llvm-project/clang/lib/Sema/SemaSwift.cpp
Chris B 89fb8490a9
[HLSL] Implement output parameter (#101083)
HLSL output parameters are denoted with the `inout` and `out` keywords
in the function declaration. When an argument to an output parameter is
constructed a temporary value is constructed for the argument.

For `inout` pamameters the argument is initialized via copy-initialization
from the argument lvalue expression to the parameter type. For `out`
parameters the argument is not initialized before the call.

In both cases on return of the function the temporary value is written
back to the argument lvalue expression through an implicit assignment
binary operator with casting as required.

This change introduces a new HLSLOutArgExpr ast node which represents
the output argument behavior. The OutArgExpr has three defined children:
- An OpaqueValueExpr of the argument lvalue expression.
- An OpaqueValueExpr of the copy-initialized parameter.
- A BinaryOpExpr assigning the first with the value of the second.

Fixes #87526

---------

Co-authored-by: Damyan Pepper <damyanp@microsoft.com>
Co-authored-by: John McCall <rjmccall@gmail.com>
2024-08-31 10:59:08 -05:00

769 lines
25 KiB
C++

//===------ SemaSwift.cpp ------ Swift language-specific routines ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis functions specific to Swift.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaSwift.h"
#include "clang/AST/DeclBase.h"
#include "clang/Basic/AttributeCommonInfo.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Sema/Attr.h"
#include "clang/Sema/ParsedAttr.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaObjC.h"
namespace clang {
SemaSwift::SemaSwift(Sema &S) : SemaBase(S) {}
SwiftNameAttr *SemaSwift::mergeNameAttr(Decl *D, const SwiftNameAttr &SNA,
StringRef Name) {
if (const auto *PrevSNA = D->getAttr<SwiftNameAttr>()) {
if (PrevSNA->getName() != Name && !PrevSNA->isImplicit()) {
Diag(PrevSNA->getLocation(), diag::err_attributes_are_not_compatible)
<< PrevSNA << &SNA
<< (PrevSNA->isRegularKeywordAttribute() ||
SNA.isRegularKeywordAttribute());
Diag(SNA.getLoc(), diag::note_conflicting_attribute);
}
D->dropAttr<SwiftNameAttr>();
}
return ::new (getASTContext()) SwiftNameAttr(getASTContext(), SNA, Name);
}
/// Pointer-like types in the default address space.
static bool isValidSwiftContextType(QualType Ty) {
if (!Ty->hasPointerRepresentation())
return Ty->isDependentType();
return Ty->getPointeeType().getAddressSpace() == LangAS::Default;
}
/// Pointers and references in the default address space.
static bool isValidSwiftIndirectResultType(QualType Ty) {
if (const auto *PtrType = Ty->getAs<PointerType>()) {
Ty = PtrType->getPointeeType();
} else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
Ty = RefType->getPointeeType();
} else {
return Ty->isDependentType();
}
return Ty.getAddressSpace() == LangAS::Default;
}
/// Pointers and references to pointers in the default address space.
static bool isValidSwiftErrorResultType(QualType Ty) {
if (const auto *PtrType = Ty->getAs<PointerType>()) {
Ty = PtrType->getPointeeType();
} else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
Ty = RefType->getPointeeType();
} else {
return Ty->isDependentType();
}
if (!Ty.getQualifiers().empty())
return false;
return isValidSwiftContextType(Ty);
}
void SemaSwift::handleAttrAttr(Decl *D, const ParsedAttr &AL) {
// Make sure that there is a string literal as the annotation's single
// argument.
StringRef Str;
if (!SemaRef.checkStringLiteralArgumentAttr(AL, 0, Str))
return;
D->addAttr(::new (getASTContext()) SwiftAttrAttr(getASTContext(), AL, Str));
}
void SemaSwift::handleBridge(Decl *D, const ParsedAttr &AL) {
// Make sure that there is a string literal as the annotation's single
// argument.
StringRef BT;
if (!SemaRef.checkStringLiteralArgumentAttr(AL, 0, BT))
return;
// Warn about duplicate attributes if they have different arguments, but drop
// any duplicate attributes regardless.
if (const auto *Other = D->getAttr<SwiftBridgeAttr>()) {
if (Other->getSwiftType() != BT)
Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
return;
}
D->addAttr(::new (getASTContext()) SwiftBridgeAttr(getASTContext(), AL, BT));
}
static bool isErrorParameter(Sema &S, QualType QT) {
const auto *PT = QT->getAs<PointerType>();
if (!PT)
return false;
QualType Pointee = PT->getPointeeType();
// Check for NSError**.
if (const auto *OPT = Pointee->getAs<ObjCObjectPointerType>())
if (const auto *ID = OPT->getInterfaceDecl())
if (ID->getIdentifier() == S.ObjC().getNSErrorIdent())
return true;
// Check for CFError**.
if (const auto *PT = Pointee->getAs<PointerType>())
if (const auto *RT = PT->getPointeeType()->getAs<RecordType>())
if (S.ObjC().isCFError(RT->getDecl()))
return true;
return false;
}
void SemaSwift::handleError(Decl *D, const ParsedAttr &AL) {
auto hasErrorParameter = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); I != E; ++I) {
if (isErrorParameter(S, getFunctionOrMethodParamType(D, I)))
return true;
}
S.Diag(AL.getLoc(), diag::err_attr_swift_error_no_error_parameter)
<< AL << isa<ObjCMethodDecl>(D);
return false;
};
auto hasPointerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
// - C, ObjC, and block pointers are definitely okay.
// - References are definitely not okay.
// - nullptr_t is weird, but acceptable.
QualType RT = getFunctionOrMethodResultType(D);
if (RT->hasPointerRepresentation() && !RT->isReferenceType())
return true;
S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
<< AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D)
<< /*pointer*/ 1;
return false;
};
auto hasIntegerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
QualType RT = getFunctionOrMethodResultType(D);
if (RT->isIntegralType(S.Context))
return true;
S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
<< AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D)
<< /*integral*/ 0;
return false;
};
if (D->isInvalidDecl())
return;
IdentifierLoc *Loc = AL.getArgAsIdent(0);
SwiftErrorAttr::ConventionKind Convention;
if (!SwiftErrorAttr::ConvertStrToConventionKind(Loc->Ident->getName(),
Convention)) {
Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
<< AL << Loc->Ident;
return;
}
switch (Convention) {
case SwiftErrorAttr::None:
// No additional validation required.
break;
case SwiftErrorAttr::NonNullError:
if (!hasErrorParameter(SemaRef, D, AL))
return;
break;
case SwiftErrorAttr::NullResult:
if (!hasErrorParameter(SemaRef, D, AL) || !hasPointerResult(SemaRef, D, AL))
return;
break;
case SwiftErrorAttr::NonZeroResult:
case SwiftErrorAttr::ZeroResult:
if (!hasErrorParameter(SemaRef, D, AL) || !hasIntegerResult(SemaRef, D, AL))
return;
break;
}
D->addAttr(::new (getASTContext())
SwiftErrorAttr(getASTContext(), AL, Convention));
}
static void checkSwiftAsyncErrorBlock(Sema &S, Decl *D,
const SwiftAsyncErrorAttr *ErrorAttr,
const SwiftAsyncAttr *AsyncAttr) {
if (AsyncAttr->getKind() == SwiftAsyncAttr::None) {
if (ErrorAttr->getConvention() != SwiftAsyncErrorAttr::None) {
S.Diag(AsyncAttr->getLocation(),
diag::err_swift_async_error_without_swift_async)
<< AsyncAttr << isa<ObjCMethodDecl>(D);
}
return;
}
const ParmVarDecl *HandlerParam = getFunctionOrMethodParam(
D, AsyncAttr->getCompletionHandlerIndex().getASTIndex());
// handleSwiftAsyncAttr already verified the type is correct, so no need to
// double-check it here.
const auto *FuncTy = HandlerParam->getType()
->castAs<BlockPointerType>()
->getPointeeType()
->getAs<FunctionProtoType>();
ArrayRef<QualType> BlockParams;
if (FuncTy)
BlockParams = FuncTy->getParamTypes();
switch (ErrorAttr->getConvention()) {
case SwiftAsyncErrorAttr::ZeroArgument:
case SwiftAsyncErrorAttr::NonZeroArgument: {
uint32_t ParamIdx = ErrorAttr->getHandlerParamIdx();
if (ParamIdx == 0 || ParamIdx > BlockParams.size()) {
S.Diag(ErrorAttr->getLocation(),
diag::err_attribute_argument_out_of_bounds)
<< ErrorAttr << 2;
return;
}
QualType ErrorParam = BlockParams[ParamIdx - 1];
if (!ErrorParam->isIntegralType(S.Context)) {
StringRef ConvStr =
ErrorAttr->getConvention() == SwiftAsyncErrorAttr::ZeroArgument
? "zero_argument"
: "nonzero_argument";
S.Diag(ErrorAttr->getLocation(), diag::err_swift_async_error_non_integral)
<< ErrorAttr << ConvStr << ParamIdx << ErrorParam;
return;
}
break;
}
case SwiftAsyncErrorAttr::NonNullError: {
bool AnyErrorParams = false;
for (QualType Param : BlockParams) {
// Check for NSError *.
if (const auto *ObjCPtrTy = Param->getAs<ObjCObjectPointerType>()) {
if (const auto *ID = ObjCPtrTy->getInterfaceDecl()) {
if (ID->getIdentifier() == S.ObjC().getNSErrorIdent()) {
AnyErrorParams = true;
break;
}
}
}
// Check for CFError *.
if (const auto *PtrTy = Param->getAs<PointerType>()) {
if (const auto *RT = PtrTy->getPointeeType()->getAs<RecordType>()) {
if (S.ObjC().isCFError(RT->getDecl())) {
AnyErrorParams = true;
break;
}
}
}
}
if (!AnyErrorParams) {
S.Diag(ErrorAttr->getLocation(),
diag::err_swift_async_error_no_error_parameter)
<< ErrorAttr << isa<ObjCMethodDecl>(D);
return;
}
break;
}
case SwiftAsyncErrorAttr::None:
break;
}
}
void SemaSwift::handleAsyncError(Decl *D, const ParsedAttr &AL) {
IdentifierLoc *IDLoc = AL.getArgAsIdent(0);
SwiftAsyncErrorAttr::ConventionKind ConvKind;
if (!SwiftAsyncErrorAttr::ConvertStrToConventionKind(IDLoc->Ident->getName(),
ConvKind)) {
Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
<< AL << IDLoc->Ident;
return;
}
uint32_t ParamIdx = 0;
switch (ConvKind) {
case SwiftAsyncErrorAttr::ZeroArgument:
case SwiftAsyncErrorAttr::NonZeroArgument: {
if (!AL.checkExactlyNumArgs(SemaRef, 2))
return;
Expr *IdxExpr = AL.getArgAsExpr(1);
if (!SemaRef.checkUInt32Argument(AL, IdxExpr, ParamIdx))
return;
break;
}
case SwiftAsyncErrorAttr::NonNullError:
case SwiftAsyncErrorAttr::None: {
if (!AL.checkExactlyNumArgs(SemaRef, 1))
return;
break;
}
}
auto *ErrorAttr = ::new (getASTContext())
SwiftAsyncErrorAttr(getASTContext(), AL, ConvKind, ParamIdx);
D->addAttr(ErrorAttr);
if (auto *AsyncAttr = D->getAttr<SwiftAsyncAttr>())
checkSwiftAsyncErrorBlock(SemaRef, D, ErrorAttr, AsyncAttr);
}
// For a function, this will validate a compound Swift name, e.g.
// <code>init(foo:bar:baz:)</code> or <code>controllerForName(_:)</code>, and
// the function will output the number of parameter names, and whether this is a
// single-arg initializer.
//
// For a type, enum constant, property, or variable declaration, this will
// validate either a simple identifier, or a qualified
// <code>context.identifier</code> name.
static bool validateSwiftFunctionName(Sema &S, const ParsedAttr &AL,
SourceLocation Loc, StringRef Name,
unsigned &SwiftParamCount,
bool &IsSingleParamInit) {
SwiftParamCount = 0;
IsSingleParamInit = false;
// Check whether this will be mapped to a getter or setter of a property.
bool IsGetter = false, IsSetter = false;
if (Name.consume_front("getter:"))
IsGetter = true;
else if (Name.consume_front("setter:"))
IsSetter = true;
if (Name.back() != ')') {
S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
return false;
}
bool IsMember = false;
StringRef ContextName, BaseName, Parameters;
std::tie(BaseName, Parameters) = Name.split('(');
// Split at the first '.', if it exists, which separates the context name
// from the base name.
std::tie(ContextName, BaseName) = BaseName.split('.');
if (BaseName.empty()) {
BaseName = ContextName;
ContextName = StringRef();
} else if (ContextName.empty() || !isValidAsciiIdentifier(ContextName)) {
S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
<< AL << /*context*/ 1;
return false;
} else {
IsMember = true;
}
if (!isValidAsciiIdentifier(BaseName) || BaseName == "_") {
S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
<< AL << /*basename*/ 0;
return false;
}
bool IsSubscript = BaseName == "subscript";
// A subscript accessor must be a getter or setter.
if (IsSubscript && !IsGetter && !IsSetter) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
<< AL << /* getter or setter */ 0;
return false;
}
if (Parameters.empty()) {
S.Diag(Loc, diag::warn_attr_swift_name_missing_parameters) << AL;
return false;
}
assert(Parameters.back() == ')' && "expected ')'");
Parameters = Parameters.drop_back(); // ')'
if (Parameters.empty()) {
// Setters and subscripts must have at least one parameter.
if (IsSubscript) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
<< AL << /* have at least one parameter */ 1;
return false;
}
if (IsSetter) {
S.Diag(Loc, diag::warn_attr_swift_name_setter_parameters) << AL;
return false;
}
return true;
}
if (Parameters.back() != ':') {
S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
return false;
}
StringRef CurrentParam;
std::optional<unsigned> SelfLocation;
unsigned NewValueCount = 0;
std::optional<unsigned> NewValueLocation;
do {
std::tie(CurrentParam, Parameters) = Parameters.split(':');
if (!isValidAsciiIdentifier(CurrentParam)) {
S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
<< AL << /*parameter*/ 2;
return false;
}
if (IsMember && CurrentParam == "self") {
// "self" indicates the "self" argument for a member.
// More than one "self"?
if (SelfLocation) {
S.Diag(Loc, diag::warn_attr_swift_name_multiple_selfs) << AL;
return false;
}
// The "self" location is the current parameter.
SelfLocation = SwiftParamCount;
} else if (CurrentParam == "newValue") {
// "newValue" indicates the "newValue" argument for a setter.
// There should only be one 'newValue', but it's only significant for
// subscript accessors, so don't error right away.
++NewValueCount;
NewValueLocation = SwiftParamCount;
}
++SwiftParamCount;
} while (!Parameters.empty());
// Only instance subscripts are currently supported.
if (IsSubscript && !SelfLocation) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
<< AL << /*have a 'self:' parameter*/ 2;
return false;
}
IsSingleParamInit =
SwiftParamCount == 1 && BaseName == "init" && CurrentParam != "_";
// Check the number of parameters for a getter/setter.
if (IsGetter || IsSetter) {
// Setters have one parameter for the new value.
unsigned NumExpectedParams = IsGetter ? 0 : 1;
unsigned ParamDiag = IsGetter
? diag::warn_attr_swift_name_getter_parameters
: diag::warn_attr_swift_name_setter_parameters;
// Instance methods have one parameter for "self".
if (SelfLocation)
++NumExpectedParams;
// Subscripts may have additional parameters beyond the expected params for
// the index.
if (IsSubscript) {
if (SwiftParamCount < NumExpectedParams) {
S.Diag(Loc, ParamDiag) << AL;
return false;
}
// A subscript setter must explicitly label its newValue parameter to
// distinguish it from index parameters.
if (IsSetter) {
if (!NewValueLocation) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_no_newValue)
<< AL;
return false;
}
if (NewValueCount > 1) {
S.Diag(Loc,
diag::warn_attr_swift_name_subscript_setter_multiple_newValues)
<< AL;
return false;
}
} else {
// Subscript getters should have no 'newValue:' parameter.
if (NewValueLocation) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_getter_newValue)
<< AL;
return false;
}
}
} else {
// Property accessors must have exactly the number of expected params.
if (SwiftParamCount != NumExpectedParams) {
S.Diag(Loc, ParamDiag) << AL;
return false;
}
}
}
return true;
}
bool SemaSwift::DiagnoseName(Decl *D, StringRef Name, SourceLocation Loc,
const ParsedAttr &AL, bool IsAsync) {
if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
ArrayRef<ParmVarDecl *> Params;
unsigned ParamCount;
if (const auto *Method = dyn_cast<ObjCMethodDecl>(D)) {
ParamCount = Method->getSelector().getNumArgs();
Params = Method->parameters().slice(0, ParamCount);
} else {
const auto *F = cast<FunctionDecl>(D);
ParamCount = F->getNumParams();
Params = F->parameters();
if (!F->hasWrittenPrototype()) {
Diag(Loc, diag::warn_attribute_wrong_decl_type)
<< AL << AL.isRegularKeywordAttribute()
<< ExpectedFunctionWithProtoType;
return false;
}
}
// The async name drops the last callback parameter.
if (IsAsync) {
if (ParamCount == 0) {
Diag(Loc, diag::warn_attr_swift_name_decl_missing_params)
<< AL << isa<ObjCMethodDecl>(D);
return false;
}
ParamCount -= 1;
}
unsigned SwiftParamCount;
bool IsSingleParamInit;
if (!validateSwiftFunctionName(SemaRef, AL, Loc, Name, SwiftParamCount,
IsSingleParamInit))
return false;
bool ParamCountValid;
if (SwiftParamCount == ParamCount) {
ParamCountValid = true;
} else if (SwiftParamCount > ParamCount) {
ParamCountValid = IsSingleParamInit && ParamCount == 0;
} else {
// We have fewer Swift parameters than Objective-C parameters, but that
// might be because we've transformed some of them. Check for potential
// "out" parameters and err on the side of not warning.
unsigned MaybeOutParamCount =
llvm::count_if(Params, [](const ParmVarDecl *Param) -> bool {
QualType ParamTy = Param->getType();
if (ParamTy->isReferenceType() || ParamTy->isPointerType())
return !ParamTy->getPointeeType().isConstQualified();
return false;
});
ParamCountValid = SwiftParamCount + MaybeOutParamCount >= ParamCount;
}
if (!ParamCountValid) {
Diag(Loc, diag::warn_attr_swift_name_num_params)
<< (SwiftParamCount > ParamCount) << AL << ParamCount
<< SwiftParamCount;
return false;
}
} else if ((isa<EnumConstantDecl>(D) || isa<ObjCProtocolDecl>(D) ||
isa<ObjCInterfaceDecl>(D) || isa<ObjCPropertyDecl>(D) ||
isa<VarDecl>(D) || isa<TypedefNameDecl>(D) || isa<TagDecl>(D) ||
isa<IndirectFieldDecl>(D) || isa<FieldDecl>(D)) &&
!IsAsync) {
StringRef ContextName, BaseName;
std::tie(ContextName, BaseName) = Name.split('.');
if (BaseName.empty()) {
BaseName = ContextName;
ContextName = StringRef();
} else if (!isValidAsciiIdentifier(ContextName)) {
Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
<< AL << /*context*/ 1;
return false;
}
if (!isValidAsciiIdentifier(BaseName)) {
Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
<< AL << /*basename*/ 0;
return false;
}
} else {
Diag(Loc, diag::warn_attr_swift_name_decl_kind) << AL;
return false;
}
return true;
}
void SemaSwift::handleName(Decl *D, const ParsedAttr &AL) {
StringRef Name;
SourceLocation Loc;
if (!SemaRef.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
return;
if (!DiagnoseName(D, Name, Loc, AL, /*IsAsync=*/false))
return;
D->addAttr(::new (getASTContext()) SwiftNameAttr(getASTContext(), AL, Name));
}
void SemaSwift::handleAsyncName(Decl *D, const ParsedAttr &AL) {
StringRef Name;
SourceLocation Loc;
if (!SemaRef.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
return;
if (!DiagnoseName(D, Name, Loc, AL, /*IsAsync=*/true))
return;
D->addAttr(::new (getASTContext())
SwiftAsyncNameAttr(getASTContext(), AL, Name));
}
void SemaSwift::handleNewType(Decl *D, const ParsedAttr &AL) {
// Make sure that there is an identifier as the annotation's single argument.
if (!AL.checkExactlyNumArgs(SemaRef, 1))
return;
if (!AL.isArgIdent(0)) {
Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return;
}
SwiftNewTypeAttr::NewtypeKind Kind;
IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
if (!SwiftNewTypeAttr::ConvertStrToNewtypeKind(II->getName(), Kind)) {
Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
return;
}
if (!isa<TypedefNameDecl>(D)) {
Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str)
<< AL << AL.isRegularKeywordAttribute() << "typedefs";
return;
}
D->addAttr(::new (getASTContext())
SwiftNewTypeAttr(getASTContext(), AL, Kind));
}
void SemaSwift::handleAsyncAttr(Decl *D, const ParsedAttr &AL) {
if (!AL.isArgIdent(0)) {
Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
<< AL << 1 << AANT_ArgumentIdentifier;
return;
}
SwiftAsyncAttr::Kind Kind;
IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
if (!SwiftAsyncAttr::ConvertStrToKind(II->getName(), Kind)) {
Diag(AL.getLoc(), diag::err_swift_async_no_access) << AL << II;
return;
}
ParamIdx Idx;
if (Kind == SwiftAsyncAttr::None) {
// If this is 'none', then there shouldn't be any additional arguments.
if (!AL.checkExactlyNumArgs(SemaRef, 1))
return;
} else {
// Non-none swift_async requires a completion handler index argument.
if (!AL.checkExactlyNumArgs(SemaRef, 2))
return;
Expr *HandlerIdx = AL.getArgAsExpr(1);
if (!SemaRef.checkFunctionOrMethodParameterIndex(D, AL, 2, HandlerIdx, Idx))
return;
const ParmVarDecl *CompletionBlock =
getFunctionOrMethodParam(D, Idx.getASTIndex());
QualType CompletionBlockType = CompletionBlock->getType();
if (!CompletionBlockType->isBlockPointerType()) {
Diag(CompletionBlock->getLocation(), diag::err_swift_async_bad_block_type)
<< CompletionBlock->getType();
return;
}
QualType BlockTy =
CompletionBlockType->castAs<BlockPointerType>()->getPointeeType();
if (!BlockTy->castAs<FunctionType>()->getReturnType()->isVoidType()) {
Diag(CompletionBlock->getLocation(), diag::err_swift_async_bad_block_type)
<< CompletionBlock->getType();
return;
}
}
auto *AsyncAttr =
::new (getASTContext()) SwiftAsyncAttr(getASTContext(), AL, Kind, Idx);
D->addAttr(AsyncAttr);
if (auto *ErrorAttr = D->getAttr<SwiftAsyncErrorAttr>())
checkSwiftAsyncErrorBlock(SemaRef, D, ErrorAttr, AsyncAttr);
}
void SemaSwift::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
ParameterABI abi) {
ASTContext &Context = getASTContext();
QualType type = cast<ParmVarDecl>(D)->getType();
if (auto existingAttr = D->getAttr<ParameterABIAttr>()) {
if (existingAttr->getABI() != abi) {
Diag(CI.getLoc(), diag::err_attributes_are_not_compatible)
<< getParameterABISpelling(abi) << existingAttr
<< (CI.isRegularKeywordAttribute() ||
existingAttr->isRegularKeywordAttribute());
Diag(existingAttr->getLocation(), diag::note_conflicting_attribute);
return;
}
}
switch (abi) {
case ParameterABI::HLSLOut:
case ParameterABI::HLSLInOut:
llvm_unreachable("explicit attribute for non-swift parameter ABI?");
case ParameterABI::Ordinary:
llvm_unreachable("explicit attribute for ordinary parameter ABI?");
case ParameterABI::SwiftContext:
if (!isValidSwiftContextType(type)) {
Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
<< getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
}
D->addAttr(::new (Context) SwiftContextAttr(Context, CI));
return;
case ParameterABI::SwiftAsyncContext:
if (!isValidSwiftContextType(type)) {
Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
<< getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
}
D->addAttr(::new (Context) SwiftAsyncContextAttr(Context, CI));
return;
case ParameterABI::SwiftErrorResult:
if (!isValidSwiftErrorResultType(type)) {
Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
<< getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type;
}
D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI));
return;
case ParameterABI::SwiftIndirectResult:
if (!isValidSwiftIndirectResultType(type)) {
Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
<< getParameterABISpelling(abi) << /*pointer*/ 0 << type;
}
D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI));
return;
}
llvm_unreachable("bad parameter ABI attribute");
}
} // namespace clang