
The greedy rewriter is used in many different flows and it has a lot of convenience (work list management, debugging actions, tracing, etc). But it combines two kinds of greedy behavior 1) how ops are matched, 2) folding wherever it can. These are independent forms of greedy and leads to inefficiency. E.g., cases where one need to create different phases in lowering and is required to applying patterns in specific order split across different passes. Using the driver one ends up needlessly retrying folding/having multiple rounds of folding attempts, where one final run would have sufficed. Of course folks can locally avoid this behavior by just building their own, but this is also a common requested feature that folks keep on working around locally in suboptimal ways. For downstream users, there should be no behavioral change. Updating from the deprecated should just be a find and replace (e.g., `find ./ -type f -exec sed -i 's|applyPatternsAndFoldGreedily|applyPatternsGreedily|g' {} \;` variety) as the API arguments hasn't changed between the two.
166 lines
6.3 KiB
C++
166 lines
6.3 KiB
C++
//===- NamedOpConversions.cpp - Implements conversions between named ops --===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements conversions between named ops that can be seens as
|
|
// canonicalizations of named ops.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Linalg/Passes.h"
|
|
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_LINALGNAMEDOPCONVERSIONPASS
|
|
#include "mlir/Dialect/Linalg/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::linalg;
|
|
|
|
static llvm::SmallVector<int64_t> getIndicesVector(int start, int end) {
|
|
return llvm::to_vector<2>(llvm::seq<int64_t>(start, end));
|
|
}
|
|
|
|
static LogicalResult
|
|
matchAndReplaceDepthwiseConv(Operation *operation, Value input, Value kernel,
|
|
Value iZp, Value kZp, Value init, Attribute stride,
|
|
Attribute dilation, PatternRewriter &rewriter) {
|
|
Location loc = operation->getLoc();
|
|
auto linalgOp = dyn_cast<LinalgOp>(operation);
|
|
// Exit out on the memref version of this operation.
|
|
if (!linalgOp || !linalgOp.hasPureTensorSemantics())
|
|
return failure();
|
|
|
|
auto result = operation->getResult(0);
|
|
|
|
auto kernelTy = dyn_cast<RankedTensorType>(kernel.getType());
|
|
auto initTy = dyn_cast<RankedTensorType>(init.getType());
|
|
auto resultTy = dyn_cast<RankedTensorType>(result.getType());
|
|
if (!kernelTy || !initTy || !resultTy)
|
|
return failure();
|
|
|
|
if (kernelTy.getDimSize(3) != 1)
|
|
return failure();
|
|
|
|
// Collapse kernel dims.
|
|
SmallVector<ReassociationIndices, 4> collapsedKernelDims = {
|
|
getIndicesVector(0, 1), getIndicesVector(1, 2), getIndicesVector(2, 4)};
|
|
auto newKernelTy = RankedTensorType::get(
|
|
{kernelTy.getDimSize(0), kernelTy.getDimSize(1), kernelTy.getDimSize(2)},
|
|
kernelTy.getElementType());
|
|
auto collapsedKernel = rewriter.create<tensor::CollapseShapeOp>(
|
|
loc, newKernelTy, kernel, collapsedKernelDims);
|
|
|
|
// Collapse init dims.
|
|
SmallVector<ReassociationIndices, 4> collapsedInitDims = {
|
|
getIndicesVector(0, 1), getIndicesVector(1, 2), getIndicesVector(2, 3),
|
|
getIndicesVector(3, 5)};
|
|
auto newInitTy =
|
|
RankedTensorType::get({initTy.getDimSize(0), initTy.getDimSize(1),
|
|
initTy.getDimSize(2), initTy.getDimSize(3)},
|
|
initTy.getElementType());
|
|
auto collapsedInit = rewriter.create<tensor::CollapseShapeOp>(
|
|
loc, newInitTy, init, collapsedInitDims);
|
|
|
|
SmallVector<NamedAttribute> preservedAttrs;
|
|
Operation *newConv =
|
|
TypeSwitch<Operation *, Operation *>(operation)
|
|
.Case<DepthwiseConv2DNhwcHwcmOp>([&](auto op) {
|
|
preservedAttrs = getPrunedAttributeList(op);
|
|
return rewriter.create<DepthwiseConv2DNhwcHwcOp>(
|
|
loc, newInitTy, ValueRange{input, collapsedKernel},
|
|
ValueRange{collapsedInit}, stride, dilation);
|
|
})
|
|
.Case<DepthwiseConv2DNhwcHwcmQOp>([&](auto op) {
|
|
preservedAttrs = getPrunedAttributeList(op);
|
|
return rewriter.create<DepthwiseConv2DNhwcHwcQOp>(
|
|
loc, newInitTy, ValueRange{input, collapsedKernel, iZp, kZp},
|
|
ValueRange{collapsedInit}, stride, dilation);
|
|
})
|
|
.Default([](Operation *op) { return nullptr; });
|
|
if (!newConv)
|
|
return failure();
|
|
for (auto attr : preservedAttrs)
|
|
newConv->setAttr(attr.getName(), attr.getValue());
|
|
|
|
// Expand dimensions back out to
|
|
rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>(
|
|
operation, resultTy, newConv->getResult(0), collapsedInitDims);
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
struct SimplifyDepthwiseConvOp
|
|
: public OpRewritePattern<DepthwiseConv2DNhwcHwcmOp> {
|
|
using OpRewritePattern<DepthwiseConv2DNhwcHwcmOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(DepthwiseConv2DNhwcHwcmOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Operation *operation = op.getOperation();
|
|
Value input = op.getDpsInputOperand(0)->get();
|
|
Value kernel = op.getDpsInputOperand(1)->get();
|
|
Value init = op.getDpsInitOperand(0)->get();
|
|
|
|
auto stride = op.getStrides();
|
|
auto dilation = op.getDilations();
|
|
|
|
return matchAndReplaceDepthwiseConv(operation, input, kernel, nullptr,
|
|
nullptr, init, stride, dilation,
|
|
rewriter);
|
|
}
|
|
};
|
|
|
|
struct SimplifyDepthwiseConvQOp
|
|
: public OpRewritePattern<DepthwiseConv2DNhwcHwcmQOp> {
|
|
using OpRewritePattern<DepthwiseConv2DNhwcHwcmQOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(DepthwiseConv2DNhwcHwcmQOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Operation *operation = op.getOperation();
|
|
Value input = op.getDpsInputOperand(0)->get();
|
|
Value kernel = op.getDpsInputOperand(1)->get();
|
|
Value iZp = op.getDpsInputOperand(2)->get();
|
|
Value kZp = op.getDpsInputOperand(3)->get();
|
|
Value init = op.getDpsInitOperand(0)->get();
|
|
|
|
auto stride = op.getStrides();
|
|
auto dilation = op.getDilations();
|
|
|
|
return matchAndReplaceDepthwiseConv(operation, input, kernel, iZp, kZp,
|
|
init, stride, dilation, rewriter);
|
|
}
|
|
};
|
|
|
|
struct LinalgNamedOpConversionPass
|
|
: public impl::LinalgNamedOpConversionPassBase<
|
|
LinalgNamedOpConversionPass> {
|
|
using impl::LinalgNamedOpConversionPassBase<
|
|
LinalgNamedOpConversionPass>::LinalgNamedOpConversionPassBase;
|
|
|
|
void runOnOperation() override {
|
|
Operation *op = getOperation();
|
|
RewritePatternSet patterns(op->getContext());
|
|
populateLinalgNamedOpConversionPatterns(patterns);
|
|
if (failed(applyPatternsGreedily(op, std::move(patterns))))
|
|
return signalPassFailure();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void mlir::linalg::populateLinalgNamedOpConversionPatterns(
|
|
RewritePatternSet &patterns) {
|
|
patterns.add<SimplifyDepthwiseConvOp, SimplifyDepthwiseConvQOp>(
|
|
patterns.getContext());
|
|
}
|