llvm-project/mlir/lib/Dialect/SCF/Transforms/LoopSpecialization.cpp
Jacques Pienaar 09dfc5713d
[mlir] Enable decoupling two kinds of greedy behavior. (#104649)
The greedy rewriter is used in many different flows and it has a lot of
convenience (work list management, debugging actions, tracing, etc). But
it combines two kinds of greedy behavior 1) how ops are matched, 2)
folding wherever it can.

These are independent forms of greedy and leads to inefficiency. E.g.,
cases where one need to create different phases in lowering and is
required to applying patterns in specific order split across different
passes. Using the driver one ends up needlessly retrying folding/having
multiple rounds of folding attempts, where one final run would have
sufficed.

Of course folks can locally avoid this behavior by just building their
own, but this is also a common requested feature that folks keep on
working around locally in suboptimal ways.

For downstream users, there should be no behavioral change. Updating
from the deprecated should just be a find and replace (e.g., `find ./
-type f -exec sed -i
's|applyPatternsAndFoldGreedily|applyPatternsGreedily|g' {} \;` variety)
as the API arguments hasn't changed between the two.
2024-12-20 08:15:48 -08:00

356 lines
14 KiB
C++

//===- LoopSpecialization.cpp - scf.parallel/SCR.for specialization -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Specializes parallel loops and for loops for easier unrolling and
// vectorization.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/Transforms/Passes.h"
#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/DenseMap.h"
namespace mlir {
#define GEN_PASS_DEF_SCFFORLOOPPEELING
#define GEN_PASS_DEF_SCFFORLOOPSPECIALIZATION
#define GEN_PASS_DEF_SCFPARALLELLOOPSPECIALIZATION
#include "mlir/Dialect/SCF/Transforms/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::affine;
using scf::ForOp;
using scf::ParallelOp;
/// Rewrite a parallel loop with bounds defined by an affine.min with a constant
/// into 2 loops after checking if the bounds are equal to that constant. This
/// is beneficial if the loop will almost always have the constant bound and
/// that version can be fully unrolled and vectorized.
static void specializeParallelLoopForUnrolling(ParallelOp op) {
SmallVector<int64_t, 2> constantIndices;
constantIndices.reserve(op.getUpperBound().size());
for (auto bound : op.getUpperBound()) {
auto minOp = bound.getDefiningOp<AffineMinOp>();
if (!minOp)
return;
int64_t minConstant = std::numeric_limits<int64_t>::max();
for (AffineExpr expr : minOp.getMap().getResults()) {
if (auto constantIndex = dyn_cast<AffineConstantExpr>(expr))
minConstant = std::min(minConstant, constantIndex.getValue());
}
if (minConstant == std::numeric_limits<int64_t>::max())
return;
constantIndices.push_back(minConstant);
}
OpBuilder b(op);
IRMapping map;
Value cond;
for (auto bound : llvm::zip(op.getUpperBound(), constantIndices)) {
Value constant =
b.create<arith::ConstantIndexOp>(op.getLoc(), std::get<1>(bound));
Value cmp = b.create<arith::CmpIOp>(op.getLoc(), arith::CmpIPredicate::eq,
std::get<0>(bound), constant);
cond = cond ? b.create<arith::AndIOp>(op.getLoc(), cond, cmp) : cmp;
map.map(std::get<0>(bound), constant);
}
auto ifOp = b.create<scf::IfOp>(op.getLoc(), cond, /*withElseRegion=*/true);
ifOp.getThenBodyBuilder().clone(*op.getOperation(), map);
ifOp.getElseBodyBuilder().clone(*op.getOperation());
op.erase();
}
/// Rewrite a for loop with bounds defined by an affine.min with a constant into
/// 2 loops after checking if the bounds are equal to that constant. This is
/// beneficial if the loop will almost always have the constant bound and that
/// version can be fully unrolled and vectorized.
static void specializeForLoopForUnrolling(ForOp op) {
auto bound = op.getUpperBound();
auto minOp = bound.getDefiningOp<AffineMinOp>();
if (!minOp)
return;
int64_t minConstant = std::numeric_limits<int64_t>::max();
for (AffineExpr expr : minOp.getMap().getResults()) {
if (auto constantIndex = dyn_cast<AffineConstantExpr>(expr))
minConstant = std::min(minConstant, constantIndex.getValue());
}
if (minConstant == std::numeric_limits<int64_t>::max())
return;
OpBuilder b(op);
IRMapping map;
Value constant = b.create<arith::ConstantIndexOp>(op.getLoc(), minConstant);
Value cond = b.create<arith::CmpIOp>(op.getLoc(), arith::CmpIPredicate::eq,
bound, constant);
map.map(bound, constant);
auto ifOp = b.create<scf::IfOp>(op.getLoc(), cond, /*withElseRegion=*/true);
ifOp.getThenBodyBuilder().clone(*op.getOperation(), map);
ifOp.getElseBodyBuilder().clone(*op.getOperation());
op.erase();
}
/// Rewrite a for loop with bounds/step that potentially do not divide evenly
/// into a for loop where the step divides the iteration space evenly, followed
/// by an scf.if for the last (partial) iteration (if any).
///
/// This function rewrites the given scf.for loop in-place and creates a new
/// scf.if operation for the last iteration. It replaces all uses of the
/// unpeeled loop with the results of the newly generated scf.if.
///
/// The newly generated scf.if operation is returned via `ifOp`. The boundary
/// at which the loop is split (new upper bound) is returned via `splitBound`.
/// The return value indicates whether the loop was rewritten or not.
static LogicalResult peelForLoop(RewriterBase &b, ForOp forOp,
ForOp &partialIteration, Value &splitBound) {
RewriterBase::InsertionGuard guard(b);
auto lbInt = getConstantIntValue(forOp.getLowerBound());
auto ubInt = getConstantIntValue(forOp.getUpperBound());
auto stepInt = getConstantIntValue(forOp.getStep());
// No specialization necessary if step size is 1. Also bail out in case of an
// invalid zero or negative step which might have happened during folding.
if (stepInt && *stepInt <= 1)
return failure();
// No specialization necessary if step already divides upper bound evenly.
// Fast path: lb, ub and step are constants.
if (lbInt && ubInt && stepInt && (*ubInt - *lbInt) % *stepInt == 0)
return failure();
// Slow path: Examine the ops that define lb, ub and step.
AffineExpr sym0, sym1, sym2;
bindSymbols(b.getContext(), sym0, sym1, sym2);
SmallVector<Value> operands{forOp.getLowerBound(), forOp.getUpperBound(),
forOp.getStep()};
AffineMap map = AffineMap::get(0, 3, {(sym1 - sym0) % sym2});
affine::fullyComposeAffineMapAndOperands(&map, &operands);
if (auto constExpr = dyn_cast<AffineConstantExpr>(map.getResult(0)))
if (constExpr.getValue() == 0)
return failure();
// New upper bound: %ub - (%ub - %lb) mod %step
auto modMap = AffineMap::get(0, 3, {sym1 - ((sym1 - sym0) % sym2)});
b.setInsertionPoint(forOp);
auto loc = forOp.getLoc();
splitBound = b.createOrFold<AffineApplyOp>(loc, modMap,
ValueRange{forOp.getLowerBound(),
forOp.getUpperBound(),
forOp.getStep()});
// Create ForOp for partial iteration.
b.setInsertionPointAfter(forOp);
partialIteration = cast<ForOp>(b.clone(*forOp.getOperation()));
partialIteration.getLowerBoundMutable().assign(splitBound);
b.replaceAllUsesWith(forOp.getResults(), partialIteration->getResults());
partialIteration.getInitArgsMutable().assign(forOp->getResults());
// Set new upper loop bound.
b.modifyOpInPlace(forOp,
[&]() { forOp.getUpperBoundMutable().assign(splitBound); });
return success();
}
static void rewriteAffineOpAfterPeeling(RewriterBase &rewriter, ForOp forOp,
ForOp partialIteration,
Value previousUb) {
Value mainIv = forOp.getInductionVar();
Value partialIv = partialIteration.getInductionVar();
assert(forOp.getStep() == partialIteration.getStep() &&
"expected same step in main and partial loop");
Value step = forOp.getStep();
forOp.walk([&](Operation *affineOp) {
if (!isa<AffineMinOp, AffineMaxOp>(affineOp))
return WalkResult::advance();
(void)scf::rewritePeeledMinMaxOp(rewriter, affineOp, mainIv, previousUb,
step,
/*insideLoop=*/true);
return WalkResult::advance();
});
partialIteration.walk([&](Operation *affineOp) {
if (!isa<AffineMinOp, AffineMaxOp>(affineOp))
return WalkResult::advance();
(void)scf::rewritePeeledMinMaxOp(rewriter, affineOp, partialIv, previousUb,
step, /*insideLoop=*/false);
return WalkResult::advance();
});
}
LogicalResult mlir::scf::peelForLoopAndSimplifyBounds(RewriterBase &rewriter,
ForOp forOp,
ForOp &partialIteration) {
Value previousUb = forOp.getUpperBound();
Value splitBound;
if (failed(peelForLoop(rewriter, forOp, partialIteration, splitBound)))
return failure();
// Rewrite affine.min and affine.max ops.
rewriteAffineOpAfterPeeling(rewriter, forOp, partialIteration, previousUb);
return success();
}
/// Rewrites the original scf::ForOp as two scf::ForOp Ops, the first
/// scf::ForOp corresponds to the first iteration of the loop which can be
/// canonicalized away in the following optimizations. The second loop Op
/// contains the remaining iterations, with a lower bound updated as the
/// original lower bound plus the step (i.e. skips the first iteration).
LogicalResult mlir::scf::peelForLoopFirstIteration(RewriterBase &b, ForOp forOp,
ForOp &firstIteration) {
RewriterBase::InsertionGuard guard(b);
auto lbInt = getConstantIntValue(forOp.getLowerBound());
auto ubInt = getConstantIntValue(forOp.getUpperBound());
auto stepInt = getConstantIntValue(forOp.getStep());
// Peeling is not needed if there is one or less iteration.
if (lbInt && ubInt && stepInt && ceil(float(*ubInt - *lbInt) / *stepInt) <= 1)
return failure();
AffineExpr lbSymbol, stepSymbol;
bindSymbols(b.getContext(), lbSymbol, stepSymbol);
// New lower bound for main loop: %lb + %step
auto ubMap = AffineMap::get(0, 2, {lbSymbol + stepSymbol});
b.setInsertionPoint(forOp);
auto loc = forOp.getLoc();
Value splitBound = b.createOrFold<AffineApplyOp>(
loc, ubMap, ValueRange{forOp.getLowerBound(), forOp.getStep()});
// Peel the first iteration.
IRMapping map;
map.map(forOp.getUpperBound(), splitBound);
firstIteration = cast<ForOp>(b.clone(*forOp.getOperation(), map));
// Update main loop with new lower bound.
b.modifyOpInPlace(forOp, [&]() {
forOp.getInitArgsMutable().assign(firstIteration->getResults());
forOp.getLowerBoundMutable().assign(splitBound);
});
return success();
}
static constexpr char kPeeledLoopLabel[] = "__peeled_loop__";
static constexpr char kPartialIterationLabel[] = "__partial_iteration__";
namespace {
struct ForLoopPeelingPattern : public OpRewritePattern<ForOp> {
ForLoopPeelingPattern(MLIRContext *ctx, bool peelFront, bool skipPartial)
: OpRewritePattern<ForOp>(ctx), peelFront(peelFront),
skipPartial(skipPartial) {}
LogicalResult matchAndRewrite(ForOp forOp,
PatternRewriter &rewriter) const override {
// Do not peel already peeled loops.
if (forOp->hasAttr(kPeeledLoopLabel))
return failure();
scf::ForOp partialIteration;
// The case for peeling the first iteration of the loop.
if (peelFront) {
if (failed(
peelForLoopFirstIteration(rewriter, forOp, partialIteration))) {
return failure();
}
} else {
if (skipPartial) {
// No peeling of loops inside the partial iteration of another peeled
// loop.
Operation *op = forOp.getOperation();
while ((op = op->getParentOfType<scf::ForOp>())) {
if (op->hasAttr(kPartialIterationLabel))
return failure();
}
}
// Apply loop peeling.
if (failed(
peelForLoopAndSimplifyBounds(rewriter, forOp, partialIteration)))
return failure();
}
// Apply label, so that the same loop is not rewritten a second time.
rewriter.modifyOpInPlace(partialIteration, [&]() {
partialIteration->setAttr(kPeeledLoopLabel, rewriter.getUnitAttr());
partialIteration->setAttr(kPartialIterationLabel, rewriter.getUnitAttr());
});
rewriter.modifyOpInPlace(forOp, [&]() {
forOp->setAttr(kPeeledLoopLabel, rewriter.getUnitAttr());
});
return success();
}
// If set to true, the first iteration of the loop will be peeled. Otherwise,
// the unevenly divisible loop will be peeled at the end.
bool peelFront;
/// If set to true, loops inside partial iterations of another peeled loop
/// are not peeled. This reduces the size of the generated code. Partial
/// iterations are not usually performance critical.
/// Note: Takes into account the entire chain of parent operations, not just
/// the direct parent.
bool skipPartial;
};
} // namespace
namespace {
struct ParallelLoopSpecialization
: public impl::SCFParallelLoopSpecializationBase<
ParallelLoopSpecialization> {
void runOnOperation() override {
getOperation()->walk(
[](ParallelOp op) { specializeParallelLoopForUnrolling(op); });
}
};
struct ForLoopSpecialization
: public impl::SCFForLoopSpecializationBase<ForLoopSpecialization> {
void runOnOperation() override {
getOperation()->walk([](ForOp op) { specializeForLoopForUnrolling(op); });
}
};
struct ForLoopPeeling : public impl::SCFForLoopPeelingBase<ForLoopPeeling> {
void runOnOperation() override {
auto *parentOp = getOperation();
MLIRContext *ctx = parentOp->getContext();
RewritePatternSet patterns(ctx);
patterns.add<ForLoopPeelingPattern>(ctx, peelFront, skipPartial);
(void)applyPatternsGreedily(parentOp, std::move(patterns));
// Drop the markers.
parentOp->walk([](Operation *op) {
op->removeAttr(kPeeledLoopLabel);
op->removeAttr(kPartialIterationLabel);
});
}
};
} // namespace
std::unique_ptr<Pass> mlir::createParallelLoopSpecializationPass() {
return std::make_unique<ParallelLoopSpecialization>();
}
std::unique_ptr<Pass> mlir::createForLoopSpecializationPass() {
return std::make_unique<ForLoopSpecialization>();
}
std::unique_ptr<Pass> mlir::createForLoopPeelingPass() {
return std::make_unique<ForLoopPeeling>();
}