
The greedy rewriter is used in many different flows and it has a lot of convenience (work list management, debugging actions, tracing, etc). But it combines two kinds of greedy behavior 1) how ops are matched, 2) folding wherever it can. These are independent forms of greedy and leads to inefficiency. E.g., cases where one need to create different phases in lowering and is required to applying patterns in specific order split across different passes. Using the driver one ends up needlessly retrying folding/having multiple rounds of folding attempts, where one final run would have sufficed. Of course folks can locally avoid this behavior by just building their own, but this is also a common requested feature that folks keep on working around locally in suboptimal ways. For downstream users, there should be no behavioral change. Updating from the deprecated should just be a find and replace (e.g., `find ./ -type f -exec sed -i 's|applyPatternsAndFoldGreedily|applyPatternsGreedily|g' {} \;` variety) as the API arguments hasn't changed between the two.
190 lines
6.5 KiB
C++
190 lines
6.5 KiB
C++
//===- LoopCanonicalization.cpp - Cross-dialect canonicalization patterns -===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains cross-dialect canonicalization patterns that cannot be
|
|
// actual canonicalization patterns due to undesired additional dependencies.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/SCF/Transforms/Passes.h"
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SCF/IR/SCF.h"
|
|
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
|
|
#include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_SCFFORLOOPCANONICALIZATION
|
|
#include "mlir/Dialect/SCF/Transforms/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::scf;
|
|
|
|
/// A simple, conservative analysis to determine if the loop is shape
|
|
/// conserving. I.e., the type of the arg-th yielded value is the same as the
|
|
/// type of the corresponding basic block argument of the loop.
|
|
/// Note: This function handles only simple cases. Expand as needed.
|
|
static bool isShapePreserving(ForOp forOp, int64_t arg) {
|
|
assert(arg < static_cast<int64_t>(forOp.getNumResults()) &&
|
|
"arg is out of bounds");
|
|
Value value = forOp.getYieldedValues()[arg];
|
|
while (value) {
|
|
if (value == forOp.getRegionIterArgs()[arg])
|
|
return true;
|
|
OpResult opResult = dyn_cast<OpResult>(value);
|
|
if (!opResult)
|
|
return false;
|
|
|
|
using tensor::InsertSliceOp;
|
|
value = llvm::TypeSwitch<Operation *, Value>(opResult.getOwner())
|
|
.template Case<InsertSliceOp>(
|
|
[&](InsertSliceOp op) { return op.getDest(); })
|
|
.template Case<ForOp>([&](ForOp forOp) {
|
|
return isShapePreserving(forOp, opResult.getResultNumber())
|
|
? forOp.getInitArgs()[opResult.getResultNumber()]
|
|
: Value();
|
|
})
|
|
.Default([&](auto op) { return Value(); });
|
|
}
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
/// Fold dim ops of iter_args to dim ops of their respective init args. E.g.:
|
|
///
|
|
/// ```
|
|
/// %0 = ... : tensor<?x?xf32>
|
|
/// scf.for ... iter_args(%arg0 = %0) -> (tensor<?x?xf32>) {
|
|
/// %1 = tensor.dim %arg0, %c0 : tensor<?x?xf32>
|
|
/// ...
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// is folded to:
|
|
///
|
|
/// ```
|
|
/// %0 = ... : tensor<?x?xf32>
|
|
/// scf.for ... iter_args(%arg0 = %0) -> (tensor<?x?xf32>) {
|
|
/// %1 = tensor.dim %0, %c0 : tensor<?x?xf32>
|
|
/// ...
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Note: Dim ops are folded only if it can be proven that the runtime type of
|
|
/// the iter arg does not change with loop iterations.
|
|
template <typename OpTy>
|
|
struct DimOfIterArgFolder : public OpRewritePattern<OpTy> {
|
|
using OpRewritePattern<OpTy>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(OpTy dimOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto blockArg = dyn_cast<BlockArgument>(dimOp.getSource());
|
|
if (!blockArg)
|
|
return failure();
|
|
auto forOp = dyn_cast<ForOp>(blockArg.getParentBlock()->getParentOp());
|
|
if (!forOp)
|
|
return failure();
|
|
if (!isShapePreserving(forOp, blockArg.getArgNumber() - 1))
|
|
return failure();
|
|
|
|
Value initArg = forOp.getTiedLoopInit(blockArg)->get();
|
|
rewriter.modifyOpInPlace(
|
|
dimOp, [&]() { dimOp.getSourceMutable().assign(initArg); });
|
|
|
|
return success();
|
|
};
|
|
};
|
|
|
|
/// Fold dim ops of loop results to dim ops of their respective init args. E.g.:
|
|
///
|
|
/// ```
|
|
/// %0 = ... : tensor<?x?xf32>
|
|
/// %r = scf.for ... iter_args(%arg0 = %0) -> (tensor<?x?xf32>) {
|
|
/// ...
|
|
/// }
|
|
/// %1 = tensor.dim %r, %c0 : tensor<?x?xf32>
|
|
/// ```
|
|
///
|
|
/// is folded to:
|
|
///
|
|
/// ```
|
|
/// %0 = ... : tensor<?x?xf32>
|
|
/// %r = scf.for ... iter_args(%arg0 = %0) -> (tensor<?x?xf32>) {
|
|
/// ...
|
|
/// }
|
|
/// %1 = tensor.dim %0, %c0 : tensor<?x?xf32>
|
|
/// ```
|
|
///
|
|
/// Note: Dim ops are folded only if it can be proven that the runtime type of
|
|
/// the iter arg does not change with loop iterations.
|
|
template <typename OpTy>
|
|
struct DimOfLoopResultFolder : public OpRewritePattern<OpTy> {
|
|
using OpRewritePattern<OpTy>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(OpTy dimOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto forOp = dimOp.getSource().template getDefiningOp<scf::ForOp>();
|
|
if (!forOp)
|
|
return failure();
|
|
auto opResult = cast<OpResult>(dimOp.getSource());
|
|
unsigned resultNumber = opResult.getResultNumber();
|
|
if (!isShapePreserving(forOp, resultNumber))
|
|
return failure();
|
|
rewriter.modifyOpInPlace(dimOp, [&]() {
|
|
dimOp.getSourceMutable().assign(forOp.getInitArgs()[resultNumber]);
|
|
});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Canonicalize AffineMinOp/AffineMaxOp operations in the context of scf.for
|
|
/// and scf.parallel loops with a known range.
|
|
template <typename OpTy>
|
|
struct AffineOpSCFCanonicalizationPattern : public OpRewritePattern<OpTy> {
|
|
using OpRewritePattern<OpTy>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(OpTy op,
|
|
PatternRewriter &rewriter) const override {
|
|
return scf::canonicalizeMinMaxOpInLoop(rewriter, op, scf::matchForLikeLoop);
|
|
}
|
|
};
|
|
|
|
struct SCFForLoopCanonicalization
|
|
: public impl::SCFForLoopCanonicalizationBase<SCFForLoopCanonicalization> {
|
|
void runOnOperation() override {
|
|
auto *parentOp = getOperation();
|
|
MLIRContext *ctx = parentOp->getContext();
|
|
RewritePatternSet patterns(ctx);
|
|
scf::populateSCFForLoopCanonicalizationPatterns(patterns);
|
|
if (failed(applyPatternsGreedily(parentOp, std::move(patterns))))
|
|
signalPassFailure();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void mlir::scf::populateSCFForLoopCanonicalizationPatterns(
|
|
RewritePatternSet &patterns) {
|
|
MLIRContext *ctx = patterns.getContext();
|
|
patterns
|
|
.add<AffineOpSCFCanonicalizationPattern<affine::AffineMinOp>,
|
|
AffineOpSCFCanonicalizationPattern<affine::AffineMaxOp>,
|
|
DimOfIterArgFolder<tensor::DimOp>, DimOfIterArgFolder<memref::DimOp>,
|
|
DimOfLoopResultFolder<tensor::DimOp>,
|
|
DimOfLoopResultFolder<memref::DimOp>>(ctx);
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createSCFForLoopCanonicalizationPass() {
|
|
return std::make_unique<SCFForLoopCanonicalization>();
|
|
}
|