
The greedy rewriter is used in many different flows and it has a lot of convenience (work list management, debugging actions, tracing, etc). But it combines two kinds of greedy behavior 1) how ops are matched, 2) folding wherever it can. These are independent forms of greedy and leads to inefficiency. E.g., cases where one need to create different phases in lowering and is required to applying patterns in specific order split across different passes. Using the driver one ends up needlessly retrying folding/having multiple rounds of folding attempts, where one final run would have sufficed. Of course folks can locally avoid this behavior by just building their own, but this is also a common requested feature that folks keep on working around locally in suboptimal ways. For downstream users, there should be no behavioral change. Updating from the deprecated should just be a find and replace (e.g., `find ./ -type f -exec sed -i 's|applyPatternsAndFoldGreedily|applyPatternsGreedily|g' {} \;` variety) as the API arguments hasn't changed between the two.
2042 lines
82 KiB
C++
2042 lines
82 KiB
C++
//===- Utils.cpp ---- Utilities for affine dialect transformation ---------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements miscellaneous transformation utilities for the Affine
|
|
// dialect.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Affine/Utils.h"
|
|
|
|
#include "mlir/Dialect/Affine/Analysis/Utils.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
|
|
#include "mlir/Dialect/Affine/LoopUtils.h"
|
|
#include "mlir/Dialect/Arith/Utils/Utils.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/Utils/IndexingUtils.h"
|
|
#include "mlir/IR/AffineExprVisitor.h"
|
|
#include "mlir/IR/Dominance.h"
|
|
#include "mlir/IR/IRMapping.h"
|
|
#include "mlir/IR/ImplicitLocOpBuilder.h"
|
|
#include "mlir/IR/IntegerSet.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "llvm/Support/LogicalResult.h"
|
|
#include <optional>
|
|
|
|
#define DEBUG_TYPE "affine-utils"
|
|
|
|
using namespace mlir;
|
|
using namespace affine;
|
|
using namespace presburger;
|
|
|
|
namespace {
|
|
/// Visit affine expressions recursively and build the sequence of operations
|
|
/// that correspond to it. Visitation functions return an Value of the
|
|
/// expression subtree they visited or `nullptr` on error.
|
|
class AffineApplyExpander
|
|
: public AffineExprVisitor<AffineApplyExpander, Value> {
|
|
public:
|
|
/// This internal class expects arguments to be non-null, checks must be
|
|
/// performed at the call site.
|
|
AffineApplyExpander(OpBuilder &builder, ValueRange dimValues,
|
|
ValueRange symbolValues, Location loc)
|
|
: builder(builder), dimValues(dimValues), symbolValues(symbolValues),
|
|
loc(loc) {}
|
|
|
|
template <typename OpTy>
|
|
Value buildBinaryExpr(AffineBinaryOpExpr expr) {
|
|
auto lhs = visit(expr.getLHS());
|
|
auto rhs = visit(expr.getRHS());
|
|
if (!lhs || !rhs)
|
|
return nullptr;
|
|
auto op = builder.create<OpTy>(loc, lhs, rhs);
|
|
return op.getResult();
|
|
}
|
|
|
|
Value visitAddExpr(AffineBinaryOpExpr expr) {
|
|
return buildBinaryExpr<arith::AddIOp>(expr);
|
|
}
|
|
|
|
Value visitMulExpr(AffineBinaryOpExpr expr) {
|
|
return buildBinaryExpr<arith::MulIOp>(expr);
|
|
}
|
|
|
|
/// Euclidean modulo operation: negative RHS is not allowed.
|
|
/// Remainder of the euclidean integer division is always non-negative.
|
|
///
|
|
/// Implemented as
|
|
///
|
|
/// a mod b =
|
|
/// let remainder = srem a, b;
|
|
/// negative = a < 0 in
|
|
/// select negative, remainder + b, remainder.
|
|
Value visitModExpr(AffineBinaryOpExpr expr) {
|
|
if (auto rhsConst = dyn_cast<AffineConstantExpr>(expr.getRHS())) {
|
|
if (rhsConst.getValue() <= 0) {
|
|
emitError(loc, "modulo by non-positive value is not supported");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
auto lhs = visit(expr.getLHS());
|
|
auto rhs = visit(expr.getRHS());
|
|
assert(lhs && rhs && "unexpected affine expr lowering failure");
|
|
|
|
Value remainder = builder.create<arith::RemSIOp>(loc, lhs, rhs);
|
|
Value zeroCst = builder.create<arith::ConstantIndexOp>(loc, 0);
|
|
Value isRemainderNegative = builder.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::slt, remainder, zeroCst);
|
|
Value correctedRemainder =
|
|
builder.create<arith::AddIOp>(loc, remainder, rhs);
|
|
Value result = builder.create<arith::SelectOp>(
|
|
loc, isRemainderNegative, correctedRemainder, remainder);
|
|
return result;
|
|
}
|
|
|
|
/// Floor division operation (rounds towards negative infinity).
|
|
///
|
|
/// For positive divisors, it can be implemented without branching and with a
|
|
/// single division operation as
|
|
///
|
|
/// a floordiv b =
|
|
/// let negative = a < 0 in
|
|
/// let absolute = negative ? -a - 1 : a in
|
|
/// let quotient = absolute / b in
|
|
/// negative ? -quotient - 1 : quotient
|
|
///
|
|
/// Note: this lowering does not use arith.floordivsi because the lowering of
|
|
/// that to arith.divsi (see populateCeilFloorDivExpandOpsPatterns) generates
|
|
/// not one but two arith.divsi. That could be changed to one divsi, but one
|
|
/// way or another, going through arith.floordivsi will result in more complex
|
|
/// IR because arith.floordivsi is more general than affine floordiv in that
|
|
/// it supports negative RHS.
|
|
Value visitFloorDivExpr(AffineBinaryOpExpr expr) {
|
|
if (auto rhsConst = dyn_cast<AffineConstantExpr>(expr.getRHS())) {
|
|
if (rhsConst.getValue() <= 0) {
|
|
emitError(loc, "division by non-positive value is not supported");
|
|
return nullptr;
|
|
}
|
|
}
|
|
auto lhs = visit(expr.getLHS());
|
|
auto rhs = visit(expr.getRHS());
|
|
assert(lhs && rhs && "unexpected affine expr lowering failure");
|
|
|
|
Value zeroCst = builder.create<arith::ConstantIndexOp>(loc, 0);
|
|
Value noneCst = builder.create<arith::ConstantIndexOp>(loc, -1);
|
|
Value negative = builder.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::slt, lhs, zeroCst);
|
|
Value negatedDecremented = builder.create<arith::SubIOp>(loc, noneCst, lhs);
|
|
Value dividend =
|
|
builder.create<arith::SelectOp>(loc, negative, negatedDecremented, lhs);
|
|
Value quotient = builder.create<arith::DivSIOp>(loc, dividend, rhs);
|
|
Value correctedQuotient =
|
|
builder.create<arith::SubIOp>(loc, noneCst, quotient);
|
|
Value result = builder.create<arith::SelectOp>(loc, negative,
|
|
correctedQuotient, quotient);
|
|
return result;
|
|
}
|
|
|
|
/// Ceiling division operation (rounds towards positive infinity).
|
|
///
|
|
/// For positive divisors, it can be implemented without branching and with a
|
|
/// single division operation as
|
|
///
|
|
/// a ceildiv b =
|
|
/// let negative = a <= 0 in
|
|
/// let absolute = negative ? -a : a - 1 in
|
|
/// let quotient = absolute / b in
|
|
/// negative ? -quotient : quotient + 1
|
|
///
|
|
/// Note: not using arith.ceildivsi for the same reason as explained in the
|
|
/// visitFloorDivExpr comment.
|
|
Value visitCeilDivExpr(AffineBinaryOpExpr expr) {
|
|
if (auto rhsConst = dyn_cast<AffineConstantExpr>(expr.getRHS())) {
|
|
if (rhsConst.getValue() <= 0) {
|
|
emitError(loc, "division by non-positive value is not supported");
|
|
return nullptr;
|
|
}
|
|
}
|
|
auto lhs = visit(expr.getLHS());
|
|
auto rhs = visit(expr.getRHS());
|
|
assert(lhs && rhs && "unexpected affine expr lowering failure");
|
|
|
|
Value zeroCst = builder.create<arith::ConstantIndexOp>(loc, 0);
|
|
Value oneCst = builder.create<arith::ConstantIndexOp>(loc, 1);
|
|
Value nonPositive = builder.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::sle, lhs, zeroCst);
|
|
Value negated = builder.create<arith::SubIOp>(loc, zeroCst, lhs);
|
|
Value decremented = builder.create<arith::SubIOp>(loc, lhs, oneCst);
|
|
Value dividend =
|
|
builder.create<arith::SelectOp>(loc, nonPositive, negated, decremented);
|
|
Value quotient = builder.create<arith::DivSIOp>(loc, dividend, rhs);
|
|
Value negatedQuotient =
|
|
builder.create<arith::SubIOp>(loc, zeroCst, quotient);
|
|
Value incrementedQuotient =
|
|
builder.create<arith::AddIOp>(loc, quotient, oneCst);
|
|
Value result = builder.create<arith::SelectOp>(
|
|
loc, nonPositive, negatedQuotient, incrementedQuotient);
|
|
return result;
|
|
}
|
|
|
|
Value visitConstantExpr(AffineConstantExpr expr) {
|
|
auto op = builder.create<arith::ConstantIndexOp>(loc, expr.getValue());
|
|
return op.getResult();
|
|
}
|
|
|
|
Value visitDimExpr(AffineDimExpr expr) {
|
|
assert(expr.getPosition() < dimValues.size() &&
|
|
"affine dim position out of range");
|
|
return dimValues[expr.getPosition()];
|
|
}
|
|
|
|
Value visitSymbolExpr(AffineSymbolExpr expr) {
|
|
assert(expr.getPosition() < symbolValues.size() &&
|
|
"symbol dim position out of range");
|
|
return symbolValues[expr.getPosition()];
|
|
}
|
|
|
|
private:
|
|
OpBuilder &builder;
|
|
ValueRange dimValues;
|
|
ValueRange symbolValues;
|
|
|
|
Location loc;
|
|
};
|
|
} // namespace
|
|
|
|
/// Create a sequence of operations that implement the `expr` applied to the
|
|
/// given dimension and symbol values.
|
|
mlir::Value mlir::affine::expandAffineExpr(OpBuilder &builder, Location loc,
|
|
AffineExpr expr,
|
|
ValueRange dimValues,
|
|
ValueRange symbolValues) {
|
|
return AffineApplyExpander(builder, dimValues, symbolValues, loc).visit(expr);
|
|
}
|
|
|
|
/// Create a sequence of operations that implement the `affineMap` applied to
|
|
/// the given `operands` (as it it were an AffineApplyOp).
|
|
std::optional<SmallVector<Value, 8>>
|
|
mlir::affine::expandAffineMap(OpBuilder &builder, Location loc,
|
|
AffineMap affineMap, ValueRange operands) {
|
|
auto numDims = affineMap.getNumDims();
|
|
auto expanded = llvm::to_vector<8>(
|
|
llvm::map_range(affineMap.getResults(),
|
|
[numDims, &builder, loc, operands](AffineExpr expr) {
|
|
return expandAffineExpr(builder, loc, expr,
|
|
operands.take_front(numDims),
|
|
operands.drop_front(numDims));
|
|
}));
|
|
if (llvm::all_of(expanded, [](Value v) { return v; }))
|
|
return expanded;
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// Promotes the `then` or the `else` block of `ifOp` (depending on whether
|
|
/// `elseBlock` is false or true) into `ifOp`'s containing block, and discards
|
|
/// the rest of the op.
|
|
static void promoteIfBlock(AffineIfOp ifOp, bool elseBlock) {
|
|
if (elseBlock)
|
|
assert(ifOp.hasElse() && "else block expected");
|
|
|
|
Block *destBlock = ifOp->getBlock();
|
|
Block *srcBlock = elseBlock ? ifOp.getElseBlock() : ifOp.getThenBlock();
|
|
destBlock->getOperations().splice(
|
|
Block::iterator(ifOp), srcBlock->getOperations(), srcBlock->begin(),
|
|
std::prev(srcBlock->end()));
|
|
ifOp.erase();
|
|
}
|
|
|
|
/// Returns the outermost affine.for/parallel op that the `ifOp` is invariant
|
|
/// on. The `ifOp` could be hoisted and placed right before such an operation.
|
|
/// This method assumes that the ifOp has been canonicalized (to be correct and
|
|
/// effective).
|
|
static Operation *getOutermostInvariantForOp(AffineIfOp ifOp) {
|
|
// Walk up the parents past all for op that this conditional is invariant on.
|
|
auto ifOperands = ifOp.getOperands();
|
|
auto *res = ifOp.getOperation();
|
|
while (!isa<func::FuncOp>(res->getParentOp())) {
|
|
auto *parentOp = res->getParentOp();
|
|
if (auto forOp = dyn_cast<AffineForOp>(parentOp)) {
|
|
if (llvm::is_contained(ifOperands, forOp.getInductionVar()))
|
|
break;
|
|
} else if (auto parallelOp = dyn_cast<AffineParallelOp>(parentOp)) {
|
|
for (auto iv : parallelOp.getIVs())
|
|
if (llvm::is_contained(ifOperands, iv))
|
|
break;
|
|
} else if (!isa<AffineIfOp>(parentOp)) {
|
|
// Won't walk up past anything other than affine.for/if ops.
|
|
break;
|
|
}
|
|
// You can always hoist up past any affine.if ops.
|
|
res = parentOp;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/// A helper for the mechanics of mlir::hoistAffineIfOp. Hoists `ifOp` just over
|
|
/// `hoistOverOp`. Returns the new hoisted op if any hoisting happened,
|
|
/// otherwise the same `ifOp`.
|
|
static AffineIfOp hoistAffineIfOp(AffineIfOp ifOp, Operation *hoistOverOp) {
|
|
// No hoisting to do.
|
|
if (hoistOverOp == ifOp)
|
|
return ifOp;
|
|
|
|
// Create the hoisted 'if' first. Then, clone the op we are hoisting over for
|
|
// the else block. Then drop the else block of the original 'if' in the 'then'
|
|
// branch while promoting its then block, and analogously drop the 'then'
|
|
// block of the original 'if' from the 'else' branch while promoting its else
|
|
// block.
|
|
IRMapping operandMap;
|
|
OpBuilder b(hoistOverOp);
|
|
auto hoistedIfOp = b.create<AffineIfOp>(ifOp.getLoc(), ifOp.getIntegerSet(),
|
|
ifOp.getOperands(),
|
|
/*elseBlock=*/true);
|
|
|
|
// Create a clone of hoistOverOp to use for the else branch of the hoisted
|
|
// conditional. The else block may get optimized away if empty.
|
|
Operation *hoistOverOpClone = nullptr;
|
|
// We use this unique name to identify/find `ifOp`'s clone in the else
|
|
// version.
|
|
StringAttr idForIfOp = b.getStringAttr("__mlir_if_hoisting");
|
|
operandMap.clear();
|
|
b.setInsertionPointAfter(hoistOverOp);
|
|
// We'll set an attribute to identify this op in a clone of this sub-tree.
|
|
ifOp->setAttr(idForIfOp, b.getBoolAttr(true));
|
|
hoistOverOpClone = b.clone(*hoistOverOp, operandMap);
|
|
|
|
// Promote the 'then' block of the original affine.if in the then version.
|
|
promoteIfBlock(ifOp, /*elseBlock=*/false);
|
|
|
|
// Move the then version to the hoisted if op's 'then' block.
|
|
auto *thenBlock = hoistedIfOp.getThenBlock();
|
|
thenBlock->getOperations().splice(thenBlock->begin(),
|
|
hoistOverOp->getBlock()->getOperations(),
|
|
Block::iterator(hoistOverOp));
|
|
|
|
// Find the clone of the original affine.if op in the else version.
|
|
AffineIfOp ifCloneInElse;
|
|
hoistOverOpClone->walk([&](AffineIfOp ifClone) {
|
|
if (!ifClone->getAttr(idForIfOp))
|
|
return WalkResult::advance();
|
|
ifCloneInElse = ifClone;
|
|
return WalkResult::interrupt();
|
|
});
|
|
assert(ifCloneInElse && "if op clone should exist");
|
|
// For the else block, promote the else block of the original 'if' if it had
|
|
// one; otherwise, the op itself is to be erased.
|
|
if (!ifCloneInElse.hasElse())
|
|
ifCloneInElse.erase();
|
|
else
|
|
promoteIfBlock(ifCloneInElse, /*elseBlock=*/true);
|
|
|
|
// Move the else version into the else block of the hoisted if op.
|
|
auto *elseBlock = hoistedIfOp.getElseBlock();
|
|
elseBlock->getOperations().splice(
|
|
elseBlock->begin(), hoistOverOpClone->getBlock()->getOperations(),
|
|
Block::iterator(hoistOverOpClone));
|
|
|
|
return hoistedIfOp;
|
|
}
|
|
|
|
LogicalResult
|
|
mlir::affine::affineParallelize(AffineForOp forOp,
|
|
ArrayRef<LoopReduction> parallelReductions,
|
|
AffineParallelOp *resOp) {
|
|
// Fail early if there are iter arguments that are not reductions.
|
|
unsigned numReductions = parallelReductions.size();
|
|
if (numReductions != forOp.getNumIterOperands())
|
|
return failure();
|
|
|
|
Location loc = forOp.getLoc();
|
|
OpBuilder outsideBuilder(forOp);
|
|
AffineMap lowerBoundMap = forOp.getLowerBoundMap();
|
|
ValueRange lowerBoundOperands = forOp.getLowerBoundOperands();
|
|
AffineMap upperBoundMap = forOp.getUpperBoundMap();
|
|
ValueRange upperBoundOperands = forOp.getUpperBoundOperands();
|
|
|
|
// Creating empty 1-D affine.parallel op.
|
|
auto reducedValues = llvm::to_vector<4>(llvm::map_range(
|
|
parallelReductions, [](const LoopReduction &red) { return red.value; }));
|
|
auto reductionKinds = llvm::to_vector<4>(llvm::map_range(
|
|
parallelReductions, [](const LoopReduction &red) { return red.kind; }));
|
|
AffineParallelOp newPloop = outsideBuilder.create<AffineParallelOp>(
|
|
loc, ValueRange(reducedValues).getTypes(), reductionKinds,
|
|
llvm::ArrayRef(lowerBoundMap), lowerBoundOperands,
|
|
llvm::ArrayRef(upperBoundMap), upperBoundOperands,
|
|
llvm::ArrayRef(forOp.getStepAsInt()));
|
|
// Steal the body of the old affine for op.
|
|
newPloop.getRegion().takeBody(forOp.getRegion());
|
|
Operation *yieldOp = &newPloop.getBody()->back();
|
|
|
|
// Handle the initial values of reductions because the parallel loop always
|
|
// starts from the neutral value.
|
|
SmallVector<Value> newResults;
|
|
newResults.reserve(numReductions);
|
|
for (unsigned i = 0; i < numReductions; ++i) {
|
|
Value init = forOp.getInits()[i];
|
|
// This works because we are only handling single-op reductions at the
|
|
// moment. A switch on reduction kind or a mechanism to collect operations
|
|
// participating in the reduction will be necessary for multi-op reductions.
|
|
Operation *reductionOp = yieldOp->getOperand(i).getDefiningOp();
|
|
assert(reductionOp && "yielded value is expected to be produced by an op");
|
|
outsideBuilder.getInsertionBlock()->getOperations().splice(
|
|
outsideBuilder.getInsertionPoint(), newPloop.getBody()->getOperations(),
|
|
reductionOp);
|
|
reductionOp->setOperands({init, newPloop->getResult(i)});
|
|
forOp->getResult(i).replaceAllUsesWith(reductionOp->getResult(0));
|
|
}
|
|
|
|
// Update the loop terminator to yield reduced values bypassing the reduction
|
|
// operation itself (now moved outside of the loop) and erase the block
|
|
// arguments that correspond to reductions. Note that the loop always has one
|
|
// "main" induction variable whenc coming from a non-parallel for.
|
|
unsigned numIVs = 1;
|
|
yieldOp->setOperands(reducedValues);
|
|
newPloop.getBody()->eraseArguments(numIVs, numReductions);
|
|
|
|
forOp.erase();
|
|
if (resOp)
|
|
*resOp = newPloop;
|
|
return success();
|
|
}
|
|
|
|
// Returns success if any hoisting happened.
|
|
LogicalResult mlir::affine::hoistAffineIfOp(AffineIfOp ifOp, bool *folded) {
|
|
// Bail out early if the ifOp returns a result. TODO: Consider how to
|
|
// properly support this case.
|
|
if (ifOp.getNumResults() != 0)
|
|
return failure();
|
|
|
|
// Apply canonicalization patterns and folding - this is necessary for the
|
|
// hoisting check to be correct (operands should be composed), and to be more
|
|
// effective (no unused operands). Since the pattern rewriter's folding is
|
|
// entangled with application of patterns, we may fold/end up erasing the op,
|
|
// in which case we return with `folded` being set.
|
|
RewritePatternSet patterns(ifOp.getContext());
|
|
AffineIfOp::getCanonicalizationPatterns(patterns, ifOp.getContext());
|
|
FrozenRewritePatternSet frozenPatterns(std::move(patterns));
|
|
GreedyRewriteConfig config;
|
|
config.strictMode = GreedyRewriteStrictness::ExistingOps;
|
|
bool erased;
|
|
(void)applyOpPatternsGreedily(ifOp.getOperation(), frozenPatterns, config,
|
|
/*changed=*/nullptr, &erased);
|
|
if (erased) {
|
|
if (folded)
|
|
*folded = true;
|
|
return failure();
|
|
}
|
|
if (folded)
|
|
*folded = false;
|
|
|
|
// The folding above should have ensured this, but the affine.if's
|
|
// canonicalization is missing composition of affine.applys into it.
|
|
assert(llvm::all_of(ifOp.getOperands(),
|
|
[](Value v) {
|
|
return isTopLevelValue(v) || isAffineForInductionVar(v);
|
|
}) &&
|
|
"operands not composed");
|
|
|
|
// We are going hoist as high as possible.
|
|
// TODO: this could be customized in the future.
|
|
auto *hoistOverOp = getOutermostInvariantForOp(ifOp);
|
|
|
|
AffineIfOp hoistedIfOp = ::hoistAffineIfOp(ifOp, hoistOverOp);
|
|
// Nothing to hoist over.
|
|
if (hoistedIfOp == ifOp)
|
|
return failure();
|
|
|
|
// Canonicalize to remove dead else blocks (happens whenever an 'if' moves up
|
|
// a sequence of affine.fors that are all perfectly nested).
|
|
(void)applyPatternsGreedily(
|
|
hoistedIfOp->getParentWithTrait<OpTrait::IsIsolatedFromAbove>(),
|
|
frozenPatterns);
|
|
|
|
return success();
|
|
}
|
|
|
|
// Return the min expr after replacing the given dim.
|
|
AffineExpr mlir::affine::substWithMin(AffineExpr e, AffineExpr dim,
|
|
AffineExpr min, AffineExpr max,
|
|
bool positivePath) {
|
|
if (e == dim)
|
|
return positivePath ? min : max;
|
|
if (auto bin = dyn_cast<AffineBinaryOpExpr>(e)) {
|
|
AffineExpr lhs = bin.getLHS();
|
|
AffineExpr rhs = bin.getRHS();
|
|
if (bin.getKind() == mlir::AffineExprKind::Add)
|
|
return substWithMin(lhs, dim, min, max, positivePath) +
|
|
substWithMin(rhs, dim, min, max, positivePath);
|
|
|
|
auto c1 = dyn_cast<AffineConstantExpr>(bin.getLHS());
|
|
auto c2 = dyn_cast<AffineConstantExpr>(bin.getRHS());
|
|
if (c1 && c1.getValue() < 0)
|
|
return getAffineBinaryOpExpr(
|
|
bin.getKind(), c1, substWithMin(rhs, dim, min, max, !positivePath));
|
|
if (c2 && c2.getValue() < 0)
|
|
return getAffineBinaryOpExpr(
|
|
bin.getKind(), substWithMin(lhs, dim, min, max, !positivePath), c2);
|
|
return getAffineBinaryOpExpr(
|
|
bin.getKind(), substWithMin(lhs, dim, min, max, positivePath),
|
|
substWithMin(rhs, dim, min, max, positivePath));
|
|
}
|
|
return e;
|
|
}
|
|
|
|
void mlir::affine::normalizeAffineParallel(AffineParallelOp op) {
|
|
// Loops with min/max in bounds are not normalized at the moment.
|
|
if (op.hasMinMaxBounds())
|
|
return;
|
|
|
|
AffineMap lbMap = op.getLowerBoundsMap();
|
|
SmallVector<int64_t, 8> steps = op.getSteps();
|
|
// No need to do any work if the parallel op is already normalized.
|
|
bool isAlreadyNormalized =
|
|
llvm::all_of(llvm::zip(steps, lbMap.getResults()), [](auto tuple) {
|
|
int64_t step = std::get<0>(tuple);
|
|
auto lbExpr = dyn_cast<AffineConstantExpr>(std::get<1>(tuple));
|
|
return lbExpr && lbExpr.getValue() == 0 && step == 1;
|
|
});
|
|
if (isAlreadyNormalized)
|
|
return;
|
|
|
|
AffineValueMap ranges;
|
|
AffineValueMap::difference(op.getUpperBoundsValueMap(),
|
|
op.getLowerBoundsValueMap(), &ranges);
|
|
auto builder = OpBuilder::atBlockBegin(op.getBody());
|
|
auto zeroExpr = builder.getAffineConstantExpr(0);
|
|
SmallVector<AffineExpr, 8> lbExprs;
|
|
SmallVector<AffineExpr, 8> ubExprs;
|
|
for (unsigned i = 0, e = steps.size(); i < e; ++i) {
|
|
int64_t step = steps[i];
|
|
|
|
// Adjust the lower bound to be 0.
|
|
lbExprs.push_back(zeroExpr);
|
|
|
|
// Adjust the upper bound expression: 'range / step'.
|
|
AffineExpr ubExpr = ranges.getResult(i).ceilDiv(step);
|
|
ubExprs.push_back(ubExpr);
|
|
|
|
// Adjust the corresponding IV: 'lb + i * step'.
|
|
BlockArgument iv = op.getBody()->getArgument(i);
|
|
AffineExpr lbExpr = lbMap.getResult(i);
|
|
unsigned nDims = lbMap.getNumDims();
|
|
auto expr = lbExpr + builder.getAffineDimExpr(nDims) * step;
|
|
auto map = AffineMap::get(/*dimCount=*/nDims + 1,
|
|
/*symbolCount=*/lbMap.getNumSymbols(), expr);
|
|
|
|
// Use an 'affine.apply' op that will be simplified later in subsequent
|
|
// canonicalizations.
|
|
OperandRange lbOperands = op.getLowerBoundsOperands();
|
|
OperandRange dimOperands = lbOperands.take_front(nDims);
|
|
OperandRange symbolOperands = lbOperands.drop_front(nDims);
|
|
SmallVector<Value, 8> applyOperands{dimOperands};
|
|
applyOperands.push_back(iv);
|
|
applyOperands.append(symbolOperands.begin(), symbolOperands.end());
|
|
auto apply = builder.create<AffineApplyOp>(op.getLoc(), map, applyOperands);
|
|
iv.replaceAllUsesExcept(apply, apply);
|
|
}
|
|
|
|
SmallVector<int64_t, 8> newSteps(op.getNumDims(), 1);
|
|
op.setSteps(newSteps);
|
|
auto newLowerMap = AffineMap::get(
|
|
/*dimCount=*/0, /*symbolCount=*/0, lbExprs, op.getContext());
|
|
op.setLowerBounds({}, newLowerMap);
|
|
auto newUpperMap = AffineMap::get(ranges.getNumDims(), ranges.getNumSymbols(),
|
|
ubExprs, op.getContext());
|
|
op.setUpperBounds(ranges.getOperands(), newUpperMap);
|
|
}
|
|
|
|
LogicalResult mlir::affine::normalizeAffineFor(AffineForOp op,
|
|
bool promoteSingleIter) {
|
|
if (promoteSingleIter && succeeded(promoteIfSingleIteration(op)))
|
|
return success();
|
|
|
|
// Check if the forop is already normalized.
|
|
if (op.hasConstantLowerBound() && (op.getConstantLowerBound() == 0) &&
|
|
(op.getStep() == 1))
|
|
return success();
|
|
|
|
// Check if the lower bound has a single result only. Loops with a max lower
|
|
// bound can't be normalized without additional support like
|
|
// affine.execute_region's. If the lower bound does not have a single result
|
|
// then skip this op.
|
|
if (op.getLowerBoundMap().getNumResults() != 1)
|
|
return failure();
|
|
|
|
Location loc = op.getLoc();
|
|
OpBuilder opBuilder(op);
|
|
int64_t origLoopStep = op.getStepAsInt();
|
|
|
|
// Construct the new upper bound value map.
|
|
AffineMap oldLbMap = op.getLowerBoundMap();
|
|
// The upper bound can have multiple results. To use
|
|
// AffineValueMap::difference, we need to have the same number of results in
|
|
// both lower and upper bound maps. So, we just create a value map for the
|
|
// lower bound with the only available lower bound result repeated to pad up
|
|
// to the number of upper bound results.
|
|
SmallVector<AffineExpr> lbExprs(op.getUpperBoundMap().getNumResults(),
|
|
op.getLowerBoundMap().getResult(0));
|
|
AffineValueMap lbMap(oldLbMap, op.getLowerBoundOperands());
|
|
AffineMap paddedLbMap =
|
|
AffineMap::get(oldLbMap.getNumDims(), oldLbMap.getNumSymbols(), lbExprs,
|
|
op.getContext());
|
|
AffineValueMap paddedLbValueMap(paddedLbMap, op.getLowerBoundOperands());
|
|
AffineValueMap ubValueMap(op.getUpperBoundMap(), op.getUpperBoundOperands());
|
|
AffineValueMap newUbValueMap;
|
|
// Compute the `upper bound - lower bound`.
|
|
AffineValueMap::difference(ubValueMap, paddedLbValueMap, &newUbValueMap);
|
|
(void)newUbValueMap.canonicalize();
|
|
|
|
// Scale down the upper bound value map by the loop step.
|
|
unsigned numResult = newUbValueMap.getNumResults();
|
|
SmallVector<AffineExpr> scaleDownExprs(numResult);
|
|
for (unsigned i = 0; i < numResult; ++i)
|
|
scaleDownExprs[i] = opBuilder.getAffineDimExpr(i).ceilDiv(origLoopStep);
|
|
// `scaleDownMap` is (d0, d1, ..., d_n) -> (d0 / step, d1 / step, ..., d_n /
|
|
// step). Where `n` is the number of results in the upper bound map.
|
|
AffineMap scaleDownMap =
|
|
AffineMap::get(numResult, 0, scaleDownExprs, op.getContext());
|
|
AffineMap newUbMap = scaleDownMap.compose(newUbValueMap.getAffineMap());
|
|
|
|
// Set the newly create upper bound map and operands.
|
|
op.setUpperBound(newUbValueMap.getOperands(), newUbMap);
|
|
op.setLowerBound({}, opBuilder.getConstantAffineMap(0));
|
|
op.setStep(1);
|
|
|
|
// Calculate the Value of new loopIV. Create affine.apply for the value of
|
|
// the loopIV in normalized loop.
|
|
opBuilder.setInsertionPointToStart(op.getBody());
|
|
// Construct an affine.apply op mapping the new IV to the old IV.
|
|
AffineMap scaleIvMap =
|
|
AffineMap::get(1, 0, -opBuilder.getAffineDimExpr(0) * origLoopStep);
|
|
AffineValueMap scaleIvValueMap(scaleIvMap, ValueRange{op.getInductionVar()});
|
|
AffineValueMap newIvToOldIvMap;
|
|
AffineValueMap::difference(lbMap, scaleIvValueMap, &newIvToOldIvMap);
|
|
(void)newIvToOldIvMap.canonicalize();
|
|
auto newIV = opBuilder.create<AffineApplyOp>(
|
|
loc, newIvToOldIvMap.getAffineMap(), newIvToOldIvMap.getOperands());
|
|
op.getInductionVar().replaceAllUsesExcept(newIV->getResult(0), newIV);
|
|
return success();
|
|
}
|
|
|
|
/// Returns true if the memory operation of `destAccess` depends on `srcAccess`
|
|
/// inside of the innermost common surrounding affine loop between the two
|
|
/// accesses.
|
|
static bool mustReachAtInnermost(const MemRefAccess &srcAccess,
|
|
const MemRefAccess &destAccess) {
|
|
// Affine dependence analysis is possible only if both ops in the same
|
|
// AffineScope.
|
|
if (getAffineScope(srcAccess.opInst) != getAffineScope(destAccess.opInst))
|
|
return false;
|
|
|
|
unsigned nsLoops =
|
|
getNumCommonSurroundingLoops(*srcAccess.opInst, *destAccess.opInst);
|
|
DependenceResult result =
|
|
checkMemrefAccessDependence(srcAccess, destAccess, nsLoops + 1);
|
|
return hasDependence(result);
|
|
}
|
|
|
|
/// Returns true if `srcMemOp` may have an effect on `destMemOp` within the
|
|
/// scope of the outermost `minSurroundingLoops` loops that surround them.
|
|
/// `srcMemOp` and `destMemOp` are expected to be affine read/write ops.
|
|
static bool mayHaveEffect(Operation *srcMemOp, Operation *destMemOp,
|
|
unsigned minSurroundingLoops) {
|
|
MemRefAccess srcAccess(srcMemOp);
|
|
MemRefAccess destAccess(destMemOp);
|
|
|
|
// Affine dependence analysis here is applicable only if both ops operate on
|
|
// the same memref and if `srcMemOp` and `destMemOp` are in the same
|
|
// AffineScope. Also, we can only check if our affine scope is isolated from
|
|
// above; otherwise, values can from outside of the affine scope that the
|
|
// check below cannot analyze.
|
|
Region *srcScope = getAffineScope(srcMemOp);
|
|
if (srcAccess.memref == destAccess.memref &&
|
|
srcScope == getAffineScope(destMemOp)) {
|
|
unsigned nsLoops = getNumCommonSurroundingLoops(*srcMemOp, *destMemOp);
|
|
FlatAffineValueConstraints dependenceConstraints;
|
|
for (unsigned d = nsLoops + 1; d > minSurroundingLoops; d--) {
|
|
DependenceResult result = checkMemrefAccessDependence(
|
|
srcAccess, destAccess, d, &dependenceConstraints,
|
|
/*dependenceComponents=*/nullptr);
|
|
// A dependence failure or the presence of a dependence implies a
|
|
// side effect.
|
|
if (!noDependence(result))
|
|
return true;
|
|
}
|
|
// No side effect was seen.
|
|
return false;
|
|
}
|
|
// TODO: Check here if the memrefs alias: there is no side effect if
|
|
// `srcAccess.memref` and `destAccess.memref` don't alias.
|
|
return true;
|
|
}
|
|
|
|
template <typename EffectType, typename T>
|
|
bool mlir::affine::hasNoInterveningEffect(
|
|
Operation *start, T memOp,
|
|
llvm::function_ref<bool(Value, Value)> mayAlias) {
|
|
// A boolean representing whether an intervening operation could have impacted
|
|
// memOp.
|
|
bool hasSideEffect = false;
|
|
|
|
// Check whether the effect on memOp can be caused by a given operation op.
|
|
Value memref = memOp.getMemRef();
|
|
std::function<void(Operation *)> checkOperation = [&](Operation *op) {
|
|
// If the effect has alreay been found, early exit,
|
|
if (hasSideEffect)
|
|
return;
|
|
|
|
if (auto memEffect = dyn_cast<MemoryEffectOpInterface>(op)) {
|
|
SmallVector<MemoryEffects::EffectInstance, 1> effects;
|
|
memEffect.getEffects(effects);
|
|
|
|
bool opMayHaveEffect = false;
|
|
for (auto effect : effects) {
|
|
// If op causes EffectType on a potentially aliasing location for
|
|
// memOp, mark as having the effect.
|
|
if (isa<EffectType>(effect.getEffect())) {
|
|
if (effect.getValue() && effect.getValue() != memref &&
|
|
!mayAlias(effect.getValue(), memref))
|
|
continue;
|
|
opMayHaveEffect = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!opMayHaveEffect)
|
|
return;
|
|
|
|
// If the side effect comes from an affine read or write, try to
|
|
// prove the side effecting `op` cannot reach `memOp`.
|
|
if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) {
|
|
// For ease, let's consider the case that `op` is a store and
|
|
// we're looking for other potential stores that overwrite memory after
|
|
// `start`, and before being read in `memOp`. In this case, we only
|
|
// need to consider other potential stores with depth >
|
|
// minSurroundingLoops since `start` would overwrite any store with a
|
|
// smaller number of surrounding loops before.
|
|
unsigned minSurroundingLoops =
|
|
getNumCommonSurroundingLoops(*start, *memOp);
|
|
if (mayHaveEffect(op, memOp, minSurroundingLoops))
|
|
hasSideEffect = true;
|
|
return;
|
|
}
|
|
|
|
// We have an op with a memory effect and we cannot prove if it
|
|
// intervenes.
|
|
hasSideEffect = true;
|
|
return;
|
|
}
|
|
|
|
if (op->hasTrait<OpTrait::HasRecursiveMemoryEffects>()) {
|
|
// Recurse into the regions for this op and check whether the internal
|
|
// operations may have the side effect `EffectType` on memOp.
|
|
for (Region ®ion : op->getRegions())
|
|
for (Block &block : region)
|
|
for (Operation &op : block)
|
|
checkOperation(&op);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, conservatively assume generic operations have the effect
|
|
// on the operation
|
|
hasSideEffect = true;
|
|
};
|
|
|
|
// Check all paths from ancestor op `parent` to the operation `to` for the
|
|
// effect. It is known that `to` must be contained within `parent`.
|
|
auto until = [&](Operation *parent, Operation *to) {
|
|
// TODO check only the paths from `parent` to `to`.
|
|
// Currently we fallback and check the entire parent op, rather than
|
|
// just the paths from the parent path, stopping after reaching `to`.
|
|
// This is conservatively correct, but could be made more aggressive.
|
|
assert(parent->isAncestor(to));
|
|
checkOperation(parent);
|
|
};
|
|
|
|
// Check for all paths from operation `from` to operation `untilOp` for the
|
|
// given memory effect.
|
|
std::function<void(Operation *, Operation *)> recur =
|
|
[&](Operation *from, Operation *untilOp) {
|
|
assert(
|
|
from->getParentRegion()->isAncestor(untilOp->getParentRegion()) &&
|
|
"Checking for side effect between two operations without a common "
|
|
"ancestor");
|
|
|
|
// If the operations are in different regions, recursively consider all
|
|
// path from `from` to the parent of `to` and all paths from the parent
|
|
// of `to` to `to`.
|
|
if (from->getParentRegion() != untilOp->getParentRegion()) {
|
|
recur(from, untilOp->getParentOp());
|
|
until(untilOp->getParentOp(), untilOp);
|
|
return;
|
|
}
|
|
|
|
// Now, assuming that `from` and `to` exist in the same region, perform
|
|
// a CFG traversal to check all the relevant operations.
|
|
|
|
// Additional blocks to consider.
|
|
SmallVector<Block *, 2> todoBlocks;
|
|
{
|
|
// First consider the parent block of `from` an check all operations
|
|
// after `from`.
|
|
for (auto iter = ++from->getIterator(), end = from->getBlock()->end();
|
|
iter != end && &*iter != untilOp; ++iter) {
|
|
checkOperation(&*iter);
|
|
}
|
|
|
|
// If the parent of `from` doesn't contain `to`, add the successors
|
|
// to the list of blocks to check.
|
|
if (untilOp->getBlock() != from->getBlock())
|
|
for (Block *succ : from->getBlock()->getSuccessors())
|
|
todoBlocks.push_back(succ);
|
|
}
|
|
|
|
SmallPtrSet<Block *, 4> done;
|
|
// Traverse the CFG until hitting `to`.
|
|
while (!todoBlocks.empty()) {
|
|
Block *blk = todoBlocks.pop_back_val();
|
|
if (done.count(blk))
|
|
continue;
|
|
done.insert(blk);
|
|
for (auto &op : *blk) {
|
|
if (&op == untilOp)
|
|
break;
|
|
checkOperation(&op);
|
|
if (&op == blk->getTerminator())
|
|
for (Block *succ : blk->getSuccessors())
|
|
todoBlocks.push_back(succ);
|
|
}
|
|
}
|
|
};
|
|
recur(start, memOp);
|
|
return !hasSideEffect;
|
|
}
|
|
|
|
/// Attempt to eliminate loadOp by replacing it with a value stored into memory
|
|
/// which the load is guaranteed to retrieve. This check involves three
|
|
/// components: 1) The store and load must be on the same location 2) The store
|
|
/// must dominate (and therefore must always occur prior to) the load 3) No
|
|
/// other operations will overwrite the memory loaded between the given load
|
|
/// and store. If such a value exists, the replaced `loadOp` will be added to
|
|
/// `loadOpsToErase` and its memref will be added to `memrefsToErase`.
|
|
static void forwardStoreToLoad(
|
|
AffineReadOpInterface loadOp, SmallVectorImpl<Operation *> &loadOpsToErase,
|
|
SmallPtrSetImpl<Value> &memrefsToErase, DominanceInfo &domInfo,
|
|
llvm::function_ref<bool(Value, Value)> mayAlias) {
|
|
|
|
// The store op candidate for forwarding that satisfies all conditions
|
|
// to replace the load, if any.
|
|
Operation *lastWriteStoreOp = nullptr;
|
|
|
|
for (auto *user : loadOp.getMemRef().getUsers()) {
|
|
auto storeOp = dyn_cast<AffineWriteOpInterface>(user);
|
|
if (!storeOp)
|
|
continue;
|
|
MemRefAccess srcAccess(storeOp);
|
|
MemRefAccess destAccess(loadOp);
|
|
|
|
// 1. Check if the store and the load have mathematically equivalent
|
|
// affine access functions; this implies that they statically refer to the
|
|
// same single memref element. As an example this filters out cases like:
|
|
// store %A[%i0 + 1]
|
|
// load %A[%i0]
|
|
// store %A[%M]
|
|
// load %A[%N]
|
|
// Use the AffineValueMap difference based memref access equality checking.
|
|
if (srcAccess != destAccess)
|
|
continue;
|
|
|
|
// 2. The store has to dominate the load op to be candidate.
|
|
if (!domInfo.dominates(storeOp, loadOp))
|
|
continue;
|
|
|
|
// 3. The store must reach the load. Access function equivalence only
|
|
// guarantees this for accesses in the same block. The load could be in a
|
|
// nested block that is unreachable.
|
|
if (!mustReachAtInnermost(srcAccess, destAccess))
|
|
continue;
|
|
|
|
// 4. Ensure there is no intermediate operation which could replace the
|
|
// value in memory.
|
|
if (!affine::hasNoInterveningEffect<MemoryEffects::Write>(storeOp, loadOp,
|
|
mayAlias))
|
|
continue;
|
|
|
|
// We now have a candidate for forwarding.
|
|
assert(lastWriteStoreOp == nullptr &&
|
|
"multiple simultaneous replacement stores");
|
|
lastWriteStoreOp = storeOp;
|
|
}
|
|
|
|
if (!lastWriteStoreOp)
|
|
return;
|
|
|
|
// Perform the actual store to load forwarding.
|
|
Value storeVal =
|
|
cast<AffineWriteOpInterface>(lastWriteStoreOp).getValueToStore();
|
|
// Check if 2 values have the same shape. This is needed for affine vector
|
|
// loads and stores.
|
|
if (storeVal.getType() != loadOp.getValue().getType())
|
|
return;
|
|
loadOp.getValue().replaceAllUsesWith(storeVal);
|
|
// Record the memref for a later sweep to optimize away.
|
|
memrefsToErase.insert(loadOp.getMemRef());
|
|
// Record this to erase later.
|
|
loadOpsToErase.push_back(loadOp);
|
|
}
|
|
|
|
template bool
|
|
mlir::affine::hasNoInterveningEffect<mlir::MemoryEffects::Read,
|
|
affine::AffineReadOpInterface>(
|
|
mlir::Operation *, affine::AffineReadOpInterface,
|
|
llvm::function_ref<bool(Value, Value)>);
|
|
|
|
// This attempts to find stores which have no impact on the final result.
|
|
// A writing op writeA will be eliminated if there exists an op writeB if
|
|
// 1) writeA and writeB have mathematically equivalent affine access functions.
|
|
// 2) writeB postdominates writeA.
|
|
// 3) There is no potential read between writeA and writeB.
|
|
static void findUnusedStore(AffineWriteOpInterface writeA,
|
|
SmallVectorImpl<Operation *> &opsToErase,
|
|
PostDominanceInfo &postDominanceInfo,
|
|
llvm::function_ref<bool(Value, Value)> mayAlias) {
|
|
|
|
for (Operation *user : writeA.getMemRef().getUsers()) {
|
|
// Only consider writing operations.
|
|
auto writeB = dyn_cast<AffineWriteOpInterface>(user);
|
|
if (!writeB)
|
|
continue;
|
|
|
|
// The operations must be distinct.
|
|
if (writeB == writeA)
|
|
continue;
|
|
|
|
// Both operations must lie in the same region.
|
|
if (writeB->getParentRegion() != writeA->getParentRegion())
|
|
continue;
|
|
|
|
// Both operations must write to the same memory.
|
|
MemRefAccess srcAccess(writeB);
|
|
MemRefAccess destAccess(writeA);
|
|
|
|
if (srcAccess != destAccess)
|
|
continue;
|
|
|
|
// writeB must postdominate writeA.
|
|
if (!postDominanceInfo.postDominates(writeB, writeA))
|
|
continue;
|
|
|
|
// There cannot be an operation which reads from memory between
|
|
// the two writes.
|
|
if (!affine::hasNoInterveningEffect<MemoryEffects::Read>(writeA, writeB,
|
|
mayAlias))
|
|
continue;
|
|
|
|
opsToErase.push_back(writeA);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// The load to load forwarding / redundant load elimination is similar to the
|
|
// store to load forwarding.
|
|
// loadA will be be replaced with loadB if:
|
|
// 1) loadA and loadB have mathematically equivalent affine access functions.
|
|
// 2) loadB dominates loadA.
|
|
// 3) There is no write between loadA and loadB.
|
|
static void loadCSE(AffineReadOpInterface loadA,
|
|
SmallVectorImpl<Operation *> &loadOpsToErase,
|
|
DominanceInfo &domInfo,
|
|
llvm::function_ref<bool(Value, Value)> mayAlias) {
|
|
SmallVector<AffineReadOpInterface, 4> loadCandidates;
|
|
for (auto *user : loadA.getMemRef().getUsers()) {
|
|
auto loadB = dyn_cast<AffineReadOpInterface>(user);
|
|
if (!loadB || loadB == loadA)
|
|
continue;
|
|
|
|
MemRefAccess srcAccess(loadB);
|
|
MemRefAccess destAccess(loadA);
|
|
|
|
// 1. The accesses should be to be to the same location.
|
|
if (srcAccess != destAccess) {
|
|
continue;
|
|
}
|
|
|
|
// 2. loadB should dominate loadA.
|
|
if (!domInfo.dominates(loadB, loadA))
|
|
continue;
|
|
|
|
// 3. There should not be a write between loadA and loadB.
|
|
if (!affine::hasNoInterveningEffect<MemoryEffects::Write>(
|
|
loadB.getOperation(), loadA, mayAlias))
|
|
continue;
|
|
|
|
// Check if two values have the same shape. This is needed for affine vector
|
|
// loads.
|
|
if (loadB.getValue().getType() != loadA.getValue().getType())
|
|
continue;
|
|
|
|
loadCandidates.push_back(loadB);
|
|
}
|
|
|
|
// Of the legal load candidates, use the one that dominates all others
|
|
// to minimize the subsequent need to loadCSE
|
|
Value loadB;
|
|
for (AffineReadOpInterface option : loadCandidates) {
|
|
if (llvm::all_of(loadCandidates, [&](AffineReadOpInterface depStore) {
|
|
return depStore == option ||
|
|
domInfo.dominates(option.getOperation(),
|
|
depStore.getOperation());
|
|
})) {
|
|
loadB = option.getValue();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (loadB) {
|
|
loadA.getValue().replaceAllUsesWith(loadB);
|
|
// Record this to erase later.
|
|
loadOpsToErase.push_back(loadA);
|
|
}
|
|
}
|
|
|
|
// The store to load forwarding and load CSE rely on three conditions:
|
|
//
|
|
// 1) store/load providing a replacement value and load being replaced need to
|
|
// have mathematically equivalent affine access functions (checked after full
|
|
// composition of load/store operands); this implies that they access the same
|
|
// single memref element for all iterations of the common surrounding loop,
|
|
//
|
|
// 2) the store/load op should dominate the load op,
|
|
//
|
|
// 3) no operation that may write to memory read by the load being replaced can
|
|
// occur after executing the instruction (load or store) providing the
|
|
// replacement value and before the load being replaced (thus potentially
|
|
// allowing overwriting the memory read by the load).
|
|
//
|
|
// The above conditions are simple to check, sufficient, and powerful for most
|
|
// cases in practice - they are sufficient, but not necessary --- since they
|
|
// don't reason about loops that are guaranteed to execute at least once or
|
|
// multiple sources to forward from.
|
|
//
|
|
// TODO: more forwarding can be done when support for
|
|
// loop/conditional live-out SSA values is available.
|
|
// TODO: do general dead store elimination for memref's. This pass
|
|
// currently only eliminates the stores only if no other loads/uses (other
|
|
// than dealloc) remain.
|
|
//
|
|
void mlir::affine::affineScalarReplace(func::FuncOp f, DominanceInfo &domInfo,
|
|
PostDominanceInfo &postDomInfo,
|
|
AliasAnalysis &aliasAnalysis) {
|
|
// Load op's whose results were replaced by those forwarded from stores.
|
|
SmallVector<Operation *, 8> opsToErase;
|
|
|
|
// A list of memref's that are potentially dead / could be eliminated.
|
|
SmallPtrSet<Value, 4> memrefsToErase;
|
|
|
|
auto mayAlias = [&](Value val1, Value val2) -> bool {
|
|
return !aliasAnalysis.alias(val1, val2).isNo();
|
|
};
|
|
|
|
// Walk all load's and perform store to load forwarding.
|
|
f.walk([&](AffineReadOpInterface loadOp) {
|
|
forwardStoreToLoad(loadOp, opsToErase, memrefsToErase, domInfo, mayAlias);
|
|
});
|
|
for (auto *op : opsToErase)
|
|
op->erase();
|
|
opsToErase.clear();
|
|
|
|
// Walk all store's and perform unused store elimination
|
|
f.walk([&](AffineWriteOpInterface storeOp) {
|
|
findUnusedStore(storeOp, opsToErase, postDomInfo, mayAlias);
|
|
});
|
|
for (auto *op : opsToErase)
|
|
op->erase();
|
|
opsToErase.clear();
|
|
|
|
// Check if the store fwd'ed memrefs are now left with only stores and
|
|
// deallocs and can thus be completely deleted. Note: the canonicalize pass
|
|
// should be able to do this as well, but we'll do it here since we collected
|
|
// these anyway.
|
|
for (auto memref : memrefsToErase) {
|
|
// If the memref hasn't been locally alloc'ed, skip.
|
|
Operation *defOp = memref.getDefiningOp();
|
|
if (!defOp || !hasSingleEffect<MemoryEffects::Allocate>(defOp, memref))
|
|
// TODO: if the memref was returned by a 'call' operation, we
|
|
// could still erase it if the call had no side-effects.
|
|
continue;
|
|
if (llvm::any_of(memref.getUsers(), [&](Operation *ownerOp) {
|
|
return !isa<AffineWriteOpInterface>(ownerOp) &&
|
|
!hasSingleEffect<MemoryEffects::Free>(ownerOp, memref);
|
|
}))
|
|
continue;
|
|
|
|
// Erase all stores, the dealloc, and the alloc on the memref.
|
|
for (auto *user : llvm::make_early_inc_range(memref.getUsers()))
|
|
user->erase();
|
|
defOp->erase();
|
|
}
|
|
|
|
// To eliminate as many loads as possible, run load CSE after eliminating
|
|
// stores. Otherwise, some stores are wrongly seen as having an intervening
|
|
// effect.
|
|
f.walk([&](AffineReadOpInterface loadOp) {
|
|
loadCSE(loadOp, opsToErase, domInfo, mayAlias);
|
|
});
|
|
for (auto *op : opsToErase)
|
|
op->erase();
|
|
}
|
|
|
|
// Private helper function to transform memref.load with reduced rank.
|
|
// This function will modify the indices of the memref.load to match the
|
|
// newMemRef.
|
|
LogicalResult transformMemRefLoadWithReducedRank(
|
|
Operation *op, Value oldMemRef, Value newMemRef, unsigned memRefOperandPos,
|
|
ArrayRef<Value> extraIndices, ArrayRef<Value> extraOperands,
|
|
ArrayRef<Value> symbolOperands, AffineMap indexRemap) {
|
|
unsigned oldMemRefRank = cast<MemRefType>(oldMemRef.getType()).getRank();
|
|
unsigned newMemRefRank = cast<MemRefType>(newMemRef.getType()).getRank();
|
|
unsigned oldMapNumInputs = oldMemRefRank;
|
|
SmallVector<Value, 4> oldMapOperands(
|
|
op->operand_begin() + memRefOperandPos + 1,
|
|
op->operand_begin() + memRefOperandPos + 1 + oldMapNumInputs);
|
|
SmallVector<Value, 4> oldMemRefOperands;
|
|
oldMemRefOperands.assign(oldMapOperands.begin(), oldMapOperands.end());
|
|
SmallVector<Value, 4> remapOperands;
|
|
remapOperands.reserve(extraOperands.size() + oldMemRefRank +
|
|
symbolOperands.size());
|
|
remapOperands.append(extraOperands.begin(), extraOperands.end());
|
|
remapOperands.append(oldMemRefOperands.begin(), oldMemRefOperands.end());
|
|
remapOperands.append(symbolOperands.begin(), symbolOperands.end());
|
|
|
|
SmallVector<Value, 4> remapOutputs;
|
|
remapOutputs.reserve(oldMemRefRank);
|
|
SmallVector<Value, 4> affineApplyOps;
|
|
|
|
OpBuilder builder(op);
|
|
|
|
if (indexRemap &&
|
|
indexRemap != builder.getMultiDimIdentityMap(indexRemap.getNumDims())) {
|
|
// Remapped indices.
|
|
for (auto resultExpr : indexRemap.getResults()) {
|
|
auto singleResMap = AffineMap::get(
|
|
indexRemap.getNumDims(), indexRemap.getNumSymbols(), resultExpr);
|
|
auto afOp = builder.create<AffineApplyOp>(op->getLoc(), singleResMap,
|
|
remapOperands);
|
|
remapOutputs.push_back(afOp);
|
|
affineApplyOps.push_back(afOp);
|
|
}
|
|
} else {
|
|
// No remapping specified.
|
|
remapOutputs.assign(remapOperands.begin(), remapOperands.end());
|
|
}
|
|
|
|
SmallVector<Value, 4> newMapOperands;
|
|
newMapOperands.reserve(newMemRefRank);
|
|
|
|
// Prepend 'extraIndices' in 'newMapOperands'.
|
|
for (Value extraIndex : extraIndices) {
|
|
assert((isValidDim(extraIndex) || isValidSymbol(extraIndex)) &&
|
|
"invalid memory op index");
|
|
newMapOperands.push_back(extraIndex);
|
|
}
|
|
|
|
// Append 'remapOutputs' to 'newMapOperands'.
|
|
newMapOperands.append(remapOutputs.begin(), remapOutputs.end());
|
|
|
|
// Create new fully composed AffineMap for new op to be created.
|
|
assert(newMapOperands.size() == newMemRefRank);
|
|
|
|
OperationState state(op->getLoc(), op->getName());
|
|
// Construct the new operation using this memref.
|
|
state.operands.reserve(newMapOperands.size() + extraIndices.size());
|
|
state.operands.push_back(newMemRef);
|
|
|
|
// Insert the new memref map operands.
|
|
state.operands.append(newMapOperands.begin(), newMapOperands.end());
|
|
|
|
state.types.reserve(op->getNumResults());
|
|
for (auto result : op->getResults())
|
|
state.types.push_back(result.getType());
|
|
|
|
// Copy over the attributes from the old operation to the new operation.
|
|
for (auto namedAttr : op->getAttrs()) {
|
|
state.attributes.push_back(namedAttr);
|
|
}
|
|
|
|
// Create the new operation.
|
|
auto *repOp = builder.create(state);
|
|
op->replaceAllUsesWith(repOp);
|
|
op->erase();
|
|
|
|
return success();
|
|
}
|
|
// Perform the replacement in `op`.
|
|
LogicalResult mlir::affine::replaceAllMemRefUsesWith(
|
|
Value oldMemRef, Value newMemRef, Operation *op,
|
|
ArrayRef<Value> extraIndices, AffineMap indexRemap,
|
|
ArrayRef<Value> extraOperands, ArrayRef<Value> symbolOperands,
|
|
bool allowNonDereferencingOps) {
|
|
unsigned newMemRefRank = cast<MemRefType>(newMemRef.getType()).getRank();
|
|
(void)newMemRefRank; // unused in opt mode
|
|
unsigned oldMemRefRank = cast<MemRefType>(oldMemRef.getType()).getRank();
|
|
(void)oldMemRefRank; // unused in opt mode
|
|
if (indexRemap) {
|
|
assert(indexRemap.getNumSymbols() == symbolOperands.size() &&
|
|
"symbolic operand count mismatch");
|
|
assert(indexRemap.getNumInputs() ==
|
|
extraOperands.size() + oldMemRefRank + symbolOperands.size());
|
|
assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank);
|
|
} else {
|
|
assert(oldMemRefRank + extraIndices.size() == newMemRefRank);
|
|
}
|
|
|
|
// Assert same elemental type.
|
|
assert(cast<MemRefType>(oldMemRef.getType()).getElementType() ==
|
|
cast<MemRefType>(newMemRef.getType()).getElementType());
|
|
|
|
SmallVector<unsigned, 2> usePositions;
|
|
for (const auto &opEntry : llvm::enumerate(op->getOperands())) {
|
|
if (opEntry.value() == oldMemRef)
|
|
usePositions.push_back(opEntry.index());
|
|
}
|
|
|
|
// If memref doesn't appear, nothing to do.
|
|
if (usePositions.empty())
|
|
return success();
|
|
|
|
if (usePositions.size() > 1) {
|
|
// TODO: extend it for this case when needed (rare).
|
|
assert(false && "multiple dereferencing uses in a single op not supported");
|
|
return failure();
|
|
}
|
|
|
|
unsigned memRefOperandPos = usePositions.front();
|
|
|
|
OpBuilder builder(op);
|
|
// The following checks if op is dereferencing memref and performs the access
|
|
// index rewrites.
|
|
auto affMapAccInterface = dyn_cast<AffineMapAccessInterface>(op);
|
|
if (!affMapAccInterface) {
|
|
if (!allowNonDereferencingOps) {
|
|
// Failure: memref used in a non-dereferencing context (potentially
|
|
// escapes); no replacement in these cases unless allowNonDereferencingOps
|
|
// is set.
|
|
return failure();
|
|
}
|
|
|
|
// Check if it is a memref.load
|
|
auto memrefLoad = dyn_cast<memref::LoadOp>(op);
|
|
bool isReductionLike =
|
|
indexRemap.getNumResults() < indexRemap.getNumInputs();
|
|
if (!memrefLoad || !isReductionLike) {
|
|
op->setOperand(memRefOperandPos, newMemRef);
|
|
return success();
|
|
}
|
|
|
|
return transformMemRefLoadWithReducedRank(
|
|
op, oldMemRef, newMemRef, memRefOperandPos, extraIndices, extraOperands,
|
|
symbolOperands, indexRemap);
|
|
}
|
|
// Perform index rewrites for the dereferencing op and then replace the op
|
|
NamedAttribute oldMapAttrPair =
|
|
affMapAccInterface.getAffineMapAttrForMemRef(oldMemRef);
|
|
AffineMap oldMap = cast<AffineMapAttr>(oldMapAttrPair.getValue()).getValue();
|
|
unsigned oldMapNumInputs = oldMap.getNumInputs();
|
|
SmallVector<Value, 4> oldMapOperands(
|
|
op->operand_begin() + memRefOperandPos + 1,
|
|
op->operand_begin() + memRefOperandPos + 1 + oldMapNumInputs);
|
|
|
|
// Apply 'oldMemRefOperands = oldMap(oldMapOperands)'.
|
|
SmallVector<Value, 4> oldMemRefOperands;
|
|
SmallVector<Value, 4> affineApplyOps;
|
|
oldMemRefOperands.reserve(oldMemRefRank);
|
|
if (oldMap != builder.getMultiDimIdentityMap(oldMap.getNumDims())) {
|
|
for (auto resultExpr : oldMap.getResults()) {
|
|
auto singleResMap = AffineMap::get(oldMap.getNumDims(),
|
|
oldMap.getNumSymbols(), resultExpr);
|
|
auto afOp = builder.create<AffineApplyOp>(op->getLoc(), singleResMap,
|
|
oldMapOperands);
|
|
oldMemRefOperands.push_back(afOp);
|
|
affineApplyOps.push_back(afOp);
|
|
}
|
|
} else {
|
|
oldMemRefOperands.assign(oldMapOperands.begin(), oldMapOperands.end());
|
|
}
|
|
|
|
// Construct new indices as a remap of the old ones if a remapping has been
|
|
// provided. The indices of a memref come right after it, i.e.,
|
|
// at position memRefOperandPos + 1.
|
|
SmallVector<Value, 4> remapOperands;
|
|
remapOperands.reserve(extraOperands.size() + oldMemRefRank +
|
|
symbolOperands.size());
|
|
remapOperands.append(extraOperands.begin(), extraOperands.end());
|
|
remapOperands.append(oldMemRefOperands.begin(), oldMemRefOperands.end());
|
|
remapOperands.append(symbolOperands.begin(), symbolOperands.end());
|
|
|
|
SmallVector<Value, 4> remapOutputs;
|
|
remapOutputs.reserve(oldMemRefRank);
|
|
|
|
if (indexRemap &&
|
|
indexRemap != builder.getMultiDimIdentityMap(indexRemap.getNumDims())) {
|
|
// Remapped indices.
|
|
for (auto resultExpr : indexRemap.getResults()) {
|
|
auto singleResMap = AffineMap::get(
|
|
indexRemap.getNumDims(), indexRemap.getNumSymbols(), resultExpr);
|
|
auto afOp = builder.create<AffineApplyOp>(op->getLoc(), singleResMap,
|
|
remapOperands);
|
|
remapOutputs.push_back(afOp);
|
|
affineApplyOps.push_back(afOp);
|
|
}
|
|
} else {
|
|
// No remapping specified.
|
|
remapOutputs.assign(remapOperands.begin(), remapOperands.end());
|
|
}
|
|
|
|
SmallVector<Value, 4> newMapOperands;
|
|
newMapOperands.reserve(newMemRefRank);
|
|
|
|
// Prepend 'extraIndices' in 'newMapOperands'.
|
|
for (Value extraIndex : extraIndices) {
|
|
assert((isValidDim(extraIndex) || isValidSymbol(extraIndex)) &&
|
|
"invalid memory op index");
|
|
newMapOperands.push_back(extraIndex);
|
|
}
|
|
|
|
// Append 'remapOutputs' to 'newMapOperands'.
|
|
newMapOperands.append(remapOutputs.begin(), remapOutputs.end());
|
|
|
|
// Create new fully composed AffineMap for new op to be created.
|
|
assert(newMapOperands.size() == newMemRefRank);
|
|
auto newMap = builder.getMultiDimIdentityMap(newMemRefRank);
|
|
fullyComposeAffineMapAndOperands(&newMap, &newMapOperands);
|
|
newMap = simplifyAffineMap(newMap);
|
|
canonicalizeMapAndOperands(&newMap, &newMapOperands);
|
|
// Remove any affine.apply's that became dead as a result of composition.
|
|
for (Value value : affineApplyOps)
|
|
if (value.use_empty())
|
|
value.getDefiningOp()->erase();
|
|
|
|
OperationState state(op->getLoc(), op->getName());
|
|
// Construct the new operation using this memref.
|
|
state.operands.reserve(op->getNumOperands() + extraIndices.size());
|
|
// Insert the non-memref operands.
|
|
state.operands.append(op->operand_begin(),
|
|
op->operand_begin() + memRefOperandPos);
|
|
// Insert the new memref value.
|
|
state.operands.push_back(newMemRef);
|
|
|
|
// Insert the new memref map operands.
|
|
state.operands.append(newMapOperands.begin(), newMapOperands.end());
|
|
|
|
// Insert the remaining operands unmodified.
|
|
state.operands.append(op->operand_begin() + memRefOperandPos + 1 +
|
|
oldMapNumInputs,
|
|
op->operand_end());
|
|
|
|
// Result types don't change. Both memref's are of the same elemental type.
|
|
state.types.reserve(op->getNumResults());
|
|
for (auto result : op->getResults())
|
|
state.types.push_back(result.getType());
|
|
|
|
// Add attribute for 'newMap', other Attributes do not change.
|
|
auto newMapAttr = AffineMapAttr::get(newMap);
|
|
for (auto namedAttr : op->getAttrs()) {
|
|
if (namedAttr.getName() == oldMapAttrPair.getName())
|
|
state.attributes.push_back({namedAttr.getName(), newMapAttr});
|
|
else
|
|
state.attributes.push_back(namedAttr);
|
|
}
|
|
|
|
// Create the new operation.
|
|
auto *repOp = builder.create(state);
|
|
op->replaceAllUsesWith(repOp);
|
|
op->erase();
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult mlir::affine::replaceAllMemRefUsesWith(
|
|
Value oldMemRef, Value newMemRef, ArrayRef<Value> extraIndices,
|
|
AffineMap indexRemap, ArrayRef<Value> extraOperands,
|
|
ArrayRef<Value> symbolOperands, Operation *domOpFilter,
|
|
Operation *postDomOpFilter, bool allowNonDereferencingOps,
|
|
bool replaceInDeallocOp) {
|
|
unsigned newMemRefRank = cast<MemRefType>(newMemRef.getType()).getRank();
|
|
(void)newMemRefRank; // unused in opt mode
|
|
unsigned oldMemRefRank = cast<MemRefType>(oldMemRef.getType()).getRank();
|
|
(void)oldMemRefRank;
|
|
if (indexRemap) {
|
|
assert(indexRemap.getNumSymbols() == symbolOperands.size() &&
|
|
"symbol operand count mismatch");
|
|
assert(indexRemap.getNumInputs() ==
|
|
extraOperands.size() + oldMemRefRank + symbolOperands.size());
|
|
assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank);
|
|
} else {
|
|
assert(oldMemRefRank + extraIndices.size() == newMemRefRank);
|
|
}
|
|
|
|
// Assert same elemental type.
|
|
assert(cast<MemRefType>(oldMemRef.getType()).getElementType() ==
|
|
cast<MemRefType>(newMemRef.getType()).getElementType());
|
|
|
|
std::unique_ptr<DominanceInfo> domInfo;
|
|
std::unique_ptr<PostDominanceInfo> postDomInfo;
|
|
if (domOpFilter)
|
|
domInfo = std::make_unique<DominanceInfo>(
|
|
domOpFilter->getParentOfType<FunctionOpInterface>());
|
|
|
|
if (postDomOpFilter)
|
|
postDomInfo = std::make_unique<PostDominanceInfo>(
|
|
postDomOpFilter->getParentOfType<FunctionOpInterface>());
|
|
|
|
// Walk all uses of old memref; collect ops to perform replacement. We use a
|
|
// DenseSet since an operation could potentially have multiple uses of a
|
|
// memref (although rare), and the replacement later is going to erase ops.
|
|
DenseSet<Operation *> opsToReplace;
|
|
for (auto *op : oldMemRef.getUsers()) {
|
|
// Skip this use if it's not dominated by domOpFilter.
|
|
if (domOpFilter && !domInfo->dominates(domOpFilter, op))
|
|
continue;
|
|
|
|
// Skip this use if it's not post-dominated by postDomOpFilter.
|
|
if (postDomOpFilter && !postDomInfo->postDominates(postDomOpFilter, op))
|
|
continue;
|
|
|
|
// Skip dealloc's - no replacement is necessary, and a memref replacement
|
|
// at other uses doesn't hurt these dealloc's.
|
|
if (hasSingleEffect<MemoryEffects::Free>(op, oldMemRef) &&
|
|
!replaceInDeallocOp)
|
|
continue;
|
|
|
|
// Check if the memref was used in a non-dereferencing context. It is fine
|
|
// for the memref to be used in a non-dereferencing way outside of the
|
|
// region where this replacement is happening.
|
|
if (!isa<AffineMapAccessInterface>(*op)) {
|
|
if (!allowNonDereferencingOps) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Memref replacement failed: non-deferencing memref op: \n"
|
|
<< *op << '\n');
|
|
return failure();
|
|
}
|
|
// Non-dereferencing ops with the MemRefsNormalizable trait are
|
|
// supported for replacement.
|
|
if (!op->hasTrait<OpTrait::MemRefsNormalizable>()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Memref replacement failed: use without a "
|
|
"memrefs normalizable trait: \n"
|
|
<< *op << '\n');
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
// We'll first collect and then replace --- since replacement erases the op
|
|
// that has the use, and that op could be postDomFilter or domFilter itself!
|
|
opsToReplace.insert(op);
|
|
}
|
|
|
|
for (auto *op : opsToReplace) {
|
|
if (failed(replaceAllMemRefUsesWith(
|
|
oldMemRef, newMemRef, op, extraIndices, indexRemap, extraOperands,
|
|
symbolOperands, allowNonDereferencingOps)))
|
|
llvm_unreachable("memref replacement guaranteed to succeed here");
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Given an operation, inserts one or more single result affine
|
|
/// apply operations, results of which are exclusively used by this operation
|
|
/// operation. The operands of these newly created affine apply ops are
|
|
/// guaranteed to be loop iterators or terminal symbols of a function.
|
|
///
|
|
/// Before
|
|
///
|
|
/// affine.for %i = 0 to #map(%N)
|
|
/// %idx = affine.apply (d0) -> (d0 mod 2) (%i)
|
|
/// "send"(%idx, %A, ...)
|
|
/// "compute"(%idx)
|
|
///
|
|
/// After
|
|
///
|
|
/// affine.for %i = 0 to #map(%N)
|
|
/// %idx = affine.apply (d0) -> (d0 mod 2) (%i)
|
|
/// "send"(%idx, %A, ...)
|
|
/// %idx_ = affine.apply (d0) -> (d0 mod 2) (%i)
|
|
/// "compute"(%idx_)
|
|
///
|
|
/// This allows applying different transformations on send and compute (for eg.
|
|
/// different shifts/delays).
|
|
///
|
|
/// Returns nullptr either if none of opInst's operands were the result of an
|
|
/// affine.apply and thus there was no affine computation slice to create, or if
|
|
/// all the affine.apply op's supplying operands to this opInst did not have any
|
|
/// uses besides this opInst; otherwise returns the list of affine.apply
|
|
/// operations created in output argument `sliceOps`.
|
|
void mlir::affine::createAffineComputationSlice(
|
|
Operation *opInst, SmallVectorImpl<AffineApplyOp> *sliceOps) {
|
|
// Collect all operands that are results of affine apply ops.
|
|
SmallVector<Value, 4> subOperands;
|
|
subOperands.reserve(opInst->getNumOperands());
|
|
for (auto operand : opInst->getOperands())
|
|
if (isa_and_nonnull<AffineApplyOp>(operand.getDefiningOp()))
|
|
subOperands.push_back(operand);
|
|
|
|
// Gather sequence of AffineApplyOps reachable from 'subOperands'.
|
|
SmallVector<Operation *, 4> affineApplyOps;
|
|
getReachableAffineApplyOps(subOperands, affineApplyOps);
|
|
// Skip transforming if there are no affine maps to compose.
|
|
if (affineApplyOps.empty())
|
|
return;
|
|
|
|
// Check if all uses of the affine apply op's lie only in this op op, in
|
|
// which case there would be nothing to do.
|
|
bool localized = true;
|
|
for (auto *op : affineApplyOps) {
|
|
for (auto result : op->getResults()) {
|
|
for (auto *user : result.getUsers()) {
|
|
if (user != opInst) {
|
|
localized = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (localized)
|
|
return;
|
|
|
|
OpBuilder builder(opInst);
|
|
SmallVector<Value, 4> composedOpOperands(subOperands);
|
|
auto composedMap = builder.getMultiDimIdentityMap(composedOpOperands.size());
|
|
fullyComposeAffineMapAndOperands(&composedMap, &composedOpOperands);
|
|
|
|
// Create an affine.apply for each of the map results.
|
|
sliceOps->reserve(composedMap.getNumResults());
|
|
for (auto resultExpr : composedMap.getResults()) {
|
|
auto singleResMap = AffineMap::get(composedMap.getNumDims(),
|
|
composedMap.getNumSymbols(), resultExpr);
|
|
sliceOps->push_back(builder.create<AffineApplyOp>(
|
|
opInst->getLoc(), singleResMap, composedOpOperands));
|
|
}
|
|
|
|
// Construct the new operands that include the results from the composed
|
|
// affine apply op above instead of existing ones (subOperands). So, they
|
|
// differ from opInst's operands only for those operands in 'subOperands', for
|
|
// which they will be replaced by the corresponding one from 'sliceOps'.
|
|
SmallVector<Value, 4> newOperands(opInst->getOperands());
|
|
for (Value &operand : newOperands) {
|
|
// Replace the subOperands from among the new operands.
|
|
unsigned j, f;
|
|
for (j = 0, f = subOperands.size(); j < f; j++) {
|
|
if (operand == subOperands[j])
|
|
break;
|
|
}
|
|
if (j < subOperands.size())
|
|
operand = (*sliceOps)[j];
|
|
}
|
|
for (unsigned idx = 0, e = newOperands.size(); idx < e; idx++)
|
|
opInst->setOperand(idx, newOperands[idx]);
|
|
}
|
|
|
|
/// Enum to set patterns of affine expr in tiled-layout map.
|
|
/// TileFloorDiv: <dim expr> div <tile size>
|
|
/// TileMod: <dim expr> mod <tile size>
|
|
/// TileNone: None of the above
|
|
/// Example:
|
|
/// #tiled_2d_128x256 = affine_map<(d0, d1)
|
|
/// -> (d0 div 128, d1 div 256, d0 mod 128, d1 mod 256)>
|
|
/// "d0 div 128" and "d1 div 256" ==> TileFloorDiv
|
|
/// "d0 mod 128" and "d1 mod 256" ==> TileMod
|
|
enum TileExprPattern { TileFloorDiv, TileMod, TileNone };
|
|
|
|
/// Check if `map` is a tiled layout. In the tiled layout, specific k dimensions
|
|
/// being floordiv'ed by respective tile sizes appeare in a mod with the same
|
|
/// tile sizes, and no other expression involves those k dimensions. This
|
|
/// function stores a vector of tuples (`tileSizePos`) including AffineExpr for
|
|
/// tile size, positions of corresponding `floordiv` and `mod`. If it is not a
|
|
/// tiled layout, an empty vector is returned.
|
|
static LogicalResult getTileSizePos(
|
|
AffineMap map,
|
|
SmallVectorImpl<std::tuple<AffineExpr, unsigned, unsigned>> &tileSizePos) {
|
|
// Create `floordivExprs` which is a vector of tuples including LHS and RHS of
|
|
// `floordiv` and its position in `map` output.
|
|
// Example: #tiled_2d_128x256 = affine_map<(d0, d1)
|
|
// -> (d0 div 128, d1 div 256, d0 mod 128, d1 mod 256)>
|
|
// In this example, `floordivExprs` includes {d0, 128, 0} and {d1, 256, 1}.
|
|
SmallVector<std::tuple<AffineExpr, AffineExpr, unsigned>, 4> floordivExprs;
|
|
unsigned pos = 0;
|
|
for (AffineExpr expr : map.getResults()) {
|
|
if (expr.getKind() == AffineExprKind::FloorDiv) {
|
|
AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(expr);
|
|
if (isa<AffineConstantExpr>(binaryExpr.getRHS()))
|
|
floordivExprs.emplace_back(
|
|
std::make_tuple(binaryExpr.getLHS(), binaryExpr.getRHS(), pos));
|
|
}
|
|
pos++;
|
|
}
|
|
// Not tiled layout if `floordivExprs` is empty.
|
|
if (floordivExprs.empty()) {
|
|
tileSizePos = SmallVector<std::tuple<AffineExpr, unsigned, unsigned>>{};
|
|
return success();
|
|
}
|
|
|
|
// Check if LHS of `floordiv` is used in LHS of `mod`. If not used, `map` is
|
|
// not tiled layout.
|
|
for (std::tuple<AffineExpr, AffineExpr, unsigned> fexpr : floordivExprs) {
|
|
AffineExpr floordivExprLHS = std::get<0>(fexpr);
|
|
AffineExpr floordivExprRHS = std::get<1>(fexpr);
|
|
unsigned floordivPos = std::get<2>(fexpr);
|
|
|
|
// Walk affinexpr of `map` output except `fexpr`, and check if LHS and RHS
|
|
// of `fexpr` are used in LHS and RHS of `mod`. If LHS of `fexpr` is used
|
|
// other expr, the map is not tiled layout. Example of non tiled layout:
|
|
// affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 floordiv 256)>
|
|
// affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 mod 128)>
|
|
// affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 mod 256, d2 mod
|
|
// 256)>
|
|
bool found = false;
|
|
pos = 0;
|
|
for (AffineExpr expr : map.getResults()) {
|
|
bool notTiled = false;
|
|
if (pos != floordivPos) {
|
|
expr.walk([&](AffineExpr e) {
|
|
if (e == floordivExprLHS) {
|
|
if (expr.getKind() == AffineExprKind::Mod) {
|
|
AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(expr);
|
|
// If LHS and RHS of `mod` are the same with those of floordiv.
|
|
if (floordivExprLHS == binaryExpr.getLHS() &&
|
|
floordivExprRHS == binaryExpr.getRHS()) {
|
|
// Save tile size (RHS of `mod`), and position of `floordiv` and
|
|
// `mod` if same expr with `mod` is not found yet.
|
|
if (!found) {
|
|
tileSizePos.emplace_back(
|
|
std::make_tuple(binaryExpr.getRHS(), floordivPos, pos));
|
|
found = true;
|
|
} else {
|
|
// Non tiled layout: Have multilpe `mod` with the same LHS.
|
|
// eg. affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2
|
|
// mod 256, d2 mod 256)>
|
|
notTiled = true;
|
|
}
|
|
} else {
|
|
// Non tiled layout: RHS of `mod` is different from `floordiv`.
|
|
// eg. affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2
|
|
// mod 128)>
|
|
notTiled = true;
|
|
}
|
|
} else {
|
|
// Non tiled layout: LHS is the same, but not `mod`.
|
|
// eg. affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2
|
|
// floordiv 256)>
|
|
notTiled = true;
|
|
}
|
|
}
|
|
});
|
|
}
|
|
if (notTiled) {
|
|
tileSizePos = SmallVector<std::tuple<AffineExpr, unsigned, unsigned>>{};
|
|
return success();
|
|
}
|
|
pos++;
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
/// Check if `dim` dimension of memrefType with `layoutMap` becomes dynamic
|
|
/// after normalization. Dimensions that include dynamic dimensions in the map
|
|
/// output will become dynamic dimensions. Return true if `dim` is dynamic
|
|
/// dimension.
|
|
///
|
|
/// Example:
|
|
/// #map0 = affine_map<(d0, d1) -> (d0, d1 floordiv 32, d1 mod 32)>
|
|
///
|
|
/// If d1 is dynamic dimension, 2nd and 3rd dimension of map output are dynamic.
|
|
/// memref<4x?xf32, #map0> ==> memref<4x?x?xf32>
|
|
static bool
|
|
isNormalizedMemRefDynamicDim(unsigned dim, AffineMap layoutMap,
|
|
SmallVectorImpl<unsigned> &inMemrefTypeDynDims) {
|
|
AffineExpr expr = layoutMap.getResults()[dim];
|
|
// Check if affine expr of the dimension includes dynamic dimension of input
|
|
// memrefType.
|
|
MLIRContext *context = layoutMap.getContext();
|
|
return expr
|
|
.walk([&](AffineExpr e) {
|
|
if (isa<AffineDimExpr>(e) &&
|
|
llvm::any_of(inMemrefTypeDynDims, [&](unsigned dim) {
|
|
return e == getAffineDimExpr(dim, context);
|
|
}))
|
|
return WalkResult::interrupt();
|
|
return WalkResult::advance();
|
|
})
|
|
.wasInterrupted();
|
|
}
|
|
|
|
/// Create affine expr to calculate dimension size for a tiled-layout map.
|
|
static AffineExpr createDimSizeExprForTiledLayout(AffineExpr oldMapOutput,
|
|
TileExprPattern pat) {
|
|
// Create map output for the patterns.
|
|
// "floordiv <tile size>" ==> "ceildiv <tile size>"
|
|
// "mod <tile size>" ==> "<tile size>"
|
|
AffineExpr newMapOutput;
|
|
AffineBinaryOpExpr binaryExpr = nullptr;
|
|
switch (pat) {
|
|
case TileExprPattern::TileMod:
|
|
binaryExpr = cast<AffineBinaryOpExpr>(oldMapOutput);
|
|
newMapOutput = binaryExpr.getRHS();
|
|
break;
|
|
case TileExprPattern::TileFloorDiv:
|
|
binaryExpr = cast<AffineBinaryOpExpr>(oldMapOutput);
|
|
newMapOutput = getAffineBinaryOpExpr(
|
|
AffineExprKind::CeilDiv, binaryExpr.getLHS(), binaryExpr.getRHS());
|
|
break;
|
|
default:
|
|
newMapOutput = oldMapOutput;
|
|
}
|
|
return newMapOutput;
|
|
}
|
|
|
|
/// Create new maps to calculate each dimension size of `newMemRefType`, and
|
|
/// create `newDynamicSizes` from them by using AffineApplyOp.
|
|
///
|
|
/// Steps for normalizing dynamic memrefs for a tiled layout map
|
|
/// Example:
|
|
/// #map0 = affine_map<(d0, d1) -> (d0, d1 floordiv 32, d1 mod 32)>
|
|
/// %0 = dim %arg0, %c1 :memref<4x?xf32>
|
|
/// %1 = alloc(%0) : memref<4x?xf32, #map0>
|
|
///
|
|
/// (Before this function)
|
|
/// 1. Check if `map`(#map0) is a tiled layout using `getTileSizePos()`. Only
|
|
/// single layout map is supported.
|
|
///
|
|
/// 2. Create normalized memrefType using `isNormalizedMemRefDynamicDim()`. It
|
|
/// is memref<4x?x?xf32> in the above example.
|
|
///
|
|
/// (In this function)
|
|
/// 3. Create new maps to calculate each dimension of the normalized memrefType
|
|
/// using `createDimSizeExprForTiledLayout()`. In the tiled layout, the
|
|
/// dimension size can be calculated by replacing "floordiv <tile size>" with
|
|
/// "ceildiv <tile size>" and "mod <tile size>" with "<tile size>".
|
|
/// - New map in the above example
|
|
/// #map0 = affine_map<(d0, d1) -> (d0)>
|
|
/// #map1 = affine_map<(d0, d1) -> (d1 ceildiv 32)>
|
|
/// #map2 = affine_map<(d0, d1) -> (32)>
|
|
///
|
|
/// 4. Create AffineApplyOp to apply the new maps. The output of AffineApplyOp
|
|
/// is used in dynamicSizes of new AllocOp.
|
|
/// %0 = dim %arg0, %c1 : memref<4x?xf32>
|
|
/// %c4 = arith.constant 4 : index
|
|
/// %1 = affine.apply #map1(%c4, %0)
|
|
/// %2 = affine.apply #map2(%c4, %0)
|
|
static void createNewDynamicSizes(MemRefType oldMemRefType,
|
|
MemRefType newMemRefType, AffineMap map,
|
|
memref::AllocOp *allocOp, OpBuilder b,
|
|
SmallVectorImpl<Value> &newDynamicSizes) {
|
|
// Create new input for AffineApplyOp.
|
|
SmallVector<Value, 4> inAffineApply;
|
|
ArrayRef<int64_t> oldMemRefShape = oldMemRefType.getShape();
|
|
unsigned dynIdx = 0;
|
|
for (unsigned d = 0; d < oldMemRefType.getRank(); ++d) {
|
|
if (oldMemRefShape[d] < 0) {
|
|
// Use dynamicSizes of allocOp for dynamic dimension.
|
|
inAffineApply.emplace_back(allocOp->getDynamicSizes()[dynIdx]);
|
|
dynIdx++;
|
|
} else {
|
|
// Create ConstantOp for static dimension.
|
|
auto constantAttr = b.getIntegerAttr(b.getIndexType(), oldMemRefShape[d]);
|
|
inAffineApply.emplace_back(
|
|
b.create<arith::ConstantOp>(allocOp->getLoc(), constantAttr));
|
|
}
|
|
}
|
|
|
|
// Create new map to calculate each dimension size of new memref for each
|
|
// original map output. Only for dynamic dimesion of `newMemRefType`.
|
|
unsigned newDimIdx = 0;
|
|
ArrayRef<int64_t> newMemRefShape = newMemRefType.getShape();
|
|
SmallVector<std::tuple<AffineExpr, unsigned, unsigned>> tileSizePos;
|
|
(void)getTileSizePos(map, tileSizePos);
|
|
for (AffineExpr expr : map.getResults()) {
|
|
if (newMemRefShape[newDimIdx] < 0) {
|
|
// Create new maps to calculate each dimension size of new memref.
|
|
enum TileExprPattern pat = TileExprPattern::TileNone;
|
|
for (auto pos : tileSizePos) {
|
|
if (newDimIdx == std::get<1>(pos))
|
|
pat = TileExprPattern::TileFloorDiv;
|
|
else if (newDimIdx == std::get<2>(pos))
|
|
pat = TileExprPattern::TileMod;
|
|
}
|
|
AffineExpr newMapOutput = createDimSizeExprForTiledLayout(expr, pat);
|
|
AffineMap newMap =
|
|
AffineMap::get(map.getNumInputs(), map.getNumSymbols(), newMapOutput);
|
|
Value affineApp =
|
|
b.create<AffineApplyOp>(allocOp->getLoc(), newMap, inAffineApply);
|
|
newDynamicSizes.emplace_back(affineApp);
|
|
}
|
|
newDimIdx++;
|
|
}
|
|
}
|
|
|
|
// TODO: Currently works for static memrefs with a single layout map.
|
|
LogicalResult mlir::affine::normalizeMemRef(memref::AllocOp *allocOp) {
|
|
MemRefType memrefType = allocOp->getType();
|
|
OpBuilder b(*allocOp);
|
|
|
|
// Fetch a new memref type after normalizing the old memref to have an
|
|
// identity map layout.
|
|
MemRefType newMemRefType = normalizeMemRefType(memrefType);
|
|
if (newMemRefType == memrefType)
|
|
// Either memrefType already had an identity map or the map couldn't be
|
|
// transformed to an identity map.
|
|
return failure();
|
|
|
|
Value oldMemRef = allocOp->getResult();
|
|
|
|
SmallVector<Value, 4> symbolOperands(allocOp->getSymbolOperands());
|
|
AffineMap layoutMap = memrefType.getLayout().getAffineMap();
|
|
memref::AllocOp newAlloc;
|
|
// Check if `layoutMap` is a tiled layout. Only single layout map is
|
|
// supported for normalizing dynamic memrefs.
|
|
SmallVector<std::tuple<AffineExpr, unsigned, unsigned>> tileSizePos;
|
|
(void)getTileSizePos(layoutMap, tileSizePos);
|
|
if (newMemRefType.getNumDynamicDims() > 0 && !tileSizePos.empty()) {
|
|
MemRefType oldMemRefType = cast<MemRefType>(oldMemRef.getType());
|
|
SmallVector<Value, 4> newDynamicSizes;
|
|
createNewDynamicSizes(oldMemRefType, newMemRefType, layoutMap, allocOp, b,
|
|
newDynamicSizes);
|
|
// Add the new dynamic sizes in new AllocOp.
|
|
newAlloc =
|
|
b.create<memref::AllocOp>(allocOp->getLoc(), newMemRefType,
|
|
newDynamicSizes, allocOp->getAlignmentAttr());
|
|
} else {
|
|
newAlloc = b.create<memref::AllocOp>(allocOp->getLoc(), newMemRefType,
|
|
allocOp->getAlignmentAttr());
|
|
}
|
|
// Replace all uses of the old memref.
|
|
if (failed(replaceAllMemRefUsesWith(oldMemRef, /*newMemRef=*/newAlloc,
|
|
/*extraIndices=*/{},
|
|
/*indexRemap=*/layoutMap,
|
|
/*extraOperands=*/{},
|
|
/*symbolOperands=*/symbolOperands,
|
|
/*domOpFilter=*/nullptr,
|
|
/*postDomOpFilter=*/nullptr,
|
|
/*allowNonDereferencingOps=*/true))) {
|
|
// If it failed (due to escapes for example), bail out.
|
|
newAlloc.erase();
|
|
return failure();
|
|
}
|
|
// Replace any uses of the original alloc op and erase it. All remaining uses
|
|
// have to be dealloc's; RAMUW above would've failed otherwise.
|
|
assert(llvm::all_of(oldMemRef.getUsers(), [&](Operation *op) {
|
|
return hasSingleEffect<MemoryEffects::Free>(op, oldMemRef);
|
|
}));
|
|
oldMemRef.replaceAllUsesWith(newAlloc);
|
|
allocOp->erase();
|
|
return success();
|
|
}
|
|
|
|
MemRefType mlir::affine::normalizeMemRefType(MemRefType memrefType) {
|
|
unsigned rank = memrefType.getRank();
|
|
if (rank == 0)
|
|
return memrefType;
|
|
|
|
if (memrefType.getLayout().isIdentity()) {
|
|
// Either no maps is associated with this memref or this memref has
|
|
// a trivial (identity) map.
|
|
return memrefType;
|
|
}
|
|
AffineMap layoutMap = memrefType.getLayout().getAffineMap();
|
|
unsigned numSymbolicOperands = layoutMap.getNumSymbols();
|
|
|
|
// We don't do any checks for one-to-one'ness; we assume that it is
|
|
// one-to-one.
|
|
|
|
// Normalize only static memrefs and dynamic memrefs with a tiled-layout map
|
|
// for now.
|
|
// TODO: Normalize the other types of dynamic memrefs.
|
|
SmallVector<std::tuple<AffineExpr, unsigned, unsigned>> tileSizePos;
|
|
(void)getTileSizePos(layoutMap, tileSizePos);
|
|
if (memrefType.getNumDynamicDims() > 0 && tileSizePos.empty())
|
|
return memrefType;
|
|
|
|
// We have a single map that is not an identity map. Create a new memref
|
|
// with the right shape and an identity layout map.
|
|
ArrayRef<int64_t> shape = memrefType.getShape();
|
|
// FlatAffineValueConstraint may later on use symbolicOperands.
|
|
FlatAffineValueConstraints fac(rank, numSymbolicOperands);
|
|
SmallVector<unsigned, 4> memrefTypeDynDims;
|
|
for (unsigned d = 0; d < rank; ++d) {
|
|
// Use constraint system only in static dimensions.
|
|
if (shape[d] > 0) {
|
|
fac.addBound(BoundType::LB, d, 0);
|
|
fac.addBound(BoundType::UB, d, shape[d] - 1);
|
|
} else {
|
|
memrefTypeDynDims.emplace_back(d);
|
|
}
|
|
}
|
|
// We compose this map with the original index (logical) space to derive
|
|
// the upper bounds for the new index space.
|
|
unsigned newRank = layoutMap.getNumResults();
|
|
if (failed(fac.composeMatchingMap(layoutMap)))
|
|
return memrefType;
|
|
// TODO: Handle semi-affine maps.
|
|
// Project out the old data dimensions.
|
|
fac.projectOut(newRank, fac.getNumVars() - newRank - fac.getNumLocalVars());
|
|
SmallVector<int64_t, 4> newShape(newRank);
|
|
MLIRContext *context = memrefType.getContext();
|
|
for (unsigned d = 0; d < newRank; ++d) {
|
|
// Check if this dimension is dynamic.
|
|
if (isNormalizedMemRefDynamicDim(d, layoutMap, memrefTypeDynDims)) {
|
|
newShape[d] = ShapedType::kDynamic;
|
|
continue;
|
|
}
|
|
// The lower bound for the shape is always zero.
|
|
std::optional<int64_t> ubConst = fac.getConstantBound64(BoundType::UB, d);
|
|
// For a static memref and an affine map with no symbols, this is
|
|
// always bounded. However, when we have symbols, we may not be able to
|
|
// obtain a constant upper bound. Also, mapping to a negative space is
|
|
// invalid for normalization.
|
|
if (!ubConst.has_value() || *ubConst < 0) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "can't normalize map due to unknown/invalid upper bound");
|
|
return memrefType;
|
|
}
|
|
// If dimension of new memrefType is dynamic, the value is -1.
|
|
newShape[d] = *ubConst + 1;
|
|
}
|
|
|
|
// Create the new memref type after trivializing the old layout map.
|
|
auto newMemRefType =
|
|
MemRefType::Builder(memrefType)
|
|
.setShape(newShape)
|
|
.setLayout(AffineMapAttr::get(
|
|
AffineMap::getMultiDimIdentityMap(newRank, context)));
|
|
return newMemRefType;
|
|
}
|
|
|
|
DivModValue mlir::affine::getDivMod(OpBuilder &b, Location loc, Value lhs,
|
|
Value rhs) {
|
|
DivModValue result;
|
|
AffineExpr d0, d1;
|
|
bindDims(b.getContext(), d0, d1);
|
|
result.quotient =
|
|
affine::makeComposedAffineApply(b, loc, d0.floorDiv(d1), {lhs, rhs});
|
|
result.remainder =
|
|
affine::makeComposedAffineApply(b, loc, d0 % d1, {lhs, rhs});
|
|
return result;
|
|
}
|
|
|
|
/// Create an affine map that computes `lhs` * `rhs`, composing in any other
|
|
/// affine maps.
|
|
static FailureOr<OpFoldResult> composedAffineMultiply(OpBuilder &b,
|
|
Location loc,
|
|
OpFoldResult lhs,
|
|
OpFoldResult rhs) {
|
|
AffineExpr s0, s1;
|
|
bindSymbols(b.getContext(), s0, s1);
|
|
return makeComposedFoldedAffineApply(b, loc, s0 * s1, {lhs, rhs});
|
|
}
|
|
|
|
FailureOr<SmallVector<Value>>
|
|
mlir::affine::delinearizeIndex(OpBuilder &b, Location loc, Value linearIndex,
|
|
ArrayRef<Value> basis, bool hasOuterBound) {
|
|
if (hasOuterBound)
|
|
basis = basis.drop_front();
|
|
|
|
// Note: the divisors are backwards due to the scan.
|
|
SmallVector<Value> divisors;
|
|
OpFoldResult basisProd = b.getIndexAttr(1);
|
|
for (OpFoldResult basisElem : llvm::reverse(basis)) {
|
|
FailureOr<OpFoldResult> nextProd =
|
|
composedAffineMultiply(b, loc, basisElem, basisProd);
|
|
if (failed(nextProd))
|
|
return failure();
|
|
basisProd = *nextProd;
|
|
divisors.push_back(getValueOrCreateConstantIndexOp(b, loc, basisProd));
|
|
}
|
|
|
|
SmallVector<Value> results;
|
|
results.reserve(divisors.size() + 1);
|
|
Value residual = linearIndex;
|
|
for (Value divisor : llvm::reverse(divisors)) {
|
|
DivModValue divMod = getDivMod(b, loc, residual, divisor);
|
|
results.push_back(divMod.quotient);
|
|
residual = divMod.remainder;
|
|
}
|
|
results.push_back(residual);
|
|
return results;
|
|
}
|
|
|
|
FailureOr<SmallVector<Value>>
|
|
mlir::affine::delinearizeIndex(OpBuilder &b, Location loc, Value linearIndex,
|
|
ArrayRef<OpFoldResult> basis,
|
|
bool hasOuterBound) {
|
|
if (hasOuterBound)
|
|
basis = basis.drop_front();
|
|
|
|
// Note: the divisors are backwards due to the scan.
|
|
SmallVector<Value> divisors;
|
|
OpFoldResult basisProd = b.getIndexAttr(1);
|
|
for (OpFoldResult basisElem : llvm::reverse(basis)) {
|
|
FailureOr<OpFoldResult> nextProd =
|
|
composedAffineMultiply(b, loc, basisElem, basisProd);
|
|
if (failed(nextProd))
|
|
return failure();
|
|
basisProd = *nextProd;
|
|
divisors.push_back(getValueOrCreateConstantIndexOp(b, loc, basisProd));
|
|
}
|
|
|
|
SmallVector<Value> results;
|
|
results.reserve(divisors.size() + 1);
|
|
Value residual = linearIndex;
|
|
for (Value divisor : llvm::reverse(divisors)) {
|
|
DivModValue divMod = getDivMod(b, loc, residual, divisor);
|
|
results.push_back(divMod.quotient);
|
|
residual = divMod.remainder;
|
|
}
|
|
results.push_back(residual);
|
|
return results;
|
|
}
|
|
|
|
OpFoldResult mlir::affine::linearizeIndex(ArrayRef<OpFoldResult> multiIndex,
|
|
ArrayRef<OpFoldResult> basis,
|
|
ImplicitLocOpBuilder &builder) {
|
|
return linearizeIndex(builder, builder.getLoc(), multiIndex, basis);
|
|
}
|
|
|
|
OpFoldResult mlir::affine::linearizeIndex(OpBuilder &builder, Location loc,
|
|
ArrayRef<OpFoldResult> multiIndex,
|
|
ArrayRef<OpFoldResult> basis) {
|
|
assert(multiIndex.size() == basis.size() ||
|
|
multiIndex.size() == basis.size() + 1);
|
|
SmallVector<AffineExpr> basisAffine;
|
|
|
|
// Add a fake initial size in order to make the later index linearization
|
|
// computations line up if an outer bound is not provided.
|
|
if (multiIndex.size() == basis.size() + 1)
|
|
basisAffine.push_back(getAffineConstantExpr(1, builder.getContext()));
|
|
|
|
for (size_t i = 0; i < basis.size(); ++i) {
|
|
basisAffine.push_back(getAffineSymbolExpr(i, builder.getContext()));
|
|
}
|
|
|
|
SmallVector<AffineExpr> stridesAffine = computeStrides(basisAffine);
|
|
SmallVector<OpFoldResult> strides;
|
|
strides.reserve(stridesAffine.size());
|
|
llvm::transform(stridesAffine, std::back_inserter(strides),
|
|
[&builder, &basis, loc](AffineExpr strideExpr) {
|
|
return affine::makeComposedFoldedAffineApply(
|
|
builder, loc, strideExpr, basis);
|
|
});
|
|
|
|
auto &&[linearIndexExpr, multiIndexAndStrides] = computeLinearIndex(
|
|
OpFoldResult(builder.getIndexAttr(0)), strides, multiIndex);
|
|
return affine::makeComposedFoldedAffineApply(builder, loc, linearIndexExpr,
|
|
multiIndexAndStrides);
|
|
}
|