpName,
|
|
MLIRContext *ctx,
|
|
const TypeConverter &converter)
|
|
: ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value> /*operands*/,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
FunctionOpInterface funcOp = cast<FunctionOpInterface>(op);
|
|
return convertFuncOpTypes(funcOp, *typeConverter, rewriter);
|
|
}
|
|
};
|
|
|
|
struct AnyFunctionOpInterfaceSignatureConversion
|
|
: public OpInterfaceConversionPattern<FunctionOpInterface> {
|
|
using OpInterfaceConversionPattern::OpInterfaceConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(FunctionOpInterface funcOp, ArrayRef<Value> /*operands*/,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
return convertFuncOpTypes(funcOp, *typeConverter, rewriter);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
FailureOr<Operation *>
|
|
mlir::convertOpResultTypes(Operation *op, ValueRange operands,
|
|
const TypeConverter &converter,
|
|
ConversionPatternRewriter &rewriter) {
|
|
assert(op && "Invalid op");
|
|
Location loc = op->getLoc();
|
|
if (converter.isLegal(op))
|
|
return rewriter.notifyMatchFailure(loc, "op already legal");
|
|
|
|
OperationState newOp(loc, op->getName());
|
|
newOp.addOperands(operands);
|
|
|
|
SmallVector<Type> newResultTypes;
|
|
if (failed(converter.convertTypes(op->getResultTypes(), newResultTypes)))
|
|
return rewriter.notifyMatchFailure(loc, "couldn't convert return types");
|
|
|
|
newOp.addTypes(newResultTypes);
|
|
newOp.addAttributes(op->getAttrs());
|
|
return rewriter.create(newOp);
|
|
}
|
|
|
|
void mlir::populateFunctionOpInterfaceTypeConversionPattern(
|
|
StringRef functionLikeOpName, RewritePatternSet &patterns,
|
|
const TypeConverter &converter) {
|
|
patterns.add<FunctionOpInterfaceSignatureConversion>(
|
|
functionLikeOpName, patterns.getContext(), converter);
|
|
}
|
|
|
|
void mlir::populateAnyFunctionOpInterfaceTypeConversionPattern(
|
|
RewritePatternSet &patterns, const TypeConverter &converter) {
|
|
patterns.add<AnyFunctionOpInterfaceSignatureConversion>(
|
|
converter, patterns.getContext());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionTarget
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ConversionTarget::setOpAction(OperationName op,
|
|
LegalizationAction action) {
|
|
legalOperations[op].action = action;
|
|
}
|
|
|
|
void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
|
|
LegalizationAction action) {
|
|
for (StringRef dialect : dialectNames)
|
|
legalDialects[dialect] = action;
|
|
}
|
|
|
|
auto ConversionTarget::getOpAction(OperationName op) const
|
|
-> std::optional<LegalizationAction> {
|
|
std::optional<LegalizationInfo> info = getOpInfo(op);
|
|
return info ? info->action : std::optional<LegalizationAction>();
|
|
}
|
|
|
|
auto ConversionTarget::isLegal(Operation *op) const
|
|
-> std::optional<LegalOpDetails> {
|
|
std::optional<LegalizationInfo> info = getOpInfo(op->getName());
|
|
if (!info)
|
|
return std::nullopt;
|
|
|
|
// Returns true if this operation instance is known to be legal.
|
|
auto isOpLegal = [&] {
|
|
// Handle dynamic legality either with the provided legality function.
|
|
if (info->action == LegalizationAction::Dynamic) {
|
|
std::optional<bool> result = info->legalityFn(op);
|
|
if (result)
|
|
return *result;
|
|
}
|
|
|
|
// Otherwise, the operation is only legal if it was marked 'Legal'.
|
|
return info->action == LegalizationAction::Legal;
|
|
};
|
|
if (!isOpLegal())
|
|
return std::nullopt;
|
|
|
|
// This operation is legal, compute any additional legality information.
|
|
LegalOpDetails legalityDetails;
|
|
if (info->isRecursivelyLegal) {
|
|
auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
|
|
if (legalityFnIt != opRecursiveLegalityFns.end()) {
|
|
legalityDetails.isRecursivelyLegal =
|
|
legalityFnIt->second(op).value_or(true);
|
|
} else {
|
|
legalityDetails.isRecursivelyLegal = true;
|
|
}
|
|
}
|
|
return legalityDetails;
|
|
}
|
|
|
|
bool ConversionTarget::isIllegal(Operation *op) const {
|
|
std::optional<LegalizationInfo> info = getOpInfo(op->getName());
|
|
if (!info)
|
|
return false;
|
|
|
|
if (info->action == LegalizationAction::Dynamic) {
|
|
std::optional<bool> result = info->legalityFn(op);
|
|
if (!result)
|
|
return false;
|
|
|
|
return !(*result);
|
|
}
|
|
|
|
return info->action == LegalizationAction::Illegal;
|
|
}
|
|
|
|
static ConversionTarget::DynamicLegalityCallbackFn composeLegalityCallbacks(
|
|
ConversionTarget::DynamicLegalityCallbackFn oldCallback,
|
|
ConversionTarget::DynamicLegalityCallbackFn newCallback) {
|
|
if (!oldCallback)
|
|
return newCallback;
|
|
|
|
auto chain = [oldCl = std::move(oldCallback), newCl = std::move(newCallback)](
|
|
Operation *op) -> std::optional<bool> {
|
|
if (std::optional<bool> result = newCl(op))
|
|
return *result;
|
|
|
|
return oldCl(op);
|
|
};
|
|
return chain;
|
|
}
|
|
|
|
void ConversionTarget::setLegalityCallback(
|
|
OperationName name, const DynamicLegalityCallbackFn &callback) {
|
|
assert(callback && "expected valid legality callback");
|
|
auto *infoIt = legalOperations.find(name);
|
|
assert(infoIt != legalOperations.end() &&
|
|
infoIt->second.action == LegalizationAction::Dynamic &&
|
|
"expected operation to already be marked as dynamically legal");
|
|
infoIt->second.legalityFn =
|
|
composeLegalityCallbacks(std::move(infoIt->second.legalityFn), callback);
|
|
}
|
|
|
|
void ConversionTarget::markOpRecursivelyLegal(
|
|
OperationName name, const DynamicLegalityCallbackFn &callback) {
|
|
auto *infoIt = legalOperations.find(name);
|
|
assert(infoIt != legalOperations.end() &&
|
|
infoIt->second.action != LegalizationAction::Illegal &&
|
|
"expected operation to already be marked as legal");
|
|
infoIt->second.isRecursivelyLegal = true;
|
|
if (callback)
|
|
opRecursiveLegalityFns[name] = composeLegalityCallbacks(
|
|
std::move(opRecursiveLegalityFns[name]), callback);
|
|
else
|
|
opRecursiveLegalityFns.erase(name);
|
|
}
|
|
|
|
void ConversionTarget::setLegalityCallback(
|
|
ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
|
|
assert(callback && "expected valid legality callback");
|
|
for (StringRef dialect : dialects)
|
|
dialectLegalityFns[dialect] = composeLegalityCallbacks(
|
|
std::move(dialectLegalityFns[dialect]), callback);
|
|
}
|
|
|
|
void ConversionTarget::setLegalityCallback(
|
|
const DynamicLegalityCallbackFn &callback) {
|
|
assert(callback && "expected valid legality callback");
|
|
unknownLegalityFn = composeLegalityCallbacks(unknownLegalityFn, callback);
|
|
}
|
|
|
|
auto ConversionTarget::getOpInfo(OperationName op) const
|
|
-> std::optional<LegalizationInfo> {
|
|
// Check for info for this specific operation.
|
|
const auto *it = legalOperations.find(op);
|
|
if (it != legalOperations.end())
|
|
return it->second;
|
|
// Check for info for the parent dialect.
|
|
auto dialectIt = legalDialects.find(op.getDialectNamespace());
|
|
if (dialectIt != legalDialects.end()) {
|
|
DynamicLegalityCallbackFn callback;
|
|
auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace());
|
|
if (dialectFn != dialectLegalityFns.end())
|
|
callback = dialectFn->second;
|
|
return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
|
|
callback};
|
|
}
|
|
// Otherwise, check if we mark unknown operations as dynamic.
|
|
if (unknownLegalityFn)
|
|
return LegalizationInfo{LegalizationAction::Dynamic,
|
|
/*isRecursivelyLegal=*/false, unknownLegalityFn};
|
|
return std::nullopt;
|
|
}
|
|
|
|
#if MLIR_ENABLE_PDL_IN_PATTERNMATCH
|
|
//===----------------------------------------------------------------------===//
|
|
// PDL Configuration
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void PDLConversionConfig::notifyRewriteBegin(PatternRewriter &rewriter) {
|
|
auto &rewriterImpl =
|
|
static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
|
|
rewriterImpl.currentTypeConverter = getTypeConverter();
|
|
}
|
|
|
|
void PDLConversionConfig::notifyRewriteEnd(PatternRewriter &rewriter) {
|
|
auto &rewriterImpl =
|
|
static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
|
|
rewriterImpl.currentTypeConverter = nullptr;
|
|
}
|
|
|
|
/// Remap the given value using the rewriter and the type converter in the
|
|
/// provided config.
|
|
static FailureOr<SmallVector<Value>>
|
|
pdllConvertValues(ConversionPatternRewriter &rewriter, ValueRange values) {
|
|
SmallVector<Value> mappedValues;
|
|
if (failed(rewriter.getRemappedValues(values, mappedValues)))
|
|
return failure();
|
|
return std::move(mappedValues);
|
|
}
|
|
|
|
void mlir::registerConversionPDLFunctions(RewritePatternSet &patterns) {
|
|
patterns.getPDLPatterns().registerRewriteFunction(
|
|
"convertValue",
|
|
[](PatternRewriter &rewriter, Value value) -> FailureOr<Value> {
|
|
auto results = pdllConvertValues(
|
|
static_cast<ConversionPatternRewriter &>(rewriter), value);
|
|
if (failed(results))
|
|
return failure();
|
|
return results->front();
|
|
});
|
|
patterns.getPDLPatterns().registerRewriteFunction(
|
|
"convertValues", [](PatternRewriter &rewriter, ValueRange values) {
|
|
return pdllConvertValues(
|
|
static_cast<ConversionPatternRewriter &>(rewriter), values);
|
|
});
|
|
patterns.getPDLPatterns().registerRewriteFunction(
|
|
"convertType",
|
|
[](PatternRewriter &rewriter, Type type) -> FailureOr<Type> {
|
|
auto &rewriterImpl =
|
|
static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
|
|
if (const TypeConverter *converter =
|
|
rewriterImpl.currentTypeConverter) {
|
|
if (Type newType = converter->convertType(type))
|
|
return newType;
|
|
return failure();
|
|
}
|
|
return type;
|
|
});
|
|
patterns.getPDLPatterns().registerRewriteFunction(
|
|
"convertTypes",
|
|
[](PatternRewriter &rewriter,
|
|
TypeRange types) -> FailureOr<SmallVector<Type>> {
|
|
auto &rewriterImpl =
|
|
static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
|
|
const TypeConverter *converter = rewriterImpl.currentTypeConverter;
|
|
if (!converter)
|
|
return SmallVector<Type>(types);
|
|
|
|
SmallVector<Type> remappedTypes;
|
|
if (failed(converter->convertTypes(types, remappedTypes)))
|
|
return failure();
|
|
return std::move(remappedTypes);
|
|
});
|
|
}
|
|
#endif // MLIR_ENABLE_PDL_IN_PATTERNMATCH
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Op Conversion Entry Points
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Partial Conversion
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult mlir::applyPartialConversion(
|
|
ArrayRef<Operation *> ops, const ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns, ConversionConfig config) {
|
|
OperationConverter opConverter(target, patterns, config,
|
|
OpConversionMode::Partial);
|
|
return opConverter.convertOperations(ops);
|
|
}
|
|
LogicalResult
|
|
mlir::applyPartialConversion(Operation *op, const ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns,
|
|
ConversionConfig config) {
|
|
return applyPartialConversion(llvm::ArrayRef(op), target, patterns, config);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Full Conversion
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult mlir::applyFullConversion(ArrayRef<Operation *> ops,
|
|
const ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns,
|
|
ConversionConfig config) {
|
|
OperationConverter opConverter(target, patterns, config,
|
|
OpConversionMode::Full);
|
|
return opConverter.convertOperations(ops);
|
|
}
|
|
LogicalResult mlir::applyFullConversion(Operation *op,
|
|
const ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns,
|
|
ConversionConfig config) {
|
|
return applyFullConversion(llvm::ArrayRef(op), target, patterns, config);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Analysis Conversion
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Find a common IsolatedFromAbove ancestor of the given ops. If at least one
|
|
/// op is a top-level module op (which is expected to be isolated from above),
|
|
/// return that op.
|
|
static Operation *findCommonAncestor(ArrayRef<Operation *> ops) {
|
|
// Check if there is a top-level operation within `ops`. If so, return that
|
|
// op.
|
|
for (Operation *op : ops) {
|
|
if (!op->getParentOp()) {
|
|
#ifndef NDEBUG
|
|
assert(op->hasTrait<OpTrait::IsIsolatedFromAbove>() &&
|
|
"expected top-level op to be isolated from above");
|
|
for (Operation *other : ops)
|
|
assert(op->isAncestor(other) &&
|
|
"expected ops to have a common ancestor");
|
|
#endif // NDEBUG
|
|
return op;
|
|
}
|
|
}
|
|
|
|
// No top-level op. Find a common ancestor.
|
|
Operation *commonAncestor =
|
|
ops.front()->getParentWithTrait<OpTrait::IsIsolatedFromAbove>();
|
|
for (Operation *op : ops.drop_front()) {
|
|
while (!commonAncestor->isProperAncestor(op)) {
|
|
commonAncestor =
|
|
commonAncestor->getParentWithTrait<OpTrait::IsIsolatedFromAbove>();
|
|
assert(commonAncestor &&
|
|
"expected to find a common isolated from above ancestor");
|
|
}
|
|
}
|
|
|
|
return commonAncestor;
|
|
}
|
|
|
|
LogicalResult mlir::applyAnalysisConversion(
|
|
ArrayRef<Operation *> ops, ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns, ConversionConfig config) {
|
|
#ifndef NDEBUG
|
|
if (config.legalizableOps)
|
|
assert(config.legalizableOps->empty() && "expected empty set");
|
|
#endif // NDEBUG
|
|
|
|
// Clone closted common ancestor that is isolated from above.
|
|
Operation *commonAncestor = findCommonAncestor(ops);
|
|
IRMapping mapping;
|
|
Operation *clonedAncestor = commonAncestor->clone(mapping);
|
|
// Compute inverse IR mapping.
|
|
DenseMap<Operation *, Operation *> inverseOperationMap;
|
|
for (auto &it : mapping.getOperationMap())
|
|
inverseOperationMap[it.second] = it.first;
|
|
|
|
// Convert the cloned operations. The original IR will remain unchanged.
|
|
SmallVector<Operation *> opsToConvert = llvm::map_to_vector(
|
|
ops, [&](Operation *op) { return mapping.lookup(op); });
|
|
OperationConverter opConverter(target, patterns, config,
|
|
OpConversionMode::Analysis);
|
|
LogicalResult status = opConverter.convertOperations(opsToConvert);
|
|
|
|
// Remap `legalizableOps`, so that they point to the original ops and not the
|
|
// cloned ops.
|
|
if (config.legalizableOps) {
|
|
DenseSet<Operation *> originalLegalizableOps;
|
|
for (Operation *op : *config.legalizableOps)
|
|
originalLegalizableOps.insert(inverseOperationMap[op]);
|
|
*config.legalizableOps = std::move(originalLegalizableOps);
|
|
}
|
|
|
|
// Erase the cloned IR.
|
|
clonedAncestor->erase();
|
|
return status;
|
|
}
|
|
|
|
LogicalResult
|
|
mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns,
|
|
ConversionConfig config) {
|
|
return applyAnalysisConversion(llvm::ArrayRef(op), target, patterns, config);
|
|
}
|