
This change deprecates the following intrinsics which can be trivially converted to llvm funnel-shift intrinsics: - @llvm.nvvm.rotate.b32 - @llvm.nvvm.rotate.right.b64 - @llvm.nvvm.rotate.b64
6549 lines
249 KiB
C++
6549 lines
249 KiB
C++
//===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that NVPTX uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "NVPTXISelLowering.h"
|
|
#include "MCTargetDesc/NVPTXBaseInfo.h"
|
|
#include "NVPTX.h"
|
|
#include "NVPTXSubtarget.h"
|
|
#include "NVPTXTargetMachine.h"
|
|
#include "NVPTXTargetObjectFile.h"
|
|
#include "NVPTXUtilities.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/ISDOpcodes.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGNodes.h"
|
|
#include "llvm/CodeGen/TargetCallingConv.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/CodeGenTypes/MachineValueType.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/FPEnv.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicsNVPTX.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Alignment.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <optional>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#define DEBUG_TYPE "nvptx-lower"
|
|
|
|
using namespace llvm;
|
|
|
|
static std::atomic<unsigned> GlobalUniqueCallSite;
|
|
|
|
static cl::opt<bool> sched4reg(
|
|
"nvptx-sched4reg",
|
|
cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
|
|
|
|
static cl::opt<unsigned> FMAContractLevelOpt(
|
|
"nvptx-fma-level", cl::Hidden,
|
|
cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
|
|
" 1: do it 2: do it aggressively"),
|
|
cl::init(2));
|
|
|
|
static cl::opt<int> UsePrecDivF32(
|
|
"nvptx-prec-divf32", cl::Hidden,
|
|
cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
|
|
" IEEE Compliant F32 div.rnd if available."),
|
|
cl::init(2));
|
|
|
|
static cl::opt<bool> UsePrecSqrtF32(
|
|
"nvptx-prec-sqrtf32", cl::Hidden,
|
|
cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> ForceMinByValParamAlign(
|
|
"nvptx-force-min-byval-param-align", cl::Hidden,
|
|
cl::desc("NVPTX Specific: force 4-byte minimal alignment for byval"
|
|
" params of device functions."),
|
|
cl::init(false));
|
|
|
|
int NVPTXTargetLowering::getDivF32Level() const {
|
|
if (UsePrecDivF32.getNumOccurrences() > 0) {
|
|
// If nvptx-prec-div32=N is used on the command-line, always honor it
|
|
return UsePrecDivF32;
|
|
} else {
|
|
// Otherwise, use div.approx if fast math is enabled
|
|
if (getTargetMachine().Options.UnsafeFPMath)
|
|
return 0;
|
|
else
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
bool NVPTXTargetLowering::usePrecSqrtF32() const {
|
|
if (UsePrecSqrtF32.getNumOccurrences() > 0) {
|
|
// If nvptx-prec-sqrtf32 is used on the command-line, always honor it
|
|
return UsePrecSqrtF32;
|
|
} else {
|
|
// Otherwise, use sqrt.approx if fast math is enabled
|
|
return !getTargetMachine().Options.UnsafeFPMath;
|
|
}
|
|
}
|
|
|
|
bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const {
|
|
return MF.getDenormalMode(APFloat::IEEEsingle()).Output ==
|
|
DenormalMode::PreserveSign;
|
|
}
|
|
|
|
static bool IsPTXVectorType(MVT VT) {
|
|
switch (VT.SimpleTy) {
|
|
default:
|
|
return false;
|
|
case MVT::v2i1:
|
|
case MVT::v4i1:
|
|
case MVT::v2i8:
|
|
case MVT::v4i8:
|
|
case MVT::v2i16:
|
|
case MVT::v4i16:
|
|
case MVT::v8i16: // <4 x i16x2>
|
|
case MVT::v2i32:
|
|
case MVT::v4i32:
|
|
case MVT::v2i64:
|
|
case MVT::v2f16:
|
|
case MVT::v4f16:
|
|
case MVT::v8f16: // <4 x f16x2>
|
|
case MVT::v2bf16:
|
|
case MVT::v4bf16:
|
|
case MVT::v8bf16: // <4 x bf16x2>
|
|
case MVT::v2f32:
|
|
case MVT::v4f32:
|
|
case MVT::v2f64:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool Is16bitsType(MVT VT) {
|
|
return (VT.SimpleTy == MVT::f16 || VT.SimpleTy == MVT::bf16 ||
|
|
VT.SimpleTy == MVT::i16);
|
|
}
|
|
|
|
/// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
|
|
/// EVTs that compose it. Unlike ComputeValueVTs, this will break apart vectors
|
|
/// into their primitive components.
|
|
/// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
|
|
/// same number of types as the Ins/Outs arrays in LowerFormalArguments,
|
|
/// LowerCall, and LowerReturn.
|
|
static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
|
|
Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
|
|
SmallVectorImpl<uint64_t> *Offsets = nullptr,
|
|
uint64_t StartingOffset = 0) {
|
|
SmallVector<EVT, 16> TempVTs;
|
|
SmallVector<uint64_t, 16> TempOffsets;
|
|
|
|
// Special case for i128 - decompose to (i64, i64)
|
|
if (Ty->isIntegerTy(128)) {
|
|
ValueVTs.push_back(EVT(MVT::i64));
|
|
ValueVTs.push_back(EVT(MVT::i64));
|
|
|
|
if (Offsets) {
|
|
Offsets->push_back(StartingOffset + 0);
|
|
Offsets->push_back(StartingOffset + 8);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// Given a struct type, recursively traverse the elements with custom ComputePTXValueVTs.
|
|
if (StructType *STy = dyn_cast<StructType>(Ty)) {
|
|
auto const *SL = DL.getStructLayout(STy);
|
|
auto ElementNum = 0;
|
|
for(auto *EI : STy->elements()) {
|
|
ComputePTXValueVTs(TLI, DL, EI, ValueVTs, Offsets,
|
|
StartingOffset + SL->getElementOffset(ElementNum));
|
|
++ElementNum;
|
|
}
|
|
return;
|
|
}
|
|
|
|
ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset);
|
|
for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
|
|
EVT VT = TempVTs[i];
|
|
uint64_t Off = TempOffsets[i];
|
|
// Split vectors into individual elements, except for v2f16, which
|
|
// we will pass as a single scalar.
|
|
if (VT.isVector()) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
EVT EltVT = VT.getVectorElementType();
|
|
// We require power-of-2 sized vectors becuase
|
|
// TargetLoweringBase::getVectorTypeBreakdown() which is invoked in
|
|
// ComputePTXValueVTs() cannot currently break down non-power-of-2 sized
|
|
// vectors.
|
|
if ((Is16bitsType(EltVT.getSimpleVT())) && NumElts % 2 == 0 &&
|
|
isPowerOf2_32(NumElts)) {
|
|
// Vectors with an even number of f16 elements will be passed to
|
|
// us as an array of v2f16/v2bf16 elements. We must match this so we
|
|
// stay in sync with Ins/Outs.
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
case MVT::f16:
|
|
EltVT = MVT::v2f16;
|
|
break;
|
|
case MVT::bf16:
|
|
EltVT = MVT::v2bf16;
|
|
break;
|
|
case MVT::i16:
|
|
EltVT = MVT::v2i16;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected type");
|
|
}
|
|
NumElts /= 2;
|
|
} else if (EltVT.getSimpleVT() == MVT::i8 &&
|
|
((NumElts % 4 == 0 && isPowerOf2_32(NumElts)) ||
|
|
NumElts == 3)) {
|
|
// v*i8 are formally lowered as v4i8
|
|
EltVT = MVT::v4i8;
|
|
NumElts = (NumElts + 3) / 4;
|
|
}
|
|
for (unsigned j = 0; j != NumElts; ++j) {
|
|
ValueVTs.push_back(EltVT);
|
|
if (Offsets)
|
|
Offsets->push_back(Off + j * EltVT.getStoreSize());
|
|
}
|
|
} else {
|
|
ValueVTs.push_back(VT);
|
|
if (Offsets)
|
|
Offsets->push_back(Off);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// PromoteScalarIntegerPTX
|
|
/// Used to make sure the arguments/returns are suitable for passing
|
|
/// and promote them to a larger size if they're not.
|
|
///
|
|
/// The promoted type is placed in \p PromoteVT if the function returns true.
|
|
static bool PromoteScalarIntegerPTX(const EVT &VT, MVT *PromotedVT) {
|
|
if (VT.isScalarInteger()) {
|
|
switch (PowerOf2Ceil(VT.getFixedSizeInBits())) {
|
|
default:
|
|
llvm_unreachable(
|
|
"Promotion is not suitable for scalars of size larger than 64-bits");
|
|
case 1:
|
|
*PromotedVT = MVT::i1;
|
|
break;
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
*PromotedVT = MVT::i8;
|
|
break;
|
|
case 16:
|
|
*PromotedVT = MVT::i16;
|
|
break;
|
|
case 32:
|
|
*PromotedVT = MVT::i32;
|
|
break;
|
|
case 64:
|
|
*PromotedVT = MVT::i64;
|
|
break;
|
|
}
|
|
return EVT(*PromotedVT) != VT;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Check whether we can merge loads/stores of some of the pieces of a
|
|
// flattened function parameter or return value into a single vector
|
|
// load/store.
|
|
//
|
|
// The flattened parameter is represented as a list of EVTs and
|
|
// offsets, and the whole structure is aligned to ParamAlignment. This
|
|
// function determines whether we can load/store pieces of the
|
|
// parameter starting at index Idx using a single vectorized op of
|
|
// size AccessSize. If so, it returns the number of param pieces
|
|
// covered by the vector op. Otherwise, it returns 1.
|
|
static unsigned CanMergeParamLoadStoresStartingAt(
|
|
unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs,
|
|
const SmallVectorImpl<uint64_t> &Offsets, Align ParamAlignment) {
|
|
|
|
// Can't vectorize if param alignment is not sufficient.
|
|
if (ParamAlignment < AccessSize)
|
|
return 1;
|
|
// Can't vectorize if offset is not aligned.
|
|
if (Offsets[Idx] & (AccessSize - 1))
|
|
return 1;
|
|
|
|
EVT EltVT = ValueVTs[Idx];
|
|
unsigned EltSize = EltVT.getStoreSize();
|
|
|
|
// Element is too large to vectorize.
|
|
if (EltSize >= AccessSize)
|
|
return 1;
|
|
|
|
unsigned NumElts = AccessSize / EltSize;
|
|
// Can't vectorize if AccessBytes if not a multiple of EltSize.
|
|
if (AccessSize != EltSize * NumElts)
|
|
return 1;
|
|
|
|
// We don't have enough elements to vectorize.
|
|
if (Idx + NumElts > ValueVTs.size())
|
|
return 1;
|
|
|
|
// PTX ISA can only deal with 2- and 4-element vector ops.
|
|
if (NumElts != 4 && NumElts != 2)
|
|
return 1;
|
|
|
|
for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) {
|
|
// Types do not match.
|
|
if (ValueVTs[j] != EltVT)
|
|
return 1;
|
|
|
|
// Elements are not contiguous.
|
|
if (Offsets[j] - Offsets[j - 1] != EltSize)
|
|
return 1;
|
|
}
|
|
// OK. We can vectorize ValueVTs[i..i+NumElts)
|
|
return NumElts;
|
|
}
|
|
|
|
// Flags for tracking per-element vectorization state of loads/stores
|
|
// of a flattened function parameter or return value.
|
|
enum ParamVectorizationFlags {
|
|
PVF_INNER = 0x0, // Middle elements of a vector.
|
|
PVF_FIRST = 0x1, // First element of the vector.
|
|
PVF_LAST = 0x2, // Last element of the vector.
|
|
// Scalar is effectively a 1-element vector.
|
|
PVF_SCALAR = PVF_FIRST | PVF_LAST
|
|
};
|
|
|
|
// Computes whether and how we can vectorize the loads/stores of a
|
|
// flattened function parameter or return value.
|
|
//
|
|
// The flattened parameter is represented as the list of ValueVTs and
|
|
// Offsets, and is aligned to ParamAlignment bytes. We return a vector
|
|
// of the same size as ValueVTs indicating how each piece should be
|
|
// loaded/stored (i.e. as a scalar, or as part of a vector
|
|
// load/store).
|
|
static SmallVector<ParamVectorizationFlags, 16>
|
|
VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs,
|
|
const SmallVectorImpl<uint64_t> &Offsets,
|
|
Align ParamAlignment, bool IsVAArg = false) {
|
|
// Set vector size to match ValueVTs and mark all elements as
|
|
// scalars by default.
|
|
SmallVector<ParamVectorizationFlags, 16> VectorInfo;
|
|
VectorInfo.assign(ValueVTs.size(), PVF_SCALAR);
|
|
|
|
if (IsVAArg)
|
|
return VectorInfo;
|
|
|
|
// Check what we can vectorize using 128/64/32-bit accesses.
|
|
for (int I = 0, E = ValueVTs.size(); I != E; ++I) {
|
|
// Skip elements we've already processed.
|
|
assert(VectorInfo[I] == PVF_SCALAR && "Unexpected vector info state.");
|
|
for (unsigned AccessSize : {16, 8, 4, 2}) {
|
|
unsigned NumElts = CanMergeParamLoadStoresStartingAt(
|
|
I, AccessSize, ValueVTs, Offsets, ParamAlignment);
|
|
// Mark vectorized elements.
|
|
switch (NumElts) {
|
|
default:
|
|
llvm_unreachable("Unexpected return value");
|
|
case 1:
|
|
// Can't vectorize using this size, try next smaller size.
|
|
continue;
|
|
case 2:
|
|
assert(I + 1 < E && "Not enough elements.");
|
|
VectorInfo[I] = PVF_FIRST;
|
|
VectorInfo[I + 1] = PVF_LAST;
|
|
I += 1;
|
|
break;
|
|
case 4:
|
|
assert(I + 3 < E && "Not enough elements.");
|
|
VectorInfo[I] = PVF_FIRST;
|
|
VectorInfo[I + 1] = PVF_INNER;
|
|
VectorInfo[I + 2] = PVF_INNER;
|
|
VectorInfo[I + 3] = PVF_LAST;
|
|
I += 3;
|
|
break;
|
|
}
|
|
// Break out of the inner loop because we've already succeeded
|
|
// using largest possible AccessSize.
|
|
break;
|
|
}
|
|
}
|
|
return VectorInfo;
|
|
}
|
|
|
|
// NVPTXTargetLowering Constructor.
|
|
NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
|
|
const NVPTXSubtarget &STI)
|
|
: TargetLowering(TM), nvTM(&TM), STI(STI) {
|
|
// always lower memset, memcpy, and memmove intrinsics to load/store
|
|
// instructions, rather
|
|
// then generating calls to memset, mempcy or memmove.
|
|
MaxStoresPerMemset = MaxStoresPerMemsetOptSize = (unsigned)0xFFFFFFFF;
|
|
MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = (unsigned) 0xFFFFFFFF;
|
|
MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = (unsigned) 0xFFFFFFFF;
|
|
|
|
setBooleanContents(ZeroOrNegativeOneBooleanContent);
|
|
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
|
|
|
|
// Jump is Expensive. Don't create extra control flow for 'and', 'or'
|
|
// condition branches.
|
|
setJumpIsExpensive(true);
|
|
|
|
// Wide divides are _very_ slow. Try to reduce the width of the divide if
|
|
// possible.
|
|
addBypassSlowDiv(64, 32);
|
|
|
|
// By default, use the Source scheduling
|
|
if (sched4reg)
|
|
setSchedulingPreference(Sched::RegPressure);
|
|
else
|
|
setSchedulingPreference(Sched::Source);
|
|
|
|
auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
|
|
LegalizeAction NoF16Action) {
|
|
bool IsOpSupported = STI.allowFP16Math();
|
|
switch (Op) {
|
|
// Several FP16 instructions are available on sm_80 only.
|
|
case ISD::FMINNUM:
|
|
case ISD::FMAXNUM:
|
|
case ISD::FMAXNUM_IEEE:
|
|
case ISD::FMINNUM_IEEE:
|
|
case ISD::FMAXIMUM:
|
|
case ISD::FMINIMUM:
|
|
IsOpSupported &= STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70;
|
|
break;
|
|
}
|
|
setOperationAction(Op, VT, IsOpSupported ? Action : NoF16Action);
|
|
};
|
|
|
|
auto setBF16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
|
|
LegalizeAction NoBF16Action) {
|
|
bool IsOpSupported = STI.hasBF16Math();
|
|
switch (Op) {
|
|
// Several BF16 instructions are available on sm_90 only.
|
|
case ISD::FADD:
|
|
case ISD::FMUL:
|
|
case ISD::FSUB:
|
|
case ISD::SELECT:
|
|
case ISD::SELECT_CC:
|
|
case ISD::SETCC:
|
|
case ISD::FEXP2:
|
|
case ISD::FCEIL:
|
|
case ISD::FFLOOR:
|
|
case ISD::FNEARBYINT:
|
|
case ISD::FRINT:
|
|
case ISD::FROUNDEVEN:
|
|
case ISD::FTRUNC:
|
|
IsOpSupported = STI.getSmVersion() >= 90 && STI.getPTXVersion() >= 78;
|
|
break;
|
|
// Several BF16 instructions are available on sm_80 only.
|
|
case ISD::FMINNUM:
|
|
case ISD::FMAXNUM:
|
|
case ISD::FMAXNUM_IEEE:
|
|
case ISD::FMINNUM_IEEE:
|
|
case ISD::FMAXIMUM:
|
|
case ISD::FMINIMUM:
|
|
IsOpSupported &= STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70;
|
|
break;
|
|
}
|
|
setOperationAction(
|
|
Op, VT, IsOpSupported ? Action : NoBF16Action);
|
|
};
|
|
|
|
auto setI16x2OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
|
|
LegalizeAction NoI16x2Action) {
|
|
bool IsOpSupported = false;
|
|
// instructions are available on sm_90 only
|
|
switch (Op) {
|
|
case ISD::ADD:
|
|
case ISD::SMAX:
|
|
case ISD::SMIN:
|
|
case ISD::UMIN:
|
|
case ISD::UMAX:
|
|
IsOpSupported = STI.getSmVersion() >= 90 && STI.getPTXVersion() >= 80;
|
|
break;
|
|
}
|
|
setOperationAction(Op, VT, IsOpSupported ? Action : NoI16x2Action);
|
|
};
|
|
|
|
addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
|
|
addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
|
|
addRegisterClass(MVT::v2i16, &NVPTX::Int32RegsRegClass);
|
|
addRegisterClass(MVT::v4i8, &NVPTX::Int32RegsRegClass);
|
|
addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
|
|
addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
|
|
addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
|
|
addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
|
|
addRegisterClass(MVT::f16, &NVPTX::Int16RegsRegClass);
|
|
addRegisterClass(MVT::v2f16, &NVPTX::Int32RegsRegClass);
|
|
addRegisterClass(MVT::bf16, &NVPTX::Int16RegsRegClass);
|
|
addRegisterClass(MVT::v2bf16, &NVPTX::Int32RegsRegClass);
|
|
|
|
// Conversion to/from FP16/FP16x2 is always legal.
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand);
|
|
|
|
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
|
|
if (STI.getSmVersion() >= 30 && STI.getPTXVersion() > 31)
|
|
setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Legal);
|
|
|
|
setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote);
|
|
setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand);
|
|
|
|
// Conversion to/from BFP16/BFP16x2 is always legal.
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v2bf16, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2bf16, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2bf16, Expand);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2bf16, Expand);
|
|
|
|
setBF16OperationAction(ISD::SETCC, MVT::v2bf16, Legal, Expand);
|
|
setBF16OperationAction(ISD::SETCC, MVT::bf16, Legal, Promote);
|
|
if (getOperationAction(ISD::SETCC, MVT::bf16) == Promote)
|
|
AddPromotedToType(ISD::SETCC, MVT::bf16, MVT::f32);
|
|
|
|
// Conversion to/from i16/i16x2 is always legal.
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Expand);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i16, Expand);
|
|
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i8, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8, Custom);
|
|
// Only logical ops can be done on v4i8 directly, others must be done
|
|
// elementwise.
|
|
setOperationAction(
|
|
{ISD::ABS, ISD::ADD, ISD::ADDC, ISD::ADDE,
|
|
ISD::BITREVERSE, ISD::CTLZ, ISD::CTPOP, ISD::CTTZ,
|
|
ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::FSHL, ISD::FSHR,
|
|
ISD::MUL, ISD::MULHS, ISD::MULHU, ISD::PARITY,
|
|
ISD::ROTL, ISD::ROTR, ISD::SADDO, ISD::SADDO_CARRY,
|
|
ISD::SADDSAT, ISD::SDIV, ISD::SDIVREM, ISD::SELECT_CC,
|
|
ISD::SETCC, ISD::SHL, ISD::SINT_TO_FP, ISD::SMAX,
|
|
ISD::SMIN, ISD::SMULO, ISD::SMUL_LOHI, ISD::SRA,
|
|
ISD::SREM, ISD::SRL, ISD::SSHLSAT, ISD::SSUBO,
|
|
ISD::SSUBO_CARRY, ISD::SSUBSAT, ISD::SUB, ISD::SUBC,
|
|
ISD::SUBE, ISD::UADDO, ISD::UADDO_CARRY, ISD::UADDSAT,
|
|
ISD::UDIV, ISD::UDIVREM, ISD::UINT_TO_FP, ISD::UMAX,
|
|
ISD::UMIN, ISD::UMULO, ISD::UMUL_LOHI, ISD::UREM,
|
|
ISD::USHLSAT, ISD::USUBO, ISD::USUBO_CARRY, ISD::VSELECT,
|
|
ISD::USUBSAT},
|
|
MVT::v4i8, Expand);
|
|
|
|
// Operations not directly supported by NVPTX.
|
|
for (MVT VT : {MVT::bf16, MVT::f16, MVT::v2bf16, MVT::v2f16, MVT::f32,
|
|
MVT::f64, MVT::i1, MVT::i8, MVT::i16, MVT::v2i16, MVT::v4i8,
|
|
MVT::i32, MVT::i64}) {
|
|
setOperationAction(ISD::SELECT_CC, VT, Expand);
|
|
setOperationAction(ISD::BR_CC, VT, Expand);
|
|
}
|
|
|
|
// Some SIGN_EXTEND_INREG can be done using cvt instruction.
|
|
// For others we will expand to a SHL/SRA pair.
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand);
|
|
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i32 , Custom);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i32 , Custom);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i32 , Custom);
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i64 , Custom);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i64 , Custom);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i64 , Custom);
|
|
|
|
setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
|
|
setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
|
|
|
|
setOperationAction({ISD::ROTL, ISD::ROTR},
|
|
{MVT::i8, MVT::i16, MVT::v2i16, MVT::i32, MVT::i64},
|
|
Expand);
|
|
|
|
if (STI.hasHWROT32())
|
|
setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Legal);
|
|
|
|
setOperationAction(ISD::BSWAP, MVT::i16, Expand);
|
|
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
|
|
setOperationAction(ISD::BRIND, MVT::Other, Expand);
|
|
|
|
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
|
|
|
|
// We want to legalize constant related memmove and memcopy
|
|
// intrinsics.
|
|
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
|
|
|
|
// Turn FP extload into load/fpextend
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::bf16, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::bf16, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2bf16, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2bf16, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4bf16, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4bf16, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8bf16, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8bf16, Expand);
|
|
// Turn FP truncstore into trunc + store.
|
|
// FIXME: vector types should also be expanded
|
|
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
|
|
setTruncStoreAction(MVT::f32, MVT::bf16, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::bf16, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
|
|
// PTX does not support load / store predicate registers
|
|
setOperationAction(ISD::LOAD, MVT::i1, Custom);
|
|
setOperationAction(ISD::STORE, MVT::i1, Custom);
|
|
|
|
for (MVT VT : MVT::integer_valuetypes()) {
|
|
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
|
|
setTruncStoreAction(VT, MVT::i1, Expand);
|
|
}
|
|
|
|
// expand extload of vector of integers.
|
|
setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::v2i16,
|
|
MVT::v2i8, Expand);
|
|
setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
|
|
|
|
// This is legal in NVPTX
|
|
setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
|
|
setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
|
|
setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
|
|
setOperationAction(ISD::ConstantFP, MVT::bf16, Legal);
|
|
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
|
|
|
|
// TRAP can be lowered to PTX trap
|
|
setOperationAction(ISD::TRAP, MVT::Other, Legal);
|
|
// DEBUGTRAP can be lowered to PTX brkpt
|
|
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
|
|
|
|
// Register custom handling for vector loads/stores
|
|
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
|
|
if (IsPTXVectorType(VT)) {
|
|
setOperationAction(ISD::LOAD, VT, Custom);
|
|
setOperationAction(ISD::STORE, VT, Custom);
|
|
setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
|
|
}
|
|
}
|
|
|
|
// Support varargs.
|
|
setOperationAction(ISD::VASTART, MVT::Other, Custom);
|
|
setOperationAction(ISD::VAARG, MVT::Other, Custom);
|
|
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
|
|
setOperationAction(ISD::VAEND, MVT::Other, Expand);
|
|
|
|
// Custom handling for i8 intrinsics
|
|
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
|
|
|
|
for (const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) {
|
|
setOperationAction(ISD::ABS, Ty, Legal);
|
|
setOperationAction(ISD::SMIN, Ty, Legal);
|
|
setOperationAction(ISD::SMAX, Ty, Legal);
|
|
setOperationAction(ISD::UMIN, Ty, Legal);
|
|
setOperationAction(ISD::UMAX, Ty, Legal);
|
|
|
|
setOperationAction(ISD::CTPOP, Ty, Legal);
|
|
setOperationAction(ISD::CTLZ, Ty, Legal);
|
|
}
|
|
|
|
setI16x2OperationAction(ISD::ABS, MVT::v2i16, Legal, Custom);
|
|
setI16x2OperationAction(ISD::SMIN, MVT::v2i16, Legal, Custom);
|
|
setI16x2OperationAction(ISD::SMAX, MVT::v2i16, Legal, Custom);
|
|
setI16x2OperationAction(ISD::UMIN, MVT::v2i16, Legal, Custom);
|
|
setI16x2OperationAction(ISD::UMAX, MVT::v2i16, Legal, Custom);
|
|
setI16x2OperationAction(ISD::CTPOP, MVT::v2i16, Legal, Expand);
|
|
setI16x2OperationAction(ISD::CTLZ, MVT::v2i16, Legal, Expand);
|
|
|
|
setI16x2OperationAction(ISD::ADD, MVT::v2i16, Legal, Custom);
|
|
setI16x2OperationAction(ISD::SUB, MVT::v2i16, Legal, Custom);
|
|
setI16x2OperationAction(ISD::MUL, MVT::v2i16, Legal, Custom);
|
|
setI16x2OperationAction(ISD::SHL, MVT::v2i16, Legal, Custom);
|
|
setI16x2OperationAction(ISD::SREM, MVT::v2i16, Legal, Custom);
|
|
setI16x2OperationAction(ISD::UREM, MVT::v2i16, Legal, Custom);
|
|
|
|
// Other arithmetic and logic ops are unsupported.
|
|
setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SRA, ISD::SRL, ISD::MULHS,
|
|
ISD::MULHU, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
|
|
ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::SETCC},
|
|
MVT::v2i16, Expand);
|
|
|
|
setOperationAction(ISD::ADDC, MVT::i32, Legal);
|
|
setOperationAction(ISD::ADDE, MVT::i32, Legal);
|
|
setOperationAction(ISD::SUBC, MVT::i32, Legal);
|
|
setOperationAction(ISD::SUBE, MVT::i32, Legal);
|
|
if (STI.getPTXVersion() >= 43) {
|
|
setOperationAction(ISD::ADDC, MVT::i64, Legal);
|
|
setOperationAction(ISD::ADDE, MVT::i64, Legal);
|
|
setOperationAction(ISD::SUBC, MVT::i64, Legal);
|
|
setOperationAction(ISD::SUBE, MVT::i64, Legal);
|
|
}
|
|
|
|
setOperationAction(ISD::CTTZ, MVT::i16, Expand);
|
|
setOperationAction(ISD::CTTZ, MVT::v2i16, Expand);
|
|
setOperationAction(ISD::CTTZ, MVT::i32, Expand);
|
|
setOperationAction(ISD::CTTZ, MVT::i64, Expand);
|
|
|
|
// PTX does not directly support SELP of i1, so promote to i32 first
|
|
setOperationAction(ISD::SELECT, MVT::i1, Custom);
|
|
|
|
// PTX cannot multiply two i64s in a single instruction.
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
|
|
|
|
// We have some custom DAG combine patterns for these nodes
|
|
setTargetDAGCombine({ISD::ADD, ISD::AND, ISD::EXTRACT_VECTOR_ELT, ISD::FADD,
|
|
ISD::LOAD, ISD::MUL, ISD::SHL, ISD::SREM, ISD::UREM,
|
|
ISD::VSELECT});
|
|
|
|
// setcc for f16x2 and bf16x2 needs special handling to prevent
|
|
// legalizer's attempt to scalarize it due to v2i1 not being legal.
|
|
if (STI.allowFP16Math() || STI.hasBF16Math())
|
|
setTargetDAGCombine(ISD::SETCC);
|
|
|
|
// Promote fp16 arithmetic if fp16 hardware isn't available or the
|
|
// user passed --nvptx-no-fp16-math. The flag is useful because,
|
|
// although sm_53+ GPUs have some sort of FP16 support in
|
|
// hardware, only sm_53 and sm_60 have full implementation. Others
|
|
// only have token amount of hardware and are likely to run faster
|
|
// by using fp32 units instead.
|
|
for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) {
|
|
setFP16OperationAction(Op, MVT::f16, Legal, Promote);
|
|
setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
|
|
setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand);
|
|
// bf16 must be promoted to f32.
|
|
setBF16OperationAction(Op, MVT::bf16, Legal, Promote);
|
|
if (getOperationAction(Op, MVT::bf16) == Promote)
|
|
AddPromotedToType(Op, MVT::bf16, MVT::f32);
|
|
}
|
|
|
|
// f16/f16x2 neg was introduced in PTX 60, SM_53.
|
|
const bool IsFP16FP16x2NegAvailable = STI.getSmVersion() >= 53 &&
|
|
STI.getPTXVersion() >= 60 &&
|
|
STI.allowFP16Math();
|
|
for (const auto &VT : {MVT::f16, MVT::v2f16})
|
|
setOperationAction(ISD::FNEG, VT,
|
|
IsFP16FP16x2NegAvailable ? Legal : Expand);
|
|
|
|
setBF16OperationAction(ISD::FNEG, MVT::bf16, Legal, Expand);
|
|
setBF16OperationAction(ISD::FNEG, MVT::v2bf16, Legal, Expand);
|
|
// (would be) Library functions.
|
|
|
|
// These map to conversion instructions for scalar FP types.
|
|
for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
|
|
ISD::FROUNDEVEN, ISD::FTRUNC}) {
|
|
setOperationAction(Op, MVT::f16, Legal);
|
|
setOperationAction(Op, MVT::f32, Legal);
|
|
setOperationAction(Op, MVT::f64, Legal);
|
|
setOperationAction(Op, MVT::v2f16, Expand);
|
|
setOperationAction(Op, MVT::v2bf16, Expand);
|
|
setBF16OperationAction(Op, MVT::bf16, Legal, Promote);
|
|
if (getOperationAction(Op, MVT::bf16) == Promote)
|
|
AddPromotedToType(Op, MVT::bf16, MVT::f32);
|
|
}
|
|
|
|
if (STI.getSmVersion() < 80 || STI.getPTXVersion() < 71) {
|
|
setOperationAction(ISD::BF16_TO_FP, MVT::f32, Expand);
|
|
}
|
|
if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) {
|
|
for (MVT VT : {MVT::bf16, MVT::f32, MVT::f64}) {
|
|
setOperationAction(ISD::FP_EXTEND, VT, Custom);
|
|
setOperationAction(ISD::FP_ROUND, VT, Custom);
|
|
}
|
|
}
|
|
|
|
// sm_80 only has conversions between f32 and bf16. Custom lower all other
|
|
// bf16 conversions.
|
|
if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) {
|
|
for (MVT VT : {MVT::i1, MVT::i16, MVT::i32, MVT::i64}) {
|
|
setOperationAction(
|
|
{ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
|
|
VT, Custom);
|
|
}
|
|
setOperationAction(
|
|
{ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
|
|
MVT::bf16, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::FROUND, MVT::f16, Promote);
|
|
setOperationAction(ISD::FROUND, MVT::v2f16, Expand);
|
|
setOperationAction(ISD::FROUND, MVT::v2bf16, Expand);
|
|
setOperationAction(ISD::FROUND, MVT::f32, Custom);
|
|
setOperationAction(ISD::FROUND, MVT::f64, Custom);
|
|
setOperationAction(ISD::FROUND, MVT::bf16, Promote);
|
|
AddPromotedToType(ISD::FROUND, MVT::bf16, MVT::f32);
|
|
|
|
// 'Expand' implements FCOPYSIGN without calling an external library.
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::bf16, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::v2bf16, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
|
|
|
|
// These map to corresponding instructions for f32/f64. f16 must be
|
|
// promoted to f32. v2f16 is expanded to f16, which is then promoted
|
|
// to f32.
|
|
for (const auto &Op :
|
|
{ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS}) {
|
|
setOperationAction(Op, MVT::f16, Promote);
|
|
setOperationAction(Op, MVT::f32, Legal);
|
|
setOperationAction(Op, MVT::f64, Legal);
|
|
setOperationAction(Op, MVT::v2f16, Expand);
|
|
setOperationAction(Op, MVT::v2bf16, Expand);
|
|
setOperationAction(Op, MVT::bf16, Promote);
|
|
AddPromotedToType(Op, MVT::bf16, MVT::f32);
|
|
}
|
|
for (const auto &Op : {ISD::FABS}) {
|
|
setOperationAction(Op, MVT::f16, Promote);
|
|
setOperationAction(Op, MVT::f32, Legal);
|
|
setOperationAction(Op, MVT::f64, Legal);
|
|
setOperationAction(Op, MVT::v2f16, Expand);
|
|
setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand);
|
|
setBF16OperationAction(Op, MVT::bf16, Legal, Promote);
|
|
if (getOperationAction(Op, MVT::bf16) == Promote)
|
|
AddPromotedToType(Op, MVT::bf16, MVT::f32);
|
|
}
|
|
|
|
for (const auto &Op : {ISD::FMINNUM, ISD::FMAXNUM}) {
|
|
setOperationAction(Op, MVT::f32, Legal);
|
|
setOperationAction(Op, MVT::f64, Legal);
|
|
setFP16OperationAction(Op, MVT::f16, Legal, Promote);
|
|
setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
|
|
setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand);
|
|
setBF16OperationAction(Op, MVT::bf16, Legal, Promote);
|
|
if (getOperationAction(Op, MVT::bf16) == Promote)
|
|
AddPromotedToType(Op, MVT::bf16, MVT::f32);
|
|
}
|
|
bool SupportsF32MinMaxNaN =
|
|
STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70;
|
|
for (const auto &Op : {ISD::FMINIMUM, ISD::FMAXIMUM}) {
|
|
setOperationAction(Op, MVT::f32, SupportsF32MinMaxNaN ? Legal : Expand);
|
|
setFP16OperationAction(Op, MVT::f16, Legal, Expand);
|
|
setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
|
|
setBF16OperationAction(Op, MVT::bf16, Legal, Expand);
|
|
setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand);
|
|
}
|
|
|
|
// Custom lowering for inline asm with 128-bit operands
|
|
setOperationAction(ISD::CopyToReg, MVT::i128, Custom);
|
|
setOperationAction(ISD::CopyFromReg, MVT::i128, Custom);
|
|
|
|
// No FEXP2, FLOG2. The PTX ex2 and log2 functions are always approximate.
|
|
// No FPOW or FREM in PTX.
|
|
|
|
// Now deduce the information based on the above mentioned
|
|
// actions
|
|
computeRegisterProperties(STI.getRegisterInfo());
|
|
|
|
setMinCmpXchgSizeInBits(STI.hasAtomCas16() ? 16 : 32);
|
|
setMaxAtomicSizeInBitsSupported(64);
|
|
setMaxDivRemBitWidthSupported(64);
|
|
}
|
|
|
|
const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
|
|
#define MAKE_CASE(V) \
|
|
case V: \
|
|
return #V;
|
|
|
|
switch ((NVPTXISD::NodeType)Opcode) {
|
|
case NVPTXISD::FIRST_NUMBER:
|
|
break;
|
|
|
|
MAKE_CASE(NVPTXISD::CALL)
|
|
MAKE_CASE(NVPTXISD::RET_GLUE)
|
|
MAKE_CASE(NVPTXISD::LOAD_PARAM)
|
|
MAKE_CASE(NVPTXISD::Wrapper)
|
|
MAKE_CASE(NVPTXISD::DeclareParam)
|
|
MAKE_CASE(NVPTXISD::DeclareScalarParam)
|
|
MAKE_CASE(NVPTXISD::DeclareRet)
|
|
MAKE_CASE(NVPTXISD::DeclareScalarRet)
|
|
MAKE_CASE(NVPTXISD::DeclareRetParam)
|
|
MAKE_CASE(NVPTXISD::PrintCall)
|
|
MAKE_CASE(NVPTXISD::PrintConvergentCall)
|
|
MAKE_CASE(NVPTXISD::PrintCallUni)
|
|
MAKE_CASE(NVPTXISD::PrintConvergentCallUni)
|
|
MAKE_CASE(NVPTXISD::LoadParam)
|
|
MAKE_CASE(NVPTXISD::LoadParamV2)
|
|
MAKE_CASE(NVPTXISD::LoadParamV4)
|
|
MAKE_CASE(NVPTXISD::StoreParam)
|
|
MAKE_CASE(NVPTXISD::StoreParamV2)
|
|
MAKE_CASE(NVPTXISD::StoreParamV4)
|
|
MAKE_CASE(NVPTXISD::StoreParamS32)
|
|
MAKE_CASE(NVPTXISD::StoreParamU32)
|
|
MAKE_CASE(NVPTXISD::CallArgBegin)
|
|
MAKE_CASE(NVPTXISD::CallArg)
|
|
MAKE_CASE(NVPTXISD::LastCallArg)
|
|
MAKE_CASE(NVPTXISD::CallArgEnd)
|
|
MAKE_CASE(NVPTXISD::CallVoid)
|
|
MAKE_CASE(NVPTXISD::CallVal)
|
|
MAKE_CASE(NVPTXISD::CallSymbol)
|
|
MAKE_CASE(NVPTXISD::Prototype)
|
|
MAKE_CASE(NVPTXISD::MoveParam)
|
|
MAKE_CASE(NVPTXISD::StoreRetval)
|
|
MAKE_CASE(NVPTXISD::StoreRetvalV2)
|
|
MAKE_CASE(NVPTXISD::StoreRetvalV4)
|
|
MAKE_CASE(NVPTXISD::PseudoUseParam)
|
|
MAKE_CASE(NVPTXISD::RETURN)
|
|
MAKE_CASE(NVPTXISD::CallSeqBegin)
|
|
MAKE_CASE(NVPTXISD::CallSeqEnd)
|
|
MAKE_CASE(NVPTXISD::CallPrototype)
|
|
MAKE_CASE(NVPTXISD::ProxyReg)
|
|
MAKE_CASE(NVPTXISD::LoadV2)
|
|
MAKE_CASE(NVPTXISD::LoadV4)
|
|
MAKE_CASE(NVPTXISD::LDGV2)
|
|
MAKE_CASE(NVPTXISD::LDGV4)
|
|
MAKE_CASE(NVPTXISD::LDUV2)
|
|
MAKE_CASE(NVPTXISD::LDUV4)
|
|
MAKE_CASE(NVPTXISD::StoreV2)
|
|
MAKE_CASE(NVPTXISD::StoreV4)
|
|
MAKE_CASE(NVPTXISD::FUN_SHFL_CLAMP)
|
|
MAKE_CASE(NVPTXISD::FUN_SHFR_CLAMP)
|
|
MAKE_CASE(NVPTXISD::IMAD)
|
|
MAKE_CASE(NVPTXISD::BFE)
|
|
MAKE_CASE(NVPTXISD::BFI)
|
|
MAKE_CASE(NVPTXISD::PRMT)
|
|
MAKE_CASE(NVPTXISD::FCOPYSIGN)
|
|
MAKE_CASE(NVPTXISD::DYNAMIC_STACKALLOC)
|
|
MAKE_CASE(NVPTXISD::SETP_F16X2)
|
|
MAKE_CASE(NVPTXISD::SETP_BF16X2)
|
|
MAKE_CASE(NVPTXISD::Dummy)
|
|
MAKE_CASE(NVPTXISD::MUL_WIDE_SIGNED)
|
|
MAKE_CASE(NVPTXISD::MUL_WIDE_UNSIGNED)
|
|
MAKE_CASE(NVPTXISD::BrxEnd)
|
|
MAKE_CASE(NVPTXISD::BrxItem)
|
|
MAKE_CASE(NVPTXISD::BrxStart)
|
|
MAKE_CASE(NVPTXISD::Tex1DFloatS32)
|
|
MAKE_CASE(NVPTXISD::Tex1DFloatFloat)
|
|
MAKE_CASE(NVPTXISD::Tex1DFloatFloatLevel)
|
|
MAKE_CASE(NVPTXISD::Tex1DFloatFloatGrad)
|
|
MAKE_CASE(NVPTXISD::Tex1DS32S32)
|
|
MAKE_CASE(NVPTXISD::Tex1DS32Float)
|
|
MAKE_CASE(NVPTXISD::Tex1DS32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::Tex1DS32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::Tex1DU32S32)
|
|
MAKE_CASE(NVPTXISD::Tex1DU32Float)
|
|
MAKE_CASE(NVPTXISD::Tex1DU32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::Tex1DU32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::Tex1DArrayFloatS32)
|
|
MAKE_CASE(NVPTXISD::Tex1DArrayFloatFloat)
|
|
MAKE_CASE(NVPTXISD::Tex1DArrayFloatFloatLevel)
|
|
MAKE_CASE(NVPTXISD::Tex1DArrayFloatFloatGrad)
|
|
MAKE_CASE(NVPTXISD::Tex1DArrayS32S32)
|
|
MAKE_CASE(NVPTXISD::Tex1DArrayS32Float)
|
|
MAKE_CASE(NVPTXISD::Tex1DArrayS32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::Tex1DArrayS32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::Tex1DArrayU32S32)
|
|
MAKE_CASE(NVPTXISD::Tex1DArrayU32Float)
|
|
MAKE_CASE(NVPTXISD::Tex1DArrayU32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::Tex1DArrayU32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::Tex2DFloatS32)
|
|
MAKE_CASE(NVPTXISD::Tex2DFloatFloat)
|
|
MAKE_CASE(NVPTXISD::Tex2DFloatFloatLevel)
|
|
MAKE_CASE(NVPTXISD::Tex2DFloatFloatGrad)
|
|
MAKE_CASE(NVPTXISD::Tex2DS32S32)
|
|
MAKE_CASE(NVPTXISD::Tex2DS32Float)
|
|
MAKE_CASE(NVPTXISD::Tex2DS32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::Tex2DS32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::Tex2DU32S32)
|
|
MAKE_CASE(NVPTXISD::Tex2DU32Float)
|
|
MAKE_CASE(NVPTXISD::Tex2DU32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::Tex2DU32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::Tex2DArrayFloatS32)
|
|
MAKE_CASE(NVPTXISD::Tex2DArrayFloatFloat)
|
|
MAKE_CASE(NVPTXISD::Tex2DArrayFloatFloatLevel)
|
|
MAKE_CASE(NVPTXISD::Tex2DArrayFloatFloatGrad)
|
|
MAKE_CASE(NVPTXISD::Tex2DArrayS32S32)
|
|
MAKE_CASE(NVPTXISD::Tex2DArrayS32Float)
|
|
MAKE_CASE(NVPTXISD::Tex2DArrayS32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::Tex2DArrayS32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::Tex2DArrayU32S32)
|
|
MAKE_CASE(NVPTXISD::Tex2DArrayU32Float)
|
|
MAKE_CASE(NVPTXISD::Tex2DArrayU32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::Tex2DArrayU32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::Tex3DFloatS32)
|
|
MAKE_CASE(NVPTXISD::Tex3DFloatFloat)
|
|
MAKE_CASE(NVPTXISD::Tex3DFloatFloatLevel)
|
|
MAKE_CASE(NVPTXISD::Tex3DFloatFloatGrad)
|
|
MAKE_CASE(NVPTXISD::Tex3DS32S32)
|
|
MAKE_CASE(NVPTXISD::Tex3DS32Float)
|
|
MAKE_CASE(NVPTXISD::Tex3DS32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::Tex3DS32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::Tex3DU32S32)
|
|
MAKE_CASE(NVPTXISD::Tex3DU32Float)
|
|
MAKE_CASE(NVPTXISD::Tex3DU32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::Tex3DU32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexCubeFloatFloat)
|
|
MAKE_CASE(NVPTXISD::TexCubeFloatFloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexCubeS32Float)
|
|
MAKE_CASE(NVPTXISD::TexCubeS32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexCubeU32Float)
|
|
MAKE_CASE(NVPTXISD::TexCubeU32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexCubeArrayFloatFloat)
|
|
MAKE_CASE(NVPTXISD::TexCubeArrayFloatFloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexCubeArrayS32Float)
|
|
MAKE_CASE(NVPTXISD::TexCubeArrayS32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexCubeArrayU32Float)
|
|
MAKE_CASE(NVPTXISD::TexCubeArrayU32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::Tld4R2DFloatFloat)
|
|
MAKE_CASE(NVPTXISD::Tld4G2DFloatFloat)
|
|
MAKE_CASE(NVPTXISD::Tld4B2DFloatFloat)
|
|
MAKE_CASE(NVPTXISD::Tld4A2DFloatFloat)
|
|
MAKE_CASE(NVPTXISD::Tld4R2DS64Float)
|
|
MAKE_CASE(NVPTXISD::Tld4G2DS64Float)
|
|
MAKE_CASE(NVPTXISD::Tld4B2DS64Float)
|
|
MAKE_CASE(NVPTXISD::Tld4A2DS64Float)
|
|
MAKE_CASE(NVPTXISD::Tld4R2DU64Float)
|
|
MAKE_CASE(NVPTXISD::Tld4G2DU64Float)
|
|
MAKE_CASE(NVPTXISD::Tld4B2DU64Float)
|
|
MAKE_CASE(NVPTXISD::Tld4A2DU64Float)
|
|
|
|
MAKE_CASE(NVPTXISD::TexUnified1DFloatS32)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DFloatFloat)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DFloatFloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DFloatFloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DS32S32)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DS32Float)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DS32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DS32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DU32S32)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DU32Float)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DU32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DU32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DArrayFloatS32)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DArrayFloatFloat)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DArrayFloatFloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DArrayFloatFloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DArrayS32S32)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DArrayS32Float)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DArrayS32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DArrayS32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DArrayU32S32)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DArrayU32Float)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DArrayU32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnified1DArrayU32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DFloatS32)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DFloatFloat)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DFloatFloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DFloatFloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DS32S32)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DS32Float)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DS32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DS32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DU32S32)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DU32Float)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DU32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DU32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DArrayFloatS32)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DArrayFloatFloat)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DArrayFloatFloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DArrayFloatFloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DArrayS32S32)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DArrayS32Float)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DArrayS32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DArrayS32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DArrayU32S32)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DArrayU32Float)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DArrayU32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnified2DArrayU32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexUnified3DFloatS32)
|
|
MAKE_CASE(NVPTXISD::TexUnified3DFloatFloat)
|
|
MAKE_CASE(NVPTXISD::TexUnified3DFloatFloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnified3DFloatFloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexUnified3DS32S32)
|
|
MAKE_CASE(NVPTXISD::TexUnified3DS32Float)
|
|
MAKE_CASE(NVPTXISD::TexUnified3DS32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnified3DS32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexUnified3DU32S32)
|
|
MAKE_CASE(NVPTXISD::TexUnified3DU32Float)
|
|
MAKE_CASE(NVPTXISD::TexUnified3DU32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnified3DU32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexUnifiedCubeFloatFloat)
|
|
MAKE_CASE(NVPTXISD::TexUnifiedCubeFloatFloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnifiedCubeS32Float)
|
|
MAKE_CASE(NVPTXISD::TexUnifiedCubeS32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnifiedCubeU32Float)
|
|
MAKE_CASE(NVPTXISD::TexUnifiedCubeU32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnifiedCubeArrayFloatFloat)
|
|
MAKE_CASE(NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnifiedCubeArrayS32Float)
|
|
MAKE_CASE(NVPTXISD::TexUnifiedCubeArrayS32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnifiedCubeArrayU32Float)
|
|
MAKE_CASE(NVPTXISD::TexUnifiedCubeArrayU32FloatLevel)
|
|
MAKE_CASE(NVPTXISD::TexUnifiedCubeFloatFloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexUnifiedCubeS32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexUnifiedCubeU32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexUnifiedCubeArrayFloatFloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexUnifiedCubeArrayS32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::TexUnifiedCubeArrayU32FloatGrad)
|
|
MAKE_CASE(NVPTXISD::Tld4UnifiedR2DFloatFloat)
|
|
MAKE_CASE(NVPTXISD::Tld4UnifiedG2DFloatFloat)
|
|
MAKE_CASE(NVPTXISD::Tld4UnifiedB2DFloatFloat)
|
|
MAKE_CASE(NVPTXISD::Tld4UnifiedA2DFloatFloat)
|
|
MAKE_CASE(NVPTXISD::Tld4UnifiedR2DS64Float)
|
|
MAKE_CASE(NVPTXISD::Tld4UnifiedG2DS64Float)
|
|
MAKE_CASE(NVPTXISD::Tld4UnifiedB2DS64Float)
|
|
MAKE_CASE(NVPTXISD::Tld4UnifiedA2DS64Float)
|
|
MAKE_CASE(NVPTXISD::Tld4UnifiedR2DU64Float)
|
|
MAKE_CASE(NVPTXISD::Tld4UnifiedG2DU64Float)
|
|
MAKE_CASE(NVPTXISD::Tld4UnifiedB2DU64Float)
|
|
MAKE_CASE(NVPTXISD::Tld4UnifiedA2DU64Float)
|
|
|
|
MAKE_CASE(NVPTXISD::Suld1DI8Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld1DI16Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld1DI32Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld1DI64Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld1DV2I8Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld1DV2I16Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld1DV2I32Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld1DV2I64Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld1DV4I8Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld1DV4I16Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld1DV4I32Clamp)
|
|
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayI8Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayI16Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayI32Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayI64Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV2I8Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV2I16Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV2I32Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV2I64Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV4I8Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV4I16Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV4I32Clamp)
|
|
|
|
MAKE_CASE(NVPTXISD::Suld2DI8Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld2DI16Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld2DI32Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld2DI64Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld2DV2I8Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld2DV2I16Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld2DV2I32Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld2DV2I64Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld2DV4I8Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld2DV4I16Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld2DV4I32Clamp)
|
|
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayI8Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayI16Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayI32Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayI64Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV2I8Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV2I16Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV2I32Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV2I64Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV4I8Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV4I16Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV4I32Clamp)
|
|
|
|
MAKE_CASE(NVPTXISD::Suld3DI8Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld3DI16Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld3DI32Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld3DI64Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld3DV2I8Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld3DV2I16Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld3DV2I32Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld3DV2I64Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld3DV4I8Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld3DV4I16Clamp)
|
|
MAKE_CASE(NVPTXISD::Suld3DV4I32Clamp)
|
|
|
|
MAKE_CASE(NVPTXISD::Suld1DI8Trap)
|
|
MAKE_CASE(NVPTXISD::Suld1DI16Trap)
|
|
MAKE_CASE(NVPTXISD::Suld1DI32Trap)
|
|
MAKE_CASE(NVPTXISD::Suld1DI64Trap)
|
|
MAKE_CASE(NVPTXISD::Suld1DV2I8Trap)
|
|
MAKE_CASE(NVPTXISD::Suld1DV2I16Trap)
|
|
MAKE_CASE(NVPTXISD::Suld1DV2I32Trap)
|
|
MAKE_CASE(NVPTXISD::Suld1DV2I64Trap)
|
|
MAKE_CASE(NVPTXISD::Suld1DV4I8Trap)
|
|
MAKE_CASE(NVPTXISD::Suld1DV4I16Trap)
|
|
MAKE_CASE(NVPTXISD::Suld1DV4I32Trap)
|
|
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayI8Trap)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayI16Trap)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayI32Trap)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayI64Trap)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV2I8Trap)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV2I16Trap)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV2I32Trap)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV2I64Trap)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV4I8Trap)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV4I16Trap)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV4I32Trap)
|
|
|
|
MAKE_CASE(NVPTXISD::Suld2DI8Trap)
|
|
MAKE_CASE(NVPTXISD::Suld2DI16Trap)
|
|
MAKE_CASE(NVPTXISD::Suld2DI32Trap)
|
|
MAKE_CASE(NVPTXISD::Suld2DI64Trap)
|
|
MAKE_CASE(NVPTXISD::Suld2DV2I8Trap)
|
|
MAKE_CASE(NVPTXISD::Suld2DV2I16Trap)
|
|
MAKE_CASE(NVPTXISD::Suld2DV2I32Trap)
|
|
MAKE_CASE(NVPTXISD::Suld2DV2I64Trap)
|
|
MAKE_CASE(NVPTXISD::Suld2DV4I8Trap)
|
|
MAKE_CASE(NVPTXISD::Suld2DV4I16Trap)
|
|
MAKE_CASE(NVPTXISD::Suld2DV4I32Trap)
|
|
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayI8Trap)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayI16Trap)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayI32Trap)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayI64Trap)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV2I8Trap)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV2I16Trap)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV2I32Trap)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV2I64Trap)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV4I8Trap)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV4I16Trap)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV4I32Trap)
|
|
|
|
MAKE_CASE(NVPTXISD::Suld3DI8Trap)
|
|
MAKE_CASE(NVPTXISD::Suld3DI16Trap)
|
|
MAKE_CASE(NVPTXISD::Suld3DI32Trap)
|
|
MAKE_CASE(NVPTXISD::Suld3DI64Trap)
|
|
MAKE_CASE(NVPTXISD::Suld3DV2I8Trap)
|
|
MAKE_CASE(NVPTXISD::Suld3DV2I16Trap)
|
|
MAKE_CASE(NVPTXISD::Suld3DV2I32Trap)
|
|
MAKE_CASE(NVPTXISD::Suld3DV2I64Trap)
|
|
MAKE_CASE(NVPTXISD::Suld3DV4I8Trap)
|
|
MAKE_CASE(NVPTXISD::Suld3DV4I16Trap)
|
|
MAKE_CASE(NVPTXISD::Suld3DV4I32Trap)
|
|
|
|
MAKE_CASE(NVPTXISD::Suld1DI8Zero)
|
|
MAKE_CASE(NVPTXISD::Suld1DI16Zero)
|
|
MAKE_CASE(NVPTXISD::Suld1DI32Zero)
|
|
MAKE_CASE(NVPTXISD::Suld1DI64Zero)
|
|
MAKE_CASE(NVPTXISD::Suld1DV2I8Zero)
|
|
MAKE_CASE(NVPTXISD::Suld1DV2I16Zero)
|
|
MAKE_CASE(NVPTXISD::Suld1DV2I32Zero)
|
|
MAKE_CASE(NVPTXISD::Suld1DV2I64Zero)
|
|
MAKE_CASE(NVPTXISD::Suld1DV4I8Zero)
|
|
MAKE_CASE(NVPTXISD::Suld1DV4I16Zero)
|
|
MAKE_CASE(NVPTXISD::Suld1DV4I32Zero)
|
|
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayI8Zero)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayI16Zero)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayI32Zero)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayI64Zero)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV2I8Zero)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV2I16Zero)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV2I32Zero)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV2I64Zero)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV4I8Zero)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV4I16Zero)
|
|
MAKE_CASE(NVPTXISD::Suld1DArrayV4I32Zero)
|
|
|
|
MAKE_CASE(NVPTXISD::Suld2DI8Zero)
|
|
MAKE_CASE(NVPTXISD::Suld2DI16Zero)
|
|
MAKE_CASE(NVPTXISD::Suld2DI32Zero)
|
|
MAKE_CASE(NVPTXISD::Suld2DI64Zero)
|
|
MAKE_CASE(NVPTXISD::Suld2DV2I8Zero)
|
|
MAKE_CASE(NVPTXISD::Suld2DV2I16Zero)
|
|
MAKE_CASE(NVPTXISD::Suld2DV2I32Zero)
|
|
MAKE_CASE(NVPTXISD::Suld2DV2I64Zero)
|
|
MAKE_CASE(NVPTXISD::Suld2DV4I8Zero)
|
|
MAKE_CASE(NVPTXISD::Suld2DV4I16Zero)
|
|
MAKE_CASE(NVPTXISD::Suld2DV4I32Zero)
|
|
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayI8Zero)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayI16Zero)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayI32Zero)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayI64Zero)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV2I8Zero)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV2I16Zero)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV2I32Zero)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV2I64Zero)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV4I8Zero)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV4I16Zero)
|
|
MAKE_CASE(NVPTXISD::Suld2DArrayV4I32Zero)
|
|
|
|
MAKE_CASE(NVPTXISD::Suld3DI8Zero)
|
|
MAKE_CASE(NVPTXISD::Suld3DI16Zero)
|
|
MAKE_CASE(NVPTXISD::Suld3DI32Zero)
|
|
MAKE_CASE(NVPTXISD::Suld3DI64Zero)
|
|
MAKE_CASE(NVPTXISD::Suld3DV2I8Zero)
|
|
MAKE_CASE(NVPTXISD::Suld3DV2I16Zero)
|
|
MAKE_CASE(NVPTXISD::Suld3DV2I32Zero)
|
|
MAKE_CASE(NVPTXISD::Suld3DV2I64Zero)
|
|
MAKE_CASE(NVPTXISD::Suld3DV4I8Zero)
|
|
MAKE_CASE(NVPTXISD::Suld3DV4I16Zero)
|
|
MAKE_CASE(NVPTXISD::Suld3DV4I32Zero)
|
|
}
|
|
return nullptr;
|
|
|
|
#undef MAKE_CASE
|
|
}
|
|
|
|
TargetLoweringBase::LegalizeTypeAction
|
|
NVPTXTargetLowering::getPreferredVectorAction(MVT VT) const {
|
|
if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
|
|
VT.getScalarType() == MVT::i1)
|
|
return TypeSplitVector;
|
|
if (Isv2x16VT(VT))
|
|
return TypeLegal;
|
|
return TargetLoweringBase::getPreferredVectorAction(VT);
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
|
|
int Enabled, int &ExtraSteps,
|
|
bool &UseOneConst,
|
|
bool Reciprocal) const {
|
|
if (!(Enabled == ReciprocalEstimate::Enabled ||
|
|
(Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32())))
|
|
return SDValue();
|
|
|
|
if (ExtraSteps == ReciprocalEstimate::Unspecified)
|
|
ExtraSteps = 0;
|
|
|
|
SDLoc DL(Operand);
|
|
EVT VT = Operand.getValueType();
|
|
bool Ftz = useF32FTZ(DAG.getMachineFunction());
|
|
|
|
auto MakeIntrinsicCall = [&](Intrinsic::ID IID) {
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
|
|
DAG.getConstant(IID, DL, MVT::i32), Operand);
|
|
};
|
|
|
|
// The sqrt and rsqrt refinement processes assume we always start out with an
|
|
// approximation of the rsqrt. Therefore, if we're going to do any refinement
|
|
// (i.e. ExtraSteps > 0), we must return an rsqrt. But if we're *not* doing
|
|
// any refinement, we must return a regular sqrt.
|
|
if (Reciprocal || ExtraSteps > 0) {
|
|
if (VT == MVT::f32)
|
|
return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
|
|
: Intrinsic::nvvm_rsqrt_approx_f);
|
|
else if (VT == MVT::f64)
|
|
return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
|
|
else
|
|
return SDValue();
|
|
} else {
|
|
if (VT == MVT::f32)
|
|
return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
|
|
: Intrinsic::nvvm_sqrt_approx_f);
|
|
else {
|
|
// There's no sqrt.approx.f64 instruction, so we emit
|
|
// reciprocal(rsqrt(x)). This is faster than
|
|
// select(x == 0, 0, x * rsqrt(x)). (In fact, it's faster than plain
|
|
// x * rsqrt(x).)
|
|
return DAG.getNode(
|
|
ISD::INTRINSIC_WO_CHAIN, DL, VT,
|
|
DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32),
|
|
MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
|
|
}
|
|
}
|
|
}
|
|
|
|
SDValue
|
|
NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
const GlobalAddressSDNode *GAN = cast<GlobalAddressSDNode>(Op);
|
|
auto PtrVT = getPointerTy(DAG.getDataLayout(), GAN->getAddressSpace());
|
|
Op = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, PtrVT);
|
|
return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op);
|
|
}
|
|
|
|
static bool IsTypePassedAsArray(const Type *Ty) {
|
|
return Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128) ||
|
|
Ty->isHalfTy() || Ty->isBFloatTy();
|
|
}
|
|
|
|
std::string NVPTXTargetLowering::getPrototype(
|
|
const DataLayout &DL, Type *retTy, const ArgListTy &Args,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs, MaybeAlign retAlignment,
|
|
std::optional<std::pair<unsigned, const APInt &>> VAInfo,
|
|
const CallBase &CB, unsigned UniqueCallSite) const {
|
|
auto PtrVT = getPointerTy(DL);
|
|
|
|
bool isABI = (STI.getSmVersion() >= 20);
|
|
assert(isABI && "Non-ABI compilation is not supported");
|
|
if (!isABI)
|
|
return "";
|
|
|
|
std::string Prototype;
|
|
raw_string_ostream O(Prototype);
|
|
O << "prototype_" << UniqueCallSite << " : .callprototype ";
|
|
|
|
if (retTy->getTypeID() == Type::VoidTyID) {
|
|
O << "()";
|
|
} else {
|
|
O << "(";
|
|
if ((retTy->isFloatingPointTy() || retTy->isIntegerTy()) &&
|
|
!IsTypePassedAsArray(retTy)) {
|
|
unsigned size = 0;
|
|
if (auto *ITy = dyn_cast<IntegerType>(retTy)) {
|
|
size = ITy->getBitWidth();
|
|
} else {
|
|
assert(retTy->isFloatingPointTy() &&
|
|
"Floating point type expected here");
|
|
size = retTy->getPrimitiveSizeInBits();
|
|
}
|
|
// PTX ABI requires all scalar return values to be at least 32
|
|
// bits in size. fp16 normally uses .b16 as its storage type in
|
|
// PTX, so its size must be adjusted here, too.
|
|
size = promoteScalarArgumentSize(size);
|
|
|
|
O << ".param .b" << size << " _";
|
|
} else if (isa<PointerType>(retTy)) {
|
|
O << ".param .b" << PtrVT.getSizeInBits() << " _";
|
|
} else if (IsTypePassedAsArray(retTy)) {
|
|
O << ".param .align " << (retAlignment ? retAlignment->value() : 0)
|
|
<< " .b8 _[" << DL.getTypeAllocSize(retTy) << "]";
|
|
} else {
|
|
llvm_unreachable("Unknown return type");
|
|
}
|
|
O << ") ";
|
|
}
|
|
O << "_ (";
|
|
|
|
bool first = true;
|
|
|
|
unsigned NumArgs = VAInfo ? VAInfo->first : Args.size();
|
|
for (unsigned i = 0, OIdx = 0; i != NumArgs; ++i, ++OIdx) {
|
|
Type *Ty = Args[i].Ty;
|
|
if (!first) {
|
|
O << ", ";
|
|
}
|
|
first = false;
|
|
|
|
if (!Outs[OIdx].Flags.isByVal()) {
|
|
if (IsTypePassedAsArray(Ty)) {
|
|
Align ParamAlign =
|
|
getArgumentAlignment(&CB, Ty, i + AttributeList::FirstArgIndex, DL);
|
|
O << ".param .align " << ParamAlign.value() << " .b8 ";
|
|
O << "_";
|
|
O << "[" << DL.getTypeAllocSize(Ty) << "]";
|
|
// update the index for Outs
|
|
SmallVector<EVT, 16> vtparts;
|
|
ComputeValueVTs(*this, DL, Ty, vtparts);
|
|
if (unsigned len = vtparts.size())
|
|
OIdx += len - 1;
|
|
continue;
|
|
}
|
|
// i8 types in IR will be i16 types in SDAG
|
|
assert((getValueType(DL, Ty) == Outs[OIdx].VT ||
|
|
(getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
|
|
"type mismatch between callee prototype and arguments");
|
|
// scalar type
|
|
unsigned sz = 0;
|
|
if (isa<IntegerType>(Ty)) {
|
|
sz = cast<IntegerType>(Ty)->getBitWidth();
|
|
sz = promoteScalarArgumentSize(sz);
|
|
} else if (isa<PointerType>(Ty)) {
|
|
sz = PtrVT.getSizeInBits();
|
|
} else {
|
|
sz = Ty->getPrimitiveSizeInBits();
|
|
}
|
|
O << ".param .b" << sz << " ";
|
|
O << "_";
|
|
continue;
|
|
}
|
|
|
|
// Indirect calls need strict ABI alignment so we disable optimizations by
|
|
// not providing a function to optimize.
|
|
Type *ETy = Args[i].IndirectType;
|
|
Align InitialAlign = Outs[OIdx].Flags.getNonZeroByValAlign();
|
|
Align ParamByValAlign =
|
|
getFunctionByValParamAlign(/*F=*/nullptr, ETy, InitialAlign, DL);
|
|
|
|
O << ".param .align " << ParamByValAlign.value() << " .b8 ";
|
|
O << "_";
|
|
O << "[" << Outs[OIdx].Flags.getByValSize() << "]";
|
|
}
|
|
|
|
if (VAInfo)
|
|
O << (first ? "" : ",") << " .param .align " << VAInfo->second
|
|
<< " .b8 _[]\n";
|
|
O << ")";
|
|
if (shouldEmitPTXNoReturn(&CB, *nvTM))
|
|
O << " .noreturn";
|
|
O << ";";
|
|
|
|
return Prototype;
|
|
}
|
|
|
|
Align NVPTXTargetLowering::getFunctionArgumentAlignment(
|
|
const Function *F, Type *Ty, unsigned Idx, const DataLayout &DL) const {
|
|
return getAlign(*F, Idx).value_or(getFunctionParamOptimizedAlign(F, Ty, DL));
|
|
}
|
|
|
|
Align NVPTXTargetLowering::getArgumentAlignment(const CallBase *CB, Type *Ty,
|
|
unsigned Idx,
|
|
const DataLayout &DL) const {
|
|
if (!CB) {
|
|
// CallSite is zero, fallback to ABI type alignment
|
|
return DL.getABITypeAlign(Ty);
|
|
}
|
|
|
|
const Function *DirectCallee = CB->getCalledFunction();
|
|
|
|
if (!DirectCallee) {
|
|
// We don't have a direct function symbol, but that may be because of
|
|
// constant cast instructions in the call.
|
|
|
|
// With bitcast'd call targets, the instruction will be the call
|
|
if (const auto *CI = dyn_cast<CallInst>(CB)) {
|
|
// Check if we have call alignment metadata
|
|
if (MaybeAlign StackAlign = getAlign(*CI, Idx))
|
|
return StackAlign.value();
|
|
}
|
|
DirectCallee = getMaybeBitcastedCallee(CB);
|
|
}
|
|
|
|
// Check for function alignment information if we found that the
|
|
// ultimate target is a Function
|
|
if (DirectCallee)
|
|
return getFunctionArgumentAlignment(DirectCallee, Ty, Idx, DL);
|
|
|
|
// Call is indirect, fall back to the ABI type alignment
|
|
return DL.getABITypeAlign(Ty);
|
|
}
|
|
|
|
static bool adjustElementType(EVT &ElementType) {
|
|
switch (ElementType.getSimpleVT().SimpleTy) {
|
|
default:
|
|
return false;
|
|
case MVT::f16:
|
|
case MVT::bf16:
|
|
ElementType = MVT::i16;
|
|
return true;
|
|
case MVT::f32:
|
|
case MVT::v2f16:
|
|
case MVT::v2bf16:
|
|
ElementType = MVT::i32;
|
|
return true;
|
|
case MVT::f64:
|
|
ElementType = MVT::i64;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Use byte-store when the param address of the argument value is unaligned.
|
|
// This may happen when the return value is a field of a packed structure.
|
|
//
|
|
// This is called in LowerCall() when passing the param values.
|
|
static SDValue LowerUnalignedStoreParam(SelectionDAG &DAG, SDValue Chain,
|
|
uint64_t Offset, EVT ElementType,
|
|
SDValue StVal, SDValue &InGlue,
|
|
unsigned ArgID, const SDLoc &dl) {
|
|
// Bit logic only works on integer types
|
|
if (adjustElementType(ElementType))
|
|
StVal = DAG.getNode(ISD::BITCAST, dl, ElementType, StVal);
|
|
|
|
// Store each byte
|
|
SDVTList StoreVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
for (unsigned i = 0, n = ElementType.getSizeInBits() / 8; i < n; i++) {
|
|
// Shift the byte to the last byte position
|
|
SDValue ShiftVal = DAG.getNode(ISD::SRL, dl, ElementType, StVal,
|
|
DAG.getConstant(i * 8, dl, MVT::i32));
|
|
SDValue StoreOperands[] = {Chain, DAG.getConstant(ArgID, dl, MVT::i32),
|
|
DAG.getConstant(Offset + i, dl, MVT::i32),
|
|
ShiftVal, InGlue};
|
|
// Trunc store only the last byte by using
|
|
// st.param.b8
|
|
// The register type can be larger than b8.
|
|
Chain = DAG.getMemIntrinsicNode(
|
|
NVPTXISD::StoreParam, dl, StoreVTs, StoreOperands, MVT::i8,
|
|
MachinePointerInfo(), Align(1), MachineMemOperand::MOStore);
|
|
InGlue = Chain.getValue(1);
|
|
}
|
|
return Chain;
|
|
}
|
|
|
|
// Use byte-load when the param adress of the returned value is unaligned.
|
|
// This may happen when the returned value is a field of a packed structure.
|
|
static SDValue
|
|
LowerUnalignedLoadRetParam(SelectionDAG &DAG, SDValue &Chain, uint64_t Offset,
|
|
EVT ElementType, SDValue &InGlue,
|
|
SmallVectorImpl<SDValue> &TempProxyRegOps,
|
|
const SDLoc &dl) {
|
|
// Bit logic only works on integer types
|
|
EVT MergedType = ElementType;
|
|
adjustElementType(MergedType);
|
|
|
|
// Load each byte and construct the whole value. Initial value to 0
|
|
SDValue RetVal = DAG.getConstant(0, dl, MergedType);
|
|
// LoadParamMemI8 loads into i16 register only
|
|
SDVTList LoadVTs = DAG.getVTList(MVT::i16, MVT::Other, MVT::Glue);
|
|
for (unsigned i = 0, n = ElementType.getSizeInBits() / 8; i < n; i++) {
|
|
SDValue LoadOperands[] = {Chain, DAG.getConstant(1, dl, MVT::i32),
|
|
DAG.getConstant(Offset + i, dl, MVT::i32),
|
|
InGlue};
|
|
// This will be selected to LoadParamMemI8
|
|
SDValue LdVal =
|
|
DAG.getMemIntrinsicNode(NVPTXISD::LoadParam, dl, LoadVTs, LoadOperands,
|
|
MVT::i8, MachinePointerInfo(), Align(1));
|
|
SDValue TmpLdVal = LdVal.getValue(0);
|
|
Chain = LdVal.getValue(1);
|
|
InGlue = LdVal.getValue(2);
|
|
|
|
TmpLdVal = DAG.getNode(NVPTXISD::ProxyReg, dl,
|
|
TmpLdVal.getSimpleValueType(), TmpLdVal);
|
|
TempProxyRegOps.push_back(TmpLdVal);
|
|
|
|
SDValue CMask = DAG.getConstant(255, dl, MergedType);
|
|
SDValue CShift = DAG.getConstant(i * 8, dl, MVT::i32);
|
|
// Need to extend the i16 register to the whole width.
|
|
TmpLdVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MergedType, TmpLdVal);
|
|
// Mask off the high bits. Leave only the lower 8bits.
|
|
// Do this because we are using loadparam.b8.
|
|
TmpLdVal = DAG.getNode(ISD::AND, dl, MergedType, TmpLdVal, CMask);
|
|
// Shift and merge
|
|
TmpLdVal = DAG.getNode(ISD::SHL, dl, MergedType, TmpLdVal, CShift);
|
|
RetVal = DAG.getNode(ISD::OR, dl, MergedType, RetVal, TmpLdVal);
|
|
}
|
|
if (ElementType != MergedType)
|
|
RetVal = DAG.getNode(ISD::BITCAST, dl, ElementType, RetVal);
|
|
|
|
return RetVal;
|
|
}
|
|
|
|
static bool shouldConvertToIndirectCall(const CallBase *CB,
|
|
const GlobalAddressSDNode *Func) {
|
|
if (!Func)
|
|
return false;
|
|
if (auto *CalleeFunc = dyn_cast<Function>(Func->getGlobal()))
|
|
return CB->getFunctionType() != CalleeFunc->getFunctionType();
|
|
return false;
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
|
|
if (CLI.IsVarArg && (STI.getPTXVersion() < 60 || STI.getSmVersion() < 30))
|
|
report_fatal_error(
|
|
"Support for variadic functions (unsized array parameter) introduced "
|
|
"in PTX ISA version 6.0 and requires target sm_30.");
|
|
|
|
SelectionDAG &DAG = CLI.DAG;
|
|
SDLoc dl = CLI.DL;
|
|
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
|
|
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
|
|
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
|
|
SDValue Chain = CLI.Chain;
|
|
SDValue Callee = CLI.Callee;
|
|
bool &isTailCall = CLI.IsTailCall;
|
|
ArgListTy &Args = CLI.getArgs();
|
|
Type *RetTy = CLI.RetTy;
|
|
const CallBase *CB = CLI.CB;
|
|
const DataLayout &DL = DAG.getDataLayout();
|
|
|
|
bool isABI = (STI.getSmVersion() >= 20);
|
|
assert(isABI && "Non-ABI compilation is not supported");
|
|
if (!isABI)
|
|
return Chain;
|
|
|
|
// Variadic arguments.
|
|
//
|
|
// Normally, for each argument, we declare a param scalar or a param
|
|
// byte array in the .param space, and store the argument value to that
|
|
// param scalar or array starting at offset 0.
|
|
//
|
|
// In the case of the first variadic argument, we declare a vararg byte array
|
|
// with size 0. The exact size of this array isn't known at this point, so
|
|
// it'll be patched later. All the variadic arguments will be stored to this
|
|
// array at a certain offset (which gets tracked by 'VAOffset'). The offset is
|
|
// initially set to 0, so it can be used for non-variadic arguments (which use
|
|
// 0 offset) to simplify the code.
|
|
//
|
|
// After all vararg is processed, 'VAOffset' holds the size of the
|
|
// vararg byte array.
|
|
|
|
SDValue VADeclareParam; // vararg byte array
|
|
unsigned FirstVAArg = CLI.NumFixedArgs; // position of the first variadic
|
|
unsigned VAOffset = 0; // current offset in the param array
|
|
|
|
unsigned UniqueCallSite = GlobalUniqueCallSite.fetch_add(1);
|
|
SDValue TempChain = Chain;
|
|
Chain = DAG.getCALLSEQ_START(Chain, UniqueCallSite, 0, dl);
|
|
SDValue InGlue = Chain.getValue(1);
|
|
|
|
unsigned ParamCount = 0;
|
|
// Args.size() and Outs.size() need not match.
|
|
// Outs.size() will be larger
|
|
// * if there is an aggregate argument with multiple fields (each field
|
|
// showing up separately in Outs)
|
|
// * if there is a vector argument with more than typical vector-length
|
|
// elements (generally if more than 4) where each vector element is
|
|
// individually present in Outs.
|
|
// So a different index should be used for indexing into Outs/OutVals.
|
|
// See similar issue in LowerFormalArguments.
|
|
unsigned OIdx = 0;
|
|
// Declare the .params or .reg need to pass values
|
|
// to the function
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
|
|
EVT VT = Outs[OIdx].VT;
|
|
Type *Ty = Args[i].Ty;
|
|
bool IsVAArg = (i >= CLI.NumFixedArgs);
|
|
bool IsByVal = Outs[OIdx].Flags.isByVal();
|
|
|
|
SmallVector<EVT, 16> VTs;
|
|
SmallVector<uint64_t, 16> Offsets;
|
|
|
|
assert((!IsByVal || Args[i].IndirectType) &&
|
|
"byval arg must have indirect type");
|
|
Type *ETy = (IsByVal ? Args[i].IndirectType : Ty);
|
|
ComputePTXValueVTs(*this, DL, ETy, VTs, &Offsets, IsByVal ? 0 : VAOffset);
|
|
|
|
Align ArgAlign;
|
|
if (IsByVal) {
|
|
// The ByValAlign in the Outs[OIdx].Flags is always set at this point,
|
|
// so we don't need to worry whether it's naturally aligned or not.
|
|
// See TargetLowering::LowerCallTo().
|
|
Align InitialAlign = Outs[OIdx].Flags.getNonZeroByValAlign();
|
|
ArgAlign = getFunctionByValParamAlign(CB->getCalledFunction(), ETy,
|
|
InitialAlign, DL);
|
|
if (IsVAArg)
|
|
VAOffset = alignTo(VAOffset, ArgAlign);
|
|
} else {
|
|
ArgAlign = getArgumentAlignment(CB, Ty, ParamCount + 1, DL);
|
|
}
|
|
|
|
unsigned TypeSize =
|
|
(IsByVal ? Outs[OIdx].Flags.getByValSize() : DL.getTypeAllocSize(Ty));
|
|
SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
|
|
bool NeedAlign; // Does argument declaration specify alignment?
|
|
bool PassAsArray = IsByVal || IsTypePassedAsArray(Ty);
|
|
if (IsVAArg) {
|
|
if (ParamCount == FirstVAArg) {
|
|
SDValue DeclareParamOps[] = {
|
|
Chain, DAG.getConstant(STI.getMaxRequiredAlignment(), dl, MVT::i32),
|
|
DAG.getConstant(ParamCount, dl, MVT::i32),
|
|
DAG.getConstant(1, dl, MVT::i32), InGlue};
|
|
VADeclareParam = Chain = DAG.getNode(NVPTXISD::DeclareParam, dl,
|
|
DeclareParamVTs, DeclareParamOps);
|
|
}
|
|
NeedAlign = PassAsArray;
|
|
} else if (PassAsArray) {
|
|
// declare .param .align <align> .b8 .param<n>[<size>];
|
|
SDValue DeclareParamOps[] = {
|
|
Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32),
|
|
DAG.getConstant(ParamCount, dl, MVT::i32),
|
|
DAG.getConstant(TypeSize, dl, MVT::i32), InGlue};
|
|
Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
|
|
DeclareParamOps);
|
|
NeedAlign = true;
|
|
} else {
|
|
// declare .param .b<size> .param<n>;
|
|
if (VT.isInteger() || VT.isFloatingPoint()) {
|
|
// PTX ABI requires integral types to be at least 32 bits in
|
|
// size. FP16 is loaded/stored using i16, so it's handled
|
|
// here as well.
|
|
TypeSize = promoteScalarArgumentSize(TypeSize * 8) / 8;
|
|
}
|
|
SDValue DeclareScalarParamOps[] = {
|
|
Chain, DAG.getConstant(ParamCount, dl, MVT::i32),
|
|
DAG.getConstant(TypeSize * 8, dl, MVT::i32),
|
|
DAG.getConstant(0, dl, MVT::i32), InGlue};
|
|
Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
|
|
DeclareScalarParamOps);
|
|
NeedAlign = false;
|
|
}
|
|
InGlue = Chain.getValue(1);
|
|
|
|
// PTX Interoperability Guide 3.3(A): [Integer] Values shorter
|
|
// than 32-bits are sign extended or zero extended, depending on
|
|
// whether they are signed or unsigned types. This case applies
|
|
// only to scalar parameters and not to aggregate values.
|
|
bool ExtendIntegerParam =
|
|
Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty) < 32;
|
|
|
|
auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign, IsVAArg);
|
|
SmallVector<SDValue, 6> StoreOperands;
|
|
for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
|
|
EVT EltVT = VTs[j];
|
|
int CurOffset = Offsets[j];
|
|
MaybeAlign PartAlign;
|
|
if (NeedAlign)
|
|
PartAlign = commonAlignment(ArgAlign, CurOffset);
|
|
|
|
SDValue StVal = OutVals[OIdx];
|
|
|
|
MVT PromotedVT;
|
|
if (PromoteScalarIntegerPTX(EltVT, &PromotedVT)) {
|
|
EltVT = EVT(PromotedVT);
|
|
}
|
|
if (PromoteScalarIntegerPTX(StVal.getValueType(), &PromotedVT)) {
|
|
llvm::ISD::NodeType Ext =
|
|
Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
StVal = DAG.getNode(Ext, dl, PromotedVT, StVal);
|
|
}
|
|
|
|
if (IsByVal) {
|
|
auto PtrVT = getPointerTy(DL);
|
|
SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StVal,
|
|
DAG.getConstant(CurOffset, dl, PtrVT));
|
|
StVal = DAG.getLoad(EltVT, dl, TempChain, srcAddr, MachinePointerInfo(),
|
|
PartAlign);
|
|
} else if (ExtendIntegerParam) {
|
|
assert(VTs.size() == 1 && "Scalar can't have multiple parts.");
|
|
// zext/sext to i32
|
|
StVal = DAG.getNode(Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
|
|
: ISD::ZERO_EXTEND,
|
|
dl, MVT::i32, StVal);
|
|
}
|
|
|
|
if (!ExtendIntegerParam && EltVT.getSizeInBits() < 16) {
|
|
// Use 16-bit registers for small stores as it's the
|
|
// smallest general purpose register size supported by NVPTX.
|
|
StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
|
|
}
|
|
|
|
// If we have a PVF_SCALAR entry, it may not be sufficiently aligned for a
|
|
// scalar store. In such cases, fall back to byte stores.
|
|
if (VectorInfo[j] == PVF_SCALAR && !IsVAArg && PartAlign.has_value() &&
|
|
PartAlign.value() <
|
|
DL.getABITypeAlign(EltVT.getTypeForEVT(*DAG.getContext()))) {
|
|
assert(StoreOperands.empty() && "Unfinished preceeding store.");
|
|
Chain = LowerUnalignedStoreParam(
|
|
DAG, Chain, IsByVal ? CurOffset + VAOffset : CurOffset, EltVT,
|
|
StVal, InGlue, ParamCount, dl);
|
|
|
|
// LowerUnalignedStoreParam took care of inserting the necessary nodes
|
|
// into the SDAG, so just move on to the next element.
|
|
if (!IsByVal)
|
|
++OIdx;
|
|
continue;
|
|
}
|
|
|
|
// New store.
|
|
if (VectorInfo[j] & PVF_FIRST) {
|
|
assert(StoreOperands.empty() && "Unfinished preceding store.");
|
|
StoreOperands.push_back(Chain);
|
|
StoreOperands.push_back(
|
|
DAG.getConstant(IsVAArg ? FirstVAArg : ParamCount, dl, MVT::i32));
|
|
|
|
StoreOperands.push_back(DAG.getConstant(
|
|
IsByVal ? CurOffset + VAOffset : (IsVAArg ? VAOffset : CurOffset),
|
|
dl, MVT::i32));
|
|
}
|
|
|
|
// Record the value to store.
|
|
StoreOperands.push_back(StVal);
|
|
|
|
if (VectorInfo[j] & PVF_LAST) {
|
|
unsigned NumElts = StoreOperands.size() - 3;
|
|
NVPTXISD::NodeType Op;
|
|
switch (NumElts) {
|
|
case 1:
|
|
Op = NVPTXISD::StoreParam;
|
|
break;
|
|
case 2:
|
|
Op = NVPTXISD::StoreParamV2;
|
|
break;
|
|
case 4:
|
|
Op = NVPTXISD::StoreParamV4;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Invalid vector info.");
|
|
}
|
|
|
|
StoreOperands.push_back(InGlue);
|
|
|
|
// Adjust type of the store op if we've extended the scalar
|
|
// return value.
|
|
EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : EltVT;
|
|
|
|
Chain = DAG.getMemIntrinsicNode(
|
|
Op, dl, DAG.getVTList(MVT::Other, MVT::Glue), StoreOperands,
|
|
TheStoreType, MachinePointerInfo(), PartAlign,
|
|
MachineMemOperand::MOStore);
|
|
InGlue = Chain.getValue(1);
|
|
|
|
// Cleanup.
|
|
StoreOperands.clear();
|
|
|
|
// TODO: We may need to support vector types that can be passed
|
|
// as scalars in variadic arguments.
|
|
if (!IsByVal && IsVAArg) {
|
|
assert(NumElts == 1 &&
|
|
"Vectorization is expected to be disabled for variadics.");
|
|
VAOffset += DL.getTypeAllocSize(
|
|
TheStoreType.getTypeForEVT(*DAG.getContext()));
|
|
}
|
|
}
|
|
if (!IsByVal)
|
|
++OIdx;
|
|
}
|
|
assert(StoreOperands.empty() && "Unfinished parameter store.");
|
|
if (!IsByVal && VTs.size() > 0)
|
|
--OIdx;
|
|
++ParamCount;
|
|
if (IsByVal && IsVAArg)
|
|
VAOffset += TypeSize;
|
|
}
|
|
|
|
GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
|
|
MaybeAlign retAlignment = std::nullopt;
|
|
|
|
// Handle Result
|
|
if (Ins.size() > 0) {
|
|
SmallVector<EVT, 16> resvtparts;
|
|
ComputeValueVTs(*this, DL, RetTy, resvtparts);
|
|
|
|
// Declare
|
|
// .param .align N .b8 retval0[<size-in-bytes>], or
|
|
// .param .b<size-in-bits> retval0
|
|
unsigned resultsz = DL.getTypeAllocSizeInBits(RetTy);
|
|
if (!IsTypePassedAsArray(RetTy)) {
|
|
resultsz = promoteScalarArgumentSize(resultsz);
|
|
SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
|
|
DAG.getConstant(resultsz, dl, MVT::i32),
|
|
DAG.getConstant(0, dl, MVT::i32), InGlue };
|
|
Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
|
|
DeclareRetOps);
|
|
InGlue = Chain.getValue(1);
|
|
} else {
|
|
retAlignment = getArgumentAlignment(CB, RetTy, 0, DL);
|
|
assert(retAlignment && "retAlignment is guaranteed to be set");
|
|
SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue DeclareRetOps[] = {
|
|
Chain, DAG.getConstant(retAlignment->value(), dl, MVT::i32),
|
|
DAG.getConstant(resultsz / 8, dl, MVT::i32),
|
|
DAG.getConstant(0, dl, MVT::i32), InGlue};
|
|
Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
|
|
DeclareRetOps);
|
|
InGlue = Chain.getValue(1);
|
|
}
|
|
}
|
|
|
|
bool HasVAArgs = CLI.IsVarArg && (CLI.Args.size() > CLI.NumFixedArgs);
|
|
// Set the size of the vararg param byte array if the callee is a variadic
|
|
// function and the variadic part is not empty.
|
|
if (HasVAArgs) {
|
|
SDValue DeclareParamOps[] = {
|
|
VADeclareParam.getOperand(0), VADeclareParam.getOperand(1),
|
|
VADeclareParam.getOperand(2), DAG.getConstant(VAOffset, dl, MVT::i32),
|
|
VADeclareParam.getOperand(4)};
|
|
DAG.MorphNodeTo(VADeclareParam.getNode(), VADeclareParam.getOpcode(),
|
|
VADeclareParam->getVTList(), DeclareParamOps);
|
|
}
|
|
|
|
// If the type of the callsite does not match that of the function, convert
|
|
// the callsite to an indirect call.
|
|
bool ConvertToIndirectCall = shouldConvertToIndirectCall(CB, Func);
|
|
|
|
// Both indirect calls and libcalls have nullptr Func. In order to distinguish
|
|
// between them we must rely on the call site value which is valid for
|
|
// indirect calls but is always null for libcalls.
|
|
bool isIndirectCall = (!Func && CB) || ConvertToIndirectCall;
|
|
|
|
if (isa<ExternalSymbolSDNode>(Callee)) {
|
|
Function* CalleeFunc = nullptr;
|
|
|
|
// Try to find the callee in the current module.
|
|
Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc);
|
|
assert(CalleeFunc != nullptr && "Libcall callee must be set.");
|
|
|
|
// Set the "libcall callee" attribute to indicate that the function
|
|
// must always have a declaration.
|
|
CalleeFunc->addFnAttr("nvptx-libcall-callee", "true");
|
|
}
|
|
|
|
if (isIndirectCall) {
|
|
// This is indirect function call case : PTX requires a prototype of the
|
|
// form
|
|
// proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
|
|
// to be emitted, and the label has to used as the last arg of call
|
|
// instruction.
|
|
// The prototype is embedded in a string and put as the operand for a
|
|
// CallPrototype SDNode which will print out to the value of the string.
|
|
SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
std::string Proto = getPrototype(
|
|
DL, RetTy, Args, Outs, retAlignment,
|
|
HasVAArgs
|
|
? std::optional<std::pair<unsigned, const APInt &>>(std::make_pair(
|
|
CLI.NumFixedArgs, VADeclareParam->getConstantOperandAPInt(1)))
|
|
: std::nullopt,
|
|
*CB, UniqueCallSite);
|
|
const char *ProtoStr = nvTM->getStrPool().save(Proto).data();
|
|
SDValue ProtoOps[] = {
|
|
Chain,
|
|
DAG.getTargetExternalSymbol(ProtoStr, MVT::i32),
|
|
InGlue,
|
|
};
|
|
Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps);
|
|
InGlue = Chain.getValue(1);
|
|
}
|
|
// Op to just print "call"
|
|
SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue PrintCallOps[] = {
|
|
Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InGlue
|
|
};
|
|
// We model convergent calls as separate opcodes.
|
|
unsigned Opcode = isIndirectCall ? NVPTXISD::PrintCall : NVPTXISD::PrintCallUni;
|
|
if (CLI.IsConvergent)
|
|
Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni
|
|
: NVPTXISD::PrintConvergentCall;
|
|
Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps);
|
|
InGlue = Chain.getValue(1);
|
|
|
|
if (ConvertToIndirectCall) {
|
|
// Copy the function ptr to a ptx register and use the register to call the
|
|
// function.
|
|
EVT DestVT = Callee.getValueType();
|
|
MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
unsigned DestReg =
|
|
RegInfo.createVirtualRegister(TLI.getRegClassFor(DestVT.getSimpleVT()));
|
|
auto RegCopy = DAG.getCopyToReg(DAG.getEntryNode(), dl, DestReg, Callee);
|
|
Callee = DAG.getCopyFromReg(RegCopy, dl, DestReg, DestVT);
|
|
}
|
|
|
|
// Ops to print out the function name
|
|
SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue CallVoidOps[] = { Chain, Callee, InGlue };
|
|
Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps);
|
|
InGlue = Chain.getValue(1);
|
|
|
|
// Ops to print out the param list
|
|
SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue CallArgBeginOps[] = { Chain, InGlue };
|
|
Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
|
|
CallArgBeginOps);
|
|
InGlue = Chain.getValue(1);
|
|
|
|
for (unsigned i = 0, e = std::min(CLI.NumFixedArgs + 1, ParamCount); i != e;
|
|
++i) {
|
|
unsigned opcode;
|
|
if (i == (e - 1))
|
|
opcode = NVPTXISD::LastCallArg;
|
|
else
|
|
opcode = NVPTXISD::CallArg;
|
|
SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
|
|
DAG.getConstant(i, dl, MVT::i32), InGlue };
|
|
Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps);
|
|
InGlue = Chain.getValue(1);
|
|
}
|
|
SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue CallArgEndOps[] = { Chain,
|
|
DAG.getConstant(isIndirectCall ? 0 : 1, dl, MVT::i32),
|
|
InGlue };
|
|
Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps);
|
|
InGlue = Chain.getValue(1);
|
|
|
|
if (isIndirectCall) {
|
|
SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue PrototypeOps[] = {
|
|
Chain, DAG.getConstant(UniqueCallSite, dl, MVT::i32), InGlue};
|
|
Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps);
|
|
InGlue = Chain.getValue(1);
|
|
}
|
|
|
|
SmallVector<SDValue, 16> ProxyRegOps;
|
|
SmallVector<std::optional<MVT>, 16> ProxyRegTruncates;
|
|
// An item of the vector is filled if the element does not need a ProxyReg
|
|
// operation on it and should be added to InVals as is. ProxyRegOps and
|
|
// ProxyRegTruncates contain empty/none items at the same index.
|
|
SmallVector<SDValue, 16> RetElts;
|
|
// A temporary ProxyReg operations inserted in `LowerUnalignedLoadRetParam()`
|
|
// to use the values of `LoadParam`s and to be replaced later then
|
|
// `CALLSEQ_END` is added.
|
|
SmallVector<SDValue, 16> TempProxyRegOps;
|
|
|
|
// Generate loads from param memory/moves from registers for result
|
|
if (Ins.size() > 0) {
|
|
SmallVector<EVT, 16> VTs;
|
|
SmallVector<uint64_t, 16> Offsets;
|
|
ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets, 0);
|
|
assert(VTs.size() == Ins.size() && "Bad value decomposition");
|
|
|
|
Align RetAlign = getArgumentAlignment(CB, RetTy, 0, DL);
|
|
auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
|
|
|
|
SmallVector<EVT, 6> LoadVTs;
|
|
int VecIdx = -1; // Index of the first element of the vector.
|
|
|
|
// PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
|
|
// 32-bits are sign extended or zero extended, depending on whether
|
|
// they are signed or unsigned types.
|
|
bool ExtendIntegerRetVal =
|
|
RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
|
|
|
|
for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
|
|
bool needTruncate = false;
|
|
EVT TheLoadType = VTs[i];
|
|
EVT EltType = Ins[i].VT;
|
|
Align EltAlign = commonAlignment(RetAlign, Offsets[i]);
|
|
MVT PromotedVT;
|
|
|
|
if (PromoteScalarIntegerPTX(TheLoadType, &PromotedVT)) {
|
|
TheLoadType = EVT(PromotedVT);
|
|
EltType = EVT(PromotedVT);
|
|
needTruncate = true;
|
|
}
|
|
|
|
if (ExtendIntegerRetVal) {
|
|
TheLoadType = MVT::i32;
|
|
EltType = MVT::i32;
|
|
needTruncate = true;
|
|
} else if (TheLoadType.getSizeInBits() < 16) {
|
|
if (VTs[i].isInteger())
|
|
needTruncate = true;
|
|
EltType = MVT::i16;
|
|
}
|
|
|
|
// If we have a PVF_SCALAR entry, it may not be sufficiently aligned for a
|
|
// scalar load. In such cases, fall back to byte loads.
|
|
if (VectorInfo[i] == PVF_SCALAR && RetTy->isAggregateType() &&
|
|
EltAlign < DL.getABITypeAlign(
|
|
TheLoadType.getTypeForEVT(*DAG.getContext()))) {
|
|
assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list.");
|
|
SDValue Ret = LowerUnalignedLoadRetParam(
|
|
DAG, Chain, Offsets[i], TheLoadType, InGlue, TempProxyRegOps, dl);
|
|
ProxyRegOps.push_back(SDValue());
|
|
ProxyRegTruncates.push_back(std::optional<MVT>());
|
|
RetElts.resize(i);
|
|
RetElts.push_back(Ret);
|
|
|
|
continue;
|
|
}
|
|
|
|
// Record index of the very first element of the vector.
|
|
if (VectorInfo[i] & PVF_FIRST) {
|
|
assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list.");
|
|
VecIdx = i;
|
|
}
|
|
|
|
LoadVTs.push_back(EltType);
|
|
|
|
if (VectorInfo[i] & PVF_LAST) {
|
|
unsigned NumElts = LoadVTs.size();
|
|
LoadVTs.push_back(MVT::Other);
|
|
LoadVTs.push_back(MVT::Glue);
|
|
NVPTXISD::NodeType Op;
|
|
switch (NumElts) {
|
|
case 1:
|
|
Op = NVPTXISD::LoadParam;
|
|
break;
|
|
case 2:
|
|
Op = NVPTXISD::LoadParamV2;
|
|
break;
|
|
case 4:
|
|
Op = NVPTXISD::LoadParamV4;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Invalid vector info.");
|
|
}
|
|
|
|
SDValue LoadOperands[] = {
|
|
Chain, DAG.getConstant(1, dl, MVT::i32),
|
|
DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InGlue};
|
|
SDValue RetVal = DAG.getMemIntrinsicNode(
|
|
Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType,
|
|
MachinePointerInfo(), EltAlign,
|
|
MachineMemOperand::MOLoad);
|
|
|
|
for (unsigned j = 0; j < NumElts; ++j) {
|
|
ProxyRegOps.push_back(RetVal.getValue(j));
|
|
|
|
if (needTruncate)
|
|
ProxyRegTruncates.push_back(std::optional<MVT>(Ins[VecIdx + j].VT));
|
|
else
|
|
ProxyRegTruncates.push_back(std::optional<MVT>());
|
|
}
|
|
|
|
Chain = RetVal.getValue(NumElts);
|
|
InGlue = RetVal.getValue(NumElts + 1);
|
|
|
|
// Cleanup
|
|
VecIdx = -1;
|
|
LoadVTs.clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
Chain =
|
|
DAG.getCALLSEQ_END(Chain, UniqueCallSite, UniqueCallSite + 1, InGlue, dl);
|
|
InGlue = Chain.getValue(1);
|
|
|
|
// Append ProxyReg instructions to the chain to make sure that `callseq_end`
|
|
// will not get lost. Otherwise, during libcalls expansion, the nodes can become
|
|
// dangling.
|
|
for (unsigned i = 0; i < ProxyRegOps.size(); ++i) {
|
|
if (i < RetElts.size() && RetElts[i]) {
|
|
InVals.push_back(RetElts[i]);
|
|
continue;
|
|
}
|
|
|
|
SDValue Ret = DAG.getNode(
|
|
NVPTXISD::ProxyReg, dl,
|
|
DAG.getVTList(ProxyRegOps[i].getSimpleValueType(), MVT::Other, MVT::Glue),
|
|
{ Chain, ProxyRegOps[i], InGlue }
|
|
);
|
|
|
|
Chain = Ret.getValue(1);
|
|
InGlue = Ret.getValue(2);
|
|
|
|
if (ProxyRegTruncates[i]) {
|
|
Ret = DAG.getNode(ISD::TRUNCATE, dl, *ProxyRegTruncates[i], Ret);
|
|
}
|
|
|
|
InVals.push_back(Ret);
|
|
}
|
|
|
|
for (SDValue &T : TempProxyRegOps) {
|
|
SDValue Repl = DAG.getNode(
|
|
NVPTXISD::ProxyReg, dl,
|
|
DAG.getVTList(T.getSimpleValueType(), MVT::Other, MVT::Glue),
|
|
{Chain, T.getOperand(0), InGlue});
|
|
DAG.ReplaceAllUsesWith(T, Repl);
|
|
DAG.RemoveDeadNode(T.getNode());
|
|
|
|
Chain = Repl.getValue(1);
|
|
InGlue = Repl.getValue(2);
|
|
}
|
|
|
|
// set isTailCall to false for now, until we figure out how to express
|
|
// tail call optimization in PTX
|
|
isTailCall = false;
|
|
return Chain;
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
|
|
if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) {
|
|
const Function &Fn = DAG.getMachineFunction().getFunction();
|
|
|
|
DiagnosticInfoUnsupported NoDynamicAlloca(
|
|
Fn,
|
|
"Support for dynamic alloca introduced in PTX ISA version 7.3 and "
|
|
"requires target sm_52.",
|
|
SDLoc(Op).getDebugLoc());
|
|
DAG.getContext()->diagnose(NoDynamicAlloca);
|
|
auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()),
|
|
Op.getOperand(0)};
|
|
return DAG.getMergeValues(Ops, SDLoc());
|
|
}
|
|
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Size = Op.getOperand(1);
|
|
uint64_t Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
|
|
SDLoc DL(Op.getNode());
|
|
|
|
// The size for ptx alloca instruction is 64-bit for m64 and 32-bit for m32.
|
|
MVT ValueSizeTy = nvTM->is64Bit() ? MVT::i64 : MVT::i32;
|
|
|
|
SDValue AllocOps[] = {Chain, DAG.getZExtOrTrunc(Size, DL, ValueSizeTy),
|
|
DAG.getTargetConstant(Align, DL, MVT::i32)};
|
|
EVT RetTypes[] = {ValueSizeTy, MVT::Other};
|
|
return DAG.getNode(NVPTXISD::DYNAMIC_STACKALLOC, DL, RetTypes, AllocOps);
|
|
}
|
|
|
|
// By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
|
|
// (see LegalizeDAG.cpp). This is slow and uses local memory.
|
|
// We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
|
|
SDValue
|
|
NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
|
|
SDNode *Node = Op.getNode();
|
|
SDLoc dl(Node);
|
|
SmallVector<SDValue, 8> Ops;
|
|
unsigned NumOperands = Node->getNumOperands();
|
|
for (unsigned i = 0; i < NumOperands; ++i) {
|
|
SDValue SubOp = Node->getOperand(i);
|
|
EVT VVT = SubOp.getNode()->getValueType(0);
|
|
EVT EltVT = VVT.getVectorElementType();
|
|
unsigned NumSubElem = VVT.getVectorNumElements();
|
|
for (unsigned j = 0; j < NumSubElem; ++j) {
|
|
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
|
|
DAG.getIntPtrConstant(j, dl)));
|
|
}
|
|
}
|
|
return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
|
|
}
|
|
|
|
// We can init constant f16x2/v2i16/v4i8 with a single .b32 move. Normally it
|
|
// would get lowered as two constant loads and vector-packing move.
|
|
// Instead we want just a constant move:
|
|
// mov.b32 %r2, 0x40003C00
|
|
SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT = Op->getValueType(0);
|
|
if (!(Isv2x16VT(VT) || VT == MVT::v4i8))
|
|
return Op;
|
|
|
|
SDLoc DL(Op);
|
|
|
|
if (!llvm::all_of(Op->ops(), [](SDValue Operand) {
|
|
return Operand->isUndef() || isa<ConstantSDNode>(Operand) ||
|
|
isa<ConstantFPSDNode>(Operand);
|
|
})) {
|
|
// Lower non-const v4i8 vector as byte-wise constructed i32, which allows us
|
|
// to optimize calculation of constant parts.
|
|
if (VT == MVT::v4i8) {
|
|
SDValue C8 = DAG.getConstant(8, DL, MVT::i32);
|
|
SDValue E01 = DAG.getNode(
|
|
NVPTXISD::BFI, DL, MVT::i32,
|
|
DAG.getAnyExtOrTrunc(Op->getOperand(1), DL, MVT::i32),
|
|
DAG.getAnyExtOrTrunc(Op->getOperand(0), DL, MVT::i32), C8, C8);
|
|
SDValue E012 =
|
|
DAG.getNode(NVPTXISD::BFI, DL, MVT::i32,
|
|
DAG.getAnyExtOrTrunc(Op->getOperand(2), DL, MVT::i32),
|
|
E01, DAG.getConstant(16, DL, MVT::i32), C8);
|
|
SDValue E0123 =
|
|
DAG.getNode(NVPTXISD::BFI, DL, MVT::i32,
|
|
DAG.getAnyExtOrTrunc(Op->getOperand(3), DL, MVT::i32),
|
|
E012, DAG.getConstant(24, DL, MVT::i32), C8);
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, E0123);
|
|
}
|
|
return Op;
|
|
}
|
|
|
|
// Get value or the Nth operand as an APInt(32). Undef values treated as 0.
|
|
auto GetOperand = [](SDValue Op, int N) -> APInt {
|
|
const SDValue &Operand = Op->getOperand(N);
|
|
EVT VT = Op->getValueType(0);
|
|
if (Operand->isUndef())
|
|
return APInt(32, 0);
|
|
APInt Value;
|
|
if (VT == MVT::v2f16 || VT == MVT::v2bf16)
|
|
Value = cast<ConstantFPSDNode>(Operand)->getValueAPF().bitcastToAPInt();
|
|
else if (VT == MVT::v2i16 || VT == MVT::v4i8)
|
|
Value = Operand->getAsAPIntVal();
|
|
else
|
|
llvm_unreachable("Unsupported type");
|
|
// i8 values are carried around as i16, so we need to zero out upper bits,
|
|
// so they do not get in the way of combining individual byte values
|
|
if (VT == MVT::v4i8)
|
|
Value = Value.trunc(8);
|
|
return Value.zext(32);
|
|
};
|
|
APInt Value;
|
|
if (Isv2x16VT(VT)) {
|
|
Value = GetOperand(Op, 0) | GetOperand(Op, 1).shl(16);
|
|
} else if (VT == MVT::v4i8) {
|
|
Value = GetOperand(Op, 0) | GetOperand(Op, 1).shl(8) |
|
|
GetOperand(Op, 2).shl(16) | GetOperand(Op, 3).shl(24);
|
|
} else {
|
|
llvm_unreachable("Unsupported type");
|
|
}
|
|
SDValue Const = DAG.getConstant(Value, SDLoc(Op), MVT::i32);
|
|
return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op->getValueType(0), Const);
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Index = Op->getOperand(1);
|
|
SDValue Vector = Op->getOperand(0);
|
|
SDLoc DL(Op);
|
|
EVT VectorVT = Vector.getValueType();
|
|
|
|
if (VectorVT == MVT::v4i8) {
|
|
SDValue BFE =
|
|
DAG.getNode(NVPTXISD::BFE, DL, MVT::i32,
|
|
{Vector,
|
|
DAG.getNode(ISD::MUL, DL, MVT::i32,
|
|
DAG.getZExtOrTrunc(Index, DL, MVT::i32),
|
|
DAG.getConstant(8, DL, MVT::i32)),
|
|
DAG.getConstant(8, DL, MVT::i32)});
|
|
return DAG.getAnyExtOrTrunc(BFE, DL, Op->getValueType(0));
|
|
}
|
|
|
|
// Constant index will be matched by tablegen.
|
|
if (isa<ConstantSDNode>(Index.getNode()))
|
|
return Op;
|
|
|
|
// Extract individual elements and select one of them.
|
|
assert(Isv2x16VT(VectorVT) && "Unexpected vector type.");
|
|
EVT EltVT = VectorVT.getVectorElementType();
|
|
|
|
SDLoc dl(Op.getNode());
|
|
SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
|
|
DAG.getIntPtrConstant(0, dl));
|
|
SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
|
|
DAG.getIntPtrConstant(1, dl));
|
|
return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1,
|
|
ISD::CondCode::SETEQ);
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Vector = Op->getOperand(0);
|
|
EVT VectorVT = Vector.getValueType();
|
|
|
|
if (VectorVT != MVT::v4i8)
|
|
return Op;
|
|
SDLoc DL(Op);
|
|
SDValue Value = Op->getOperand(1);
|
|
if (Value->isUndef())
|
|
return Vector;
|
|
|
|
SDValue Index = Op->getOperand(2);
|
|
|
|
SDValue BFI =
|
|
DAG.getNode(NVPTXISD::BFI, DL, MVT::i32,
|
|
{DAG.getZExtOrTrunc(Value, DL, MVT::i32), Vector,
|
|
DAG.getNode(ISD::MUL, DL, MVT::i32,
|
|
DAG.getZExtOrTrunc(Index, DL, MVT::i32),
|
|
DAG.getConstant(8, DL, MVT::i32)),
|
|
DAG.getConstant(8, DL, MVT::i32)});
|
|
return DAG.getNode(ISD::BITCAST, DL, Op->getValueType(0), BFI);
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue V1 = Op.getOperand(0);
|
|
EVT VectorVT = V1.getValueType();
|
|
if (VectorVT != MVT::v4i8 || Op.getValueType() != MVT::v4i8)
|
|
return Op;
|
|
|
|
// Lower shuffle to PRMT instruction.
|
|
const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
|
|
SDValue V2 = Op.getOperand(1);
|
|
uint32_t Selector = 0;
|
|
for (auto I : llvm::enumerate(SVN->getMask())) {
|
|
if (I.value() != -1) // -1 is a placeholder for undef.
|
|
Selector |= (I.value() << (I.index() * 4));
|
|
}
|
|
|
|
SDLoc DL(Op);
|
|
return DAG.getNode(NVPTXISD::PRMT, DL, MVT::v4i8, V1, V2,
|
|
DAG.getConstant(Selector, DL, MVT::i32),
|
|
DAG.getConstant(NVPTX::PTXPrmtMode::NONE, DL, MVT::i32));
|
|
}
|
|
/// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
|
|
/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
|
|
/// amount, or
|
|
/// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
|
|
/// amount.
|
|
SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
|
|
assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
|
|
|
|
EVT VT = Op.getValueType();
|
|
unsigned VTBits = VT.getSizeInBits();
|
|
SDLoc dl(Op);
|
|
SDValue ShOpLo = Op.getOperand(0);
|
|
SDValue ShOpHi = Op.getOperand(1);
|
|
SDValue ShAmt = Op.getOperand(2);
|
|
unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
|
|
|
|
if (VTBits == 32 && STI.getSmVersion() >= 35) {
|
|
// For 32bit and sm35, we can use the funnel shift 'shf' instruction.
|
|
// {dHi, dLo} = {aHi, aLo} >> Amt
|
|
// dHi = aHi >> Amt
|
|
// dLo = shf.r.clamp aLo, aHi, Amt
|
|
|
|
SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
|
|
SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi,
|
|
ShAmt);
|
|
|
|
SDValue Ops[2] = { Lo, Hi };
|
|
return DAG.getMergeValues(Ops, dl);
|
|
}
|
|
else {
|
|
// {dHi, dLo} = {aHi, aLo} >> Amt
|
|
// - if (Amt>=size) then
|
|
// dLo = aHi >> (Amt-size)
|
|
// dHi = aHi >> Amt (this is either all 0 or all 1)
|
|
// else
|
|
// dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
|
|
// dHi = aHi >> Amt
|
|
|
|
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
|
|
DAG.getConstant(VTBits, dl, MVT::i32),
|
|
ShAmt);
|
|
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
|
|
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
|
|
DAG.getConstant(VTBits, dl, MVT::i32));
|
|
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
|
|
SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
|
|
SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
|
|
|
|
SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
|
|
DAG.getConstant(VTBits, dl, MVT::i32),
|
|
ISD::SETGE);
|
|
SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
|
|
SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
|
|
|
|
SDValue Ops[2] = { Lo, Hi };
|
|
return DAG.getMergeValues(Ops, dl);
|
|
}
|
|
}
|
|
|
|
/// LowerShiftLeftParts - Lower SHL_PARTS, which
|
|
/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
|
|
/// amount, or
|
|
/// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
|
|
/// amount.
|
|
SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
|
|
assert(Op.getOpcode() == ISD::SHL_PARTS);
|
|
|
|
EVT VT = Op.getValueType();
|
|
unsigned VTBits = VT.getSizeInBits();
|
|
SDLoc dl(Op);
|
|
SDValue ShOpLo = Op.getOperand(0);
|
|
SDValue ShOpHi = Op.getOperand(1);
|
|
SDValue ShAmt = Op.getOperand(2);
|
|
|
|
if (VTBits == 32 && STI.getSmVersion() >= 35) {
|
|
// For 32bit and sm35, we can use the funnel shift 'shf' instruction.
|
|
// {dHi, dLo} = {aHi, aLo} << Amt
|
|
// dHi = shf.l.clamp aLo, aHi, Amt
|
|
// dLo = aLo << Amt
|
|
|
|
SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi,
|
|
ShAmt);
|
|
SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
|
|
|
|
SDValue Ops[2] = { Lo, Hi };
|
|
return DAG.getMergeValues(Ops, dl);
|
|
}
|
|
else {
|
|
// {dHi, dLo} = {aHi, aLo} << Amt
|
|
// - if (Amt>=size) then
|
|
// dLo = aLo << Amt (all 0)
|
|
// dLo = aLo << (Amt-size)
|
|
// else
|
|
// dLo = aLo << Amt
|
|
// dHi = (aHi << Amt) | (aLo >> (size-Amt))
|
|
|
|
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
|
|
DAG.getConstant(VTBits, dl, MVT::i32),
|
|
ShAmt);
|
|
SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
|
|
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
|
|
DAG.getConstant(VTBits, dl, MVT::i32));
|
|
SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
|
|
SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
|
|
SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
|
|
|
|
SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
|
|
DAG.getConstant(VTBits, dl, MVT::i32),
|
|
ISD::SETGE);
|
|
SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
|
|
SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
|
|
|
|
SDValue Ops[2] = { Lo, Hi };
|
|
return DAG.getMergeValues(Ops, dl);
|
|
}
|
|
}
|
|
|
|
/// If the types match, convert the generic copysign to the NVPTXISD version,
|
|
/// otherwise bail ensuring that mismatched cases are properly expaned.
|
|
SDValue NVPTXTargetLowering::LowerFCOPYSIGN(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
|
|
SDValue In1 = Op.getOperand(0);
|
|
SDValue In2 = Op.getOperand(1);
|
|
EVT SrcVT = In2.getValueType();
|
|
|
|
if (!SrcVT.bitsEq(VT))
|
|
return SDValue();
|
|
|
|
return DAG.getNode(NVPTXISD::FCOPYSIGN, DL, VT, In1, In2);
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
|
|
if (VT == MVT::f32)
|
|
return LowerFROUND32(Op, DAG);
|
|
|
|
if (VT == MVT::f64)
|
|
return LowerFROUND64(Op, DAG);
|
|
|
|
llvm_unreachable("unhandled type");
|
|
}
|
|
|
|
// This is the the rounding method used in CUDA libdevice in C like code:
|
|
// float roundf(float A)
|
|
// {
|
|
// float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f));
|
|
// RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
|
|
// return abs(A) < 0.5 ? (float)(int)A : RoundedA;
|
|
// }
|
|
SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc SL(Op);
|
|
SDValue A = Op.getOperand(0);
|
|
EVT VT = Op.getValueType();
|
|
|
|
SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
|
|
|
|
// RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f))
|
|
SDValue Bitcast = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A);
|
|
const int SignBitMask = 0x80000000;
|
|
SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast,
|
|
DAG.getConstant(SignBitMask, SL, MVT::i32));
|
|
const int PointFiveInBits = 0x3F000000;
|
|
SDValue PointFiveWithSignRaw =
|
|
DAG.getNode(ISD::OR, SL, MVT::i32, Sign,
|
|
DAG.getConstant(PointFiveInBits, SL, MVT::i32));
|
|
SDValue PointFiveWithSign =
|
|
DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw);
|
|
SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign);
|
|
SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
|
|
|
|
// RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
|
|
EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
|
|
SDValue IsLarge =
|
|
DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT),
|
|
ISD::SETOGT);
|
|
RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
|
|
|
|
// return abs(A) < 0.5 ? (float)(int)A : RoundedA;
|
|
SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
|
|
DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
|
|
SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A);
|
|
return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA);
|
|
}
|
|
|
|
// The implementation of round(double) is similar to that of round(float) in
|
|
// that they both separate the value range into three regions and use a method
|
|
// specific to the region to round the values. However, round(double) first
|
|
// calculates the round of the absolute value and then adds the sign back while
|
|
// round(float) directly rounds the value with sign.
|
|
SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc SL(Op);
|
|
SDValue A = Op.getOperand(0);
|
|
EVT VT = Op.getValueType();
|
|
|
|
SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
|
|
|
|
// double RoundedA = (double) (int) (abs(A) + 0.5f);
|
|
SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA,
|
|
DAG.getConstantFP(0.5, SL, VT));
|
|
SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
|
|
|
|
// RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA;
|
|
EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
|
|
SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
|
|
DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
|
|
RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall,
|
|
DAG.getConstantFP(0, SL, VT),
|
|
RoundedA);
|
|
|
|
// Add sign to rounded_A
|
|
RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A);
|
|
DAG.getNode(ISD::FTRUNC, SL, VT, A);
|
|
|
|
// RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA;
|
|
SDValue IsLarge =
|
|
DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT),
|
|
ISD::SETOGT);
|
|
return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerINT_TO_FP(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(STI.getSmVersion() < 90 || STI.getPTXVersion() < 78);
|
|
|
|
if (Op.getValueType() == MVT::bf16) {
|
|
SDLoc Loc(Op);
|
|
return DAG.getNode(
|
|
ISD::FP_ROUND, Loc, MVT::bf16,
|
|
DAG.getNode(Op.getOpcode(), Loc, MVT::f32, Op.getOperand(0)),
|
|
DAG.getIntPtrConstant(0, Loc));
|
|
}
|
|
|
|
// Everything else is considered legal.
|
|
return Op;
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerFP_TO_INT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(STI.getSmVersion() < 90 || STI.getPTXVersion() < 78);
|
|
|
|
if (Op.getOperand(0).getValueType() == MVT::bf16) {
|
|
SDLoc Loc(Op);
|
|
return DAG.getNode(
|
|
Op.getOpcode(), Loc, Op.getValueType(),
|
|
DAG.getNode(ISD::FP_EXTEND, Loc, MVT::f32, Op.getOperand(0)));
|
|
}
|
|
|
|
// Everything else is considered legal.
|
|
return Op;
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerFP_ROUND(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT NarrowVT = Op.getValueType();
|
|
SDValue Wide = Op.getOperand(0);
|
|
EVT WideVT = Wide.getValueType();
|
|
if (NarrowVT.getScalarType() == MVT::bf16) {
|
|
const TargetLowering *TLI = STI.getTargetLowering();
|
|
if (STI.getSmVersion() < 80 || STI.getPTXVersion() < 70) {
|
|
return TLI->expandFP_ROUND(Op.getNode(), DAG);
|
|
}
|
|
if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) {
|
|
// This combination was the first to support f32 -> bf16.
|
|
if (STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70) {
|
|
if (WideVT.getScalarType() == MVT::f32) {
|
|
return Op;
|
|
}
|
|
if (WideVT.getScalarType() == MVT::f64) {
|
|
SDLoc Loc(Op);
|
|
// Round-inexact-to-odd f64 to f32, then do the final rounding using
|
|
// the hardware f32 -> bf16 instruction.
|
|
SDValue rod = TLI->expandRoundInexactToOdd(
|
|
WideVT.isVector() ? WideVT.changeVectorElementType(MVT::f32)
|
|
: MVT::f32,
|
|
Wide, Loc, DAG);
|
|
return DAG.getFPExtendOrRound(rod, Loc, NarrowVT);
|
|
}
|
|
}
|
|
return TLI->expandFP_ROUND(Op.getNode(), DAG);
|
|
}
|
|
}
|
|
|
|
// Everything else is considered legal.
|
|
return Op;
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerFP_EXTEND(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Narrow = Op.getOperand(0);
|
|
EVT NarrowVT = Narrow.getValueType();
|
|
EVT WideVT = Op.getValueType();
|
|
if (NarrowVT.getScalarType() == MVT::bf16) {
|
|
if (WideVT.getScalarType() == MVT::f32 &&
|
|
(STI.getSmVersion() < 80 || STI.getPTXVersion() < 71)) {
|
|
SDLoc Loc(Op);
|
|
return DAG.getNode(ISD::BF16_TO_FP, Loc, WideVT, Narrow);
|
|
}
|
|
if (WideVT.getScalarType() == MVT::f64 &&
|
|
(STI.getSmVersion() < 90 || STI.getPTXVersion() < 78)) {
|
|
EVT F32 = NarrowVT.isVector() ? NarrowVT.changeVectorElementType(MVT::f32)
|
|
: MVT::f32;
|
|
SDLoc Loc(Op);
|
|
if (STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 71) {
|
|
Op = DAG.getNode(ISD::FP_EXTEND, Loc, F32, Narrow);
|
|
} else {
|
|
Op = DAG.getNode(ISD::BF16_TO_FP, Loc, F32, Narrow);
|
|
}
|
|
return DAG.getNode(ISD::FP_EXTEND, Loc, WideVT, Op);
|
|
}
|
|
}
|
|
|
|
// Everything else is considered legal.
|
|
return Op;
|
|
}
|
|
|
|
static SDValue LowerVectorArith(SDValue Op, SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
if (Op.getValueType() != MVT::v2i16)
|
|
return Op;
|
|
EVT EltVT = Op.getValueType().getVectorElementType();
|
|
SmallVector<SDValue> VecElements;
|
|
for (int I = 0, E = Op.getValueType().getVectorNumElements(); I < E; I++) {
|
|
SmallVector<SDValue> ScalarArgs;
|
|
llvm::transform(Op->ops(), std::back_inserter(ScalarArgs),
|
|
[&](const SDUse &O) {
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
|
|
O.get(), DAG.getIntPtrConstant(I, DL));
|
|
});
|
|
VecElements.push_back(DAG.getNode(Op.getOpcode(), DL, EltVT, ScalarArgs));
|
|
}
|
|
SDValue V =
|
|
DAG.getNode(ISD::BUILD_VECTOR, DL, Op.getValueType(), VecElements);
|
|
return V;
|
|
}
|
|
|
|
SDValue
|
|
NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
|
|
switch (Op.getOpcode()) {
|
|
case ISD::RETURNADDR:
|
|
return SDValue();
|
|
case ISD::FRAMEADDR:
|
|
return SDValue();
|
|
case ISD::GlobalAddress:
|
|
return LowerGlobalAddress(Op, DAG);
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
return Op;
|
|
case ISD::BUILD_VECTOR:
|
|
return LowerBUILD_VECTOR(Op, DAG);
|
|
case ISD::EXTRACT_SUBVECTOR:
|
|
return Op;
|
|
case ISD::EXTRACT_VECTOR_ELT:
|
|
return LowerEXTRACT_VECTOR_ELT(Op, DAG);
|
|
case ISD::INSERT_VECTOR_ELT:
|
|
return LowerINSERT_VECTOR_ELT(Op, DAG);
|
|
case ISD::VECTOR_SHUFFLE:
|
|
return LowerVECTOR_SHUFFLE(Op, DAG);
|
|
case ISD::CONCAT_VECTORS:
|
|
return LowerCONCAT_VECTORS(Op, DAG);
|
|
case ISD::STORE:
|
|
return LowerSTORE(Op, DAG);
|
|
case ISD::LOAD:
|
|
return LowerLOAD(Op, DAG);
|
|
case ISD::SHL_PARTS:
|
|
return LowerShiftLeftParts(Op, DAG);
|
|
case ISD::SRA_PARTS:
|
|
case ISD::SRL_PARTS:
|
|
return LowerShiftRightParts(Op, DAG);
|
|
case ISD::SELECT:
|
|
return LowerSelect(Op, DAG);
|
|
case ISD::FROUND:
|
|
return LowerFROUND(Op, DAG);
|
|
case ISD::FCOPYSIGN:
|
|
return LowerFCOPYSIGN(Op, DAG);
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP:
|
|
return LowerINT_TO_FP(Op, DAG);
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT:
|
|
return LowerFP_TO_INT(Op, DAG);
|
|
case ISD::FP_ROUND:
|
|
return LowerFP_ROUND(Op, DAG);
|
|
case ISD::FP_EXTEND:
|
|
return LowerFP_EXTEND(Op, DAG);
|
|
case ISD::BR_JT:
|
|
return LowerBR_JT(Op, DAG);
|
|
case ISD::VAARG:
|
|
return LowerVAARG(Op, DAG);
|
|
case ISD::VASTART:
|
|
return LowerVASTART(Op, DAG);
|
|
case ISD::ABS:
|
|
case ISD::SMIN:
|
|
case ISD::SMAX:
|
|
case ISD::UMIN:
|
|
case ISD::UMAX:
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::MUL:
|
|
case ISD::SHL:
|
|
case ISD::SREM:
|
|
case ISD::UREM:
|
|
return LowerVectorArith(Op, DAG);
|
|
case ISD::DYNAMIC_STACKALLOC:
|
|
return LowerDYNAMIC_STACKALLOC(Op, DAG);
|
|
case ISD::CopyToReg:
|
|
return LowerCopyToReg_128(Op, DAG);
|
|
default:
|
|
llvm_unreachable("Custom lowering not defined for operation");
|
|
}
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
SDValue Chain = Op.getOperand(0);
|
|
const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
|
|
SDValue Index = Op.getOperand(2);
|
|
|
|
unsigned JId = JT->getIndex();
|
|
MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
|
|
ArrayRef<MachineBasicBlock *> MBBs = MJTI->getJumpTables()[JId].MBBs;
|
|
|
|
SDValue IdV = DAG.getConstant(JId, DL, MVT::i32);
|
|
|
|
// Generate BrxStart node
|
|
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
Chain = DAG.getNode(NVPTXISD::BrxStart, DL, VTs, Chain, IdV);
|
|
|
|
// Generate BrxItem nodes
|
|
assert(!MBBs.empty());
|
|
for (MachineBasicBlock *MBB : MBBs.drop_back())
|
|
Chain = DAG.getNode(NVPTXISD::BrxItem, DL, VTs, Chain.getValue(0),
|
|
DAG.getBasicBlock(MBB), Chain.getValue(1));
|
|
|
|
// Generate BrxEnd nodes
|
|
SDValue EndOps[] = {Chain.getValue(0), DAG.getBasicBlock(MBBs.back()), Index,
|
|
IdV, Chain.getValue(1)};
|
|
SDValue BrxEnd = DAG.getNode(NVPTXISD::BrxEnd, DL, VTs, EndOps);
|
|
|
|
return BrxEnd;
|
|
}
|
|
|
|
// This will prevent AsmPrinter from trying to print the jump tables itself.
|
|
unsigned NVPTXTargetLowering::getJumpTableEncoding() const {
|
|
return MachineJumpTableInfo::EK_Inline;
|
|
}
|
|
|
|
// This function is almost a copy of SelectionDAG::expandVAArg().
|
|
// The only diff is that this one produces loads from local address space.
|
|
SDValue NVPTXTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
|
|
const TargetLowering *TLI = STI.getTargetLowering();
|
|
SDLoc DL(Op);
|
|
|
|
SDNode *Node = Op.getNode();
|
|
const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
|
|
EVT VT = Node->getValueType(0);
|
|
auto *Ty = VT.getTypeForEVT(*DAG.getContext());
|
|
SDValue Tmp1 = Node->getOperand(0);
|
|
SDValue Tmp2 = Node->getOperand(1);
|
|
const MaybeAlign MA(Node->getConstantOperandVal(3));
|
|
|
|
SDValue VAListLoad = DAG.getLoad(TLI->getPointerTy(DAG.getDataLayout()), DL,
|
|
Tmp1, Tmp2, MachinePointerInfo(V));
|
|
SDValue VAList = VAListLoad;
|
|
|
|
if (MA && *MA > TLI->getMinStackArgumentAlignment()) {
|
|
VAList = DAG.getNode(
|
|
ISD::ADD, DL, VAList.getValueType(), VAList,
|
|
DAG.getConstant(MA->value() - 1, DL, VAList.getValueType()));
|
|
|
|
VAList = DAG.getNode(
|
|
ISD::AND, DL, VAList.getValueType(), VAList,
|
|
DAG.getConstant(-(int64_t)MA->value(), DL, VAList.getValueType()));
|
|
}
|
|
|
|
// Increment the pointer, VAList, to the next vaarg
|
|
Tmp1 = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
|
|
DAG.getConstant(DAG.getDataLayout().getTypeAllocSize(Ty),
|
|
DL, VAList.getValueType()));
|
|
|
|
// Store the incremented VAList to the legalized pointer
|
|
Tmp1 = DAG.getStore(VAListLoad.getValue(1), DL, Tmp1, Tmp2,
|
|
MachinePointerInfo(V));
|
|
|
|
const Value *SrcV =
|
|
Constant::getNullValue(PointerType::get(Ty, ADDRESS_SPACE_LOCAL));
|
|
|
|
// Load the actual argument out of the pointer VAList
|
|
return DAG.getLoad(VT, DL, Tmp1, VAList, MachinePointerInfo(SrcV));
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
|
|
const TargetLowering *TLI = STI.getTargetLowering();
|
|
SDLoc DL(Op);
|
|
EVT PtrVT = TLI->getPointerTy(DAG.getDataLayout());
|
|
|
|
// Store the address of unsized array <function>_vararg[] in the ap object.
|
|
SDValue Arg = getParamSymbol(DAG, /* vararg */ -1, PtrVT);
|
|
SDValue VAReg = DAG.getNode(NVPTXISD::Wrapper, DL, PtrVT, Arg);
|
|
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
return DAG.getStore(Op.getOperand(0), DL, VAReg, Op.getOperand(1),
|
|
MachinePointerInfo(SV));
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Op0 = Op->getOperand(0);
|
|
SDValue Op1 = Op->getOperand(1);
|
|
SDValue Op2 = Op->getOperand(2);
|
|
SDLoc DL(Op.getNode());
|
|
|
|
assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");
|
|
|
|
Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
|
|
Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
|
|
SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2);
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
|
|
|
|
return Trunc;
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
|
|
if (Op.getValueType() == MVT::i1)
|
|
return LowerLOADi1(Op, DAG);
|
|
|
|
// v2f16/v2bf16/v2i16/v4i8 are legal, so we can't rely on legalizer to handle
|
|
// unaligned loads and have to handle it here.
|
|
EVT VT = Op.getValueType();
|
|
if (Isv2x16VT(VT) || VT == MVT::v4i8) {
|
|
LoadSDNode *Load = cast<LoadSDNode>(Op);
|
|
EVT MemVT = Load->getMemoryVT();
|
|
if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
|
|
MemVT, *Load->getMemOperand())) {
|
|
SDValue Ops[2];
|
|
std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
|
|
return DAG.getMergeValues(Ops, SDLoc(Op));
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// v = ld i1* addr
|
|
// =>
|
|
// v1 = ld i8* addr (-> i16)
|
|
// v = trunc i16 to i1
|
|
SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
|
|
SDNode *Node = Op.getNode();
|
|
LoadSDNode *LD = cast<LoadSDNode>(Node);
|
|
SDLoc dl(Node);
|
|
assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
|
|
assert(Node->getValueType(0) == MVT::i1 &&
|
|
"Custom lowering for i1 load only");
|
|
SDValue newLD = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i16, LD->getChain(),
|
|
LD->getBasePtr(), LD->getPointerInfo(),
|
|
MVT::i8, LD->getAlign(),
|
|
LD->getMemOperand()->getFlags());
|
|
SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
|
|
// The legalizer (the caller) is expecting two values from the legalized
|
|
// load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
|
|
// in LegalizeDAG.cpp which also uses MergeValues.
|
|
SDValue Ops[] = { result, LD->getChain() };
|
|
return DAG.getMergeValues(Ops, dl);
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
|
|
StoreSDNode *Store = cast<StoreSDNode>(Op);
|
|
EVT VT = Store->getMemoryVT();
|
|
|
|
if (VT == MVT::i1)
|
|
return LowerSTOREi1(Op, DAG);
|
|
|
|
// v2f16 is legal, so we can't rely on legalizer to handle unaligned
|
|
// stores and have to handle it here.
|
|
if ((Isv2x16VT(VT) || VT == MVT::v4i8) &&
|
|
!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
|
|
VT, *Store->getMemOperand()))
|
|
return expandUnalignedStore(Store, DAG);
|
|
|
|
// v2f16, v2bf16 and v2i16 don't need special handling.
|
|
if (Isv2x16VT(VT) || VT == MVT::v4i8)
|
|
return SDValue();
|
|
|
|
if (VT.isVector())
|
|
return LowerSTOREVector(Op, DAG);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue
|
|
NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
|
|
SDNode *N = Op.getNode();
|
|
SDValue Val = N->getOperand(1);
|
|
SDLoc DL(N);
|
|
EVT ValVT = Val.getValueType();
|
|
|
|
if (ValVT.isVector()) {
|
|
// We only handle "native" vector sizes for now, e.g. <4 x double> is not
|
|
// legal. We can (and should) split that into 2 stores of <2 x double> here
|
|
// but I'm leaving that as a TODO for now.
|
|
if (!ValVT.isSimple())
|
|
return SDValue();
|
|
switch (ValVT.getSimpleVT().SimpleTy) {
|
|
default:
|
|
return SDValue();
|
|
case MVT::v2i8:
|
|
case MVT::v2i16:
|
|
case MVT::v2i32:
|
|
case MVT::v2i64:
|
|
case MVT::v2f16:
|
|
case MVT::v2bf16:
|
|
case MVT::v2f32:
|
|
case MVT::v2f64:
|
|
case MVT::v4i8:
|
|
case MVT::v4i16:
|
|
case MVT::v4i32:
|
|
case MVT::v4f16:
|
|
case MVT::v4bf16:
|
|
case MVT::v4f32:
|
|
case MVT::v8f16: // <4 x f16x2>
|
|
case MVT::v8bf16: // <4 x bf16x2>
|
|
case MVT::v8i16: // <4 x i16x2>
|
|
// This is a "native" vector type
|
|
break;
|
|
}
|
|
|
|
MemSDNode *MemSD = cast<MemSDNode>(N);
|
|
const DataLayout &TD = DAG.getDataLayout();
|
|
|
|
Align Alignment = MemSD->getAlign();
|
|
Align PrefAlign =
|
|
TD.getPrefTypeAlign(ValVT.getTypeForEVT(*DAG.getContext()));
|
|
if (Alignment < PrefAlign) {
|
|
// This store is not sufficiently aligned, so bail out and let this vector
|
|
// store be scalarized. Note that we may still be able to emit smaller
|
|
// vector stores. For example, if we are storing a <4 x float> with an
|
|
// alignment of 8, this check will fail but the legalizer will try again
|
|
// with 2 x <2 x float>, which will succeed with an alignment of 8.
|
|
return SDValue();
|
|
}
|
|
|
|
unsigned Opcode = 0;
|
|
EVT EltVT = ValVT.getVectorElementType();
|
|
unsigned NumElts = ValVT.getVectorNumElements();
|
|
|
|
// Since StoreV2 is a target node, we cannot rely on DAG type legalization.
|
|
// Therefore, we must ensure the type is legal. For i1 and i8, we set the
|
|
// stored type to i16 and propagate the "real" type as the memory type.
|
|
bool NeedExt = false;
|
|
if (EltVT.getSizeInBits() < 16)
|
|
NeedExt = true;
|
|
|
|
bool StoreF16x2 = false;
|
|
switch (NumElts) {
|
|
default:
|
|
return SDValue();
|
|
case 2:
|
|
Opcode = NVPTXISD::StoreV2;
|
|
break;
|
|
case 4:
|
|
Opcode = NVPTXISD::StoreV4;
|
|
break;
|
|
case 8:
|
|
// v8f16 is a special case. PTX doesn't have st.v8.f16
|
|
// instruction. Instead, we split the vector into v2f16 chunks and
|
|
// store them with st.v4.b32.
|
|
assert(Is16bitsType(EltVT.getSimpleVT()) && "Wrong type for the vector.");
|
|
Opcode = NVPTXISD::StoreV4;
|
|
StoreF16x2 = true;
|
|
break;
|
|
}
|
|
|
|
SmallVector<SDValue, 8> Ops;
|
|
|
|
// First is the chain
|
|
Ops.push_back(N->getOperand(0));
|
|
|
|
if (StoreF16x2) {
|
|
// Combine f16,f16 -> v2f16
|
|
NumElts /= 2;
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
|
|
DAG.getIntPtrConstant(i * 2, DL));
|
|
SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
|
|
DAG.getIntPtrConstant(i * 2 + 1, DL));
|
|
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, 2);
|
|
SDValue V2 = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, E0, E1);
|
|
Ops.push_back(V2);
|
|
}
|
|
} else {
|
|
// Then the split values
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
|
|
DAG.getIntPtrConstant(i, DL));
|
|
if (NeedExt)
|
|
ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
|
|
Ops.push_back(ExtVal);
|
|
}
|
|
}
|
|
|
|
// Then any remaining arguments
|
|
Ops.append(N->op_begin() + 2, N->op_end());
|
|
|
|
SDValue NewSt =
|
|
DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
|
|
MemSD->getMemoryVT(), MemSD->getMemOperand());
|
|
|
|
// return DCI.CombineTo(N, NewSt, true);
|
|
return NewSt;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// st i1 v, addr
|
|
// =>
|
|
// v1 = zxt v to i16
|
|
// st.u8 i16, addr
|
|
SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
|
|
SDNode *Node = Op.getNode();
|
|
SDLoc dl(Node);
|
|
StoreSDNode *ST = cast<StoreSDNode>(Node);
|
|
SDValue Tmp1 = ST->getChain();
|
|
SDValue Tmp2 = ST->getBasePtr();
|
|
SDValue Tmp3 = ST->getValue();
|
|
assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
|
|
Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
|
|
SDValue Result =
|
|
DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8,
|
|
ST->getAlign(), ST->getMemOperand()->getFlags());
|
|
return Result;
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerCopyToReg_128(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// Change the CopyToReg to take in two 64-bit operands instead of a 128-bit
|
|
// operand so that it can pass the legalization.
|
|
|
|
assert(Op.getOperand(1).getValueType() == MVT::i128 &&
|
|
"Custom lowering for 128-bit CopyToReg only");
|
|
|
|
SDNode *Node = Op.getNode();
|
|
SDLoc DL(Node);
|
|
|
|
SDValue Cast = DAG.getBitcast(MVT::v2i64, Op->getOperand(2));
|
|
SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast,
|
|
DAG.getIntPtrConstant(0, DL));
|
|
SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast,
|
|
DAG.getIntPtrConstant(1, DL));
|
|
|
|
SmallVector<SDValue, 5> NewOps(Op->getNumOperands() + 1);
|
|
SmallVector<EVT, 3> ResultsType(Node->values());
|
|
|
|
NewOps[0] = Op->getOperand(0); // Chain
|
|
NewOps[1] = Op->getOperand(1); // Dst Reg
|
|
NewOps[2] = Lo; // Lower 64-bit
|
|
NewOps[3] = Hi; // Higher 64-bit
|
|
if (Op.getNumOperands() == 4)
|
|
NewOps[4] = Op->getOperand(3); // Glue if exists
|
|
|
|
return DAG.getNode(ISD::CopyToReg, DL, ResultsType, NewOps);
|
|
}
|
|
|
|
unsigned NVPTXTargetLowering::getNumRegisters(
|
|
LLVMContext &Context, EVT VT,
|
|
std::optional<MVT> RegisterVT = std::nullopt) const {
|
|
if (VT == MVT::i128 && RegisterVT == MVT::i128)
|
|
return 1;
|
|
return TargetLoweringBase::getNumRegisters(Context, VT, RegisterVT);
|
|
}
|
|
|
|
bool NVPTXTargetLowering::splitValueIntoRegisterParts(
|
|
SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
|
|
unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
|
|
if (Val.getValueType() == MVT::i128 && NumParts == 1) {
|
|
Parts[0] = Val;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// This creates target external symbol for a function parameter.
|
|
// Name of the symbol is composed from its index and the function name.
|
|
// Negative index corresponds to special parameter (unsized array) used for
|
|
// passing variable arguments.
|
|
SDValue NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx,
|
|
EVT v) const {
|
|
StringRef SavedStr = nvTM->getStrPool().save(
|
|
getParamName(&DAG.getMachineFunction().getFunction(), idx));
|
|
return DAG.getTargetExternalSymbol(SavedStr.data(), v);
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerFormalArguments(
|
|
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
|
|
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
const DataLayout &DL = DAG.getDataLayout();
|
|
auto PtrVT = getPointerTy(DAG.getDataLayout());
|
|
|
|
const Function *F = &MF.getFunction();
|
|
const AttributeList &PAL = F->getAttributes();
|
|
const TargetLowering *TLI = STI.getTargetLowering();
|
|
|
|
SDValue Root = DAG.getRoot();
|
|
std::vector<SDValue> OutChains;
|
|
|
|
bool isABI = (STI.getSmVersion() >= 20);
|
|
assert(isABI && "Non-ABI compilation is not supported");
|
|
if (!isABI)
|
|
return Chain;
|
|
|
|
std::vector<Type *> argTypes;
|
|
std::vector<const Argument *> theArgs;
|
|
for (const Argument &I : F->args()) {
|
|
theArgs.push_back(&I);
|
|
argTypes.push_back(I.getType());
|
|
}
|
|
// argTypes.size() (or theArgs.size()) and Ins.size() need not match.
|
|
// Ins.size() will be larger
|
|
// * if there is an aggregate argument with multiple fields (each field
|
|
// showing up separately in Ins)
|
|
// * if there is a vector argument with more than typical vector-length
|
|
// elements (generally if more than 4) where each vector element is
|
|
// individually present in Ins.
|
|
// So a different index should be used for indexing into Ins.
|
|
// See similar issue in LowerCall.
|
|
unsigned InsIdx = 0;
|
|
|
|
for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++InsIdx) {
|
|
Type *Ty = argTypes[i];
|
|
|
|
if (theArgs[i]->use_empty()) {
|
|
// argument is dead
|
|
if (IsTypePassedAsArray(Ty) && !Ty->isVectorTy()) {
|
|
SmallVector<EVT, 16> vtparts;
|
|
|
|
ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts);
|
|
if (vtparts.empty())
|
|
report_fatal_error("Empty parameter types are not supported");
|
|
|
|
for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
|
|
++parti) {
|
|
InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
|
|
++InsIdx;
|
|
}
|
|
if (vtparts.size() > 0)
|
|
--InsIdx;
|
|
continue;
|
|
}
|
|
if (Ty->isVectorTy()) {
|
|
EVT ObjectVT = getValueType(DL, Ty);
|
|
unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
|
|
for (unsigned parti = 0; parti < NumRegs; ++parti) {
|
|
InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
|
|
++InsIdx;
|
|
}
|
|
if (NumRegs > 0)
|
|
--InsIdx;
|
|
continue;
|
|
}
|
|
InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
|
|
continue;
|
|
}
|
|
|
|
// In the following cases, assign a node order of "i+1"
|
|
// to newly created nodes. The SDNodes for params have to
|
|
// appear in the same order as their order of appearance
|
|
// in the original function. "i+1" holds that order.
|
|
if (!PAL.hasParamAttr(i, Attribute::ByVal)) {
|
|
bool aggregateIsPacked = false;
|
|
if (StructType *STy = dyn_cast<StructType>(Ty))
|
|
aggregateIsPacked = STy->isPacked();
|
|
|
|
SmallVector<EVT, 16> VTs;
|
|
SmallVector<uint64_t, 16> Offsets;
|
|
ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets, 0);
|
|
if (VTs.empty())
|
|
report_fatal_error("Empty parameter types are not supported");
|
|
|
|
Align ArgAlign = getFunctionArgumentAlignment(
|
|
F, Ty, i + AttributeList::FirstArgIndex, DL);
|
|
auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign);
|
|
|
|
SDValue Arg = getParamSymbol(DAG, i, PtrVT);
|
|
int VecIdx = -1; // Index of the first element of the current vector.
|
|
for (unsigned parti = 0, parte = VTs.size(); parti != parte; ++parti) {
|
|
if (VectorInfo[parti] & PVF_FIRST) {
|
|
assert(VecIdx == -1 && "Orphaned vector.");
|
|
VecIdx = parti;
|
|
}
|
|
|
|
// That's the last element of this store op.
|
|
if (VectorInfo[parti] & PVF_LAST) {
|
|
unsigned NumElts = parti - VecIdx + 1;
|
|
EVT EltVT = VTs[parti];
|
|
// i1 is loaded/stored as i8.
|
|
EVT LoadVT = EltVT;
|
|
if (EltVT == MVT::i1)
|
|
LoadVT = MVT::i8;
|
|
else if (Isv2x16VT(EltVT) || EltVT == MVT::v4i8)
|
|
// getLoad needs a vector type, but it can't handle
|
|
// vectors which contain v2f16 or v2bf16 elements. So we must load
|
|
// using i32 here and then bitcast back.
|
|
LoadVT = MVT::i32;
|
|
|
|
EVT VecVT = EVT::getVectorVT(F->getContext(), LoadVT, NumElts);
|
|
SDValue VecAddr =
|
|
DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
|
|
DAG.getConstant(Offsets[VecIdx], dl, PtrVT));
|
|
Value *srcValue = Constant::getNullValue(PointerType::get(
|
|
EltVT.getTypeForEVT(F->getContext()), ADDRESS_SPACE_PARAM));
|
|
|
|
const MaybeAlign PartAlign = [&]() -> MaybeAlign {
|
|
if (aggregateIsPacked)
|
|
return Align(1);
|
|
if (NumElts != 1)
|
|
return std::nullopt;
|
|
Align PartAlign =
|
|
DL.getABITypeAlign(EltVT.getTypeForEVT(F->getContext()));
|
|
return commonAlignment(PartAlign, Offsets[parti]);
|
|
}();
|
|
SDValue P = DAG.getLoad(VecVT, dl, Root, VecAddr,
|
|
MachinePointerInfo(srcValue), PartAlign,
|
|
MachineMemOperand::MODereferenceable |
|
|
MachineMemOperand::MOInvariant);
|
|
if (P.getNode())
|
|
P.getNode()->setIROrder(i + 1);
|
|
for (unsigned j = 0; j < NumElts; ++j) {
|
|
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LoadVT, P,
|
|
DAG.getIntPtrConstant(j, dl));
|
|
// We've loaded i1 as an i8 and now must truncate it back to i1
|
|
if (EltVT == MVT::i1)
|
|
Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Elt);
|
|
// v2f16 was loaded as an i32. Now we must bitcast it back.
|
|
else if (EltVT != LoadVT)
|
|
Elt = DAG.getNode(ISD::BITCAST, dl, EltVT, Elt);
|
|
|
|
// If a promoted integer type is used, truncate down to the original
|
|
MVT PromotedVT;
|
|
if (PromoteScalarIntegerPTX(EltVT, &PromotedVT)) {
|
|
Elt = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
|
|
}
|
|
|
|
// Extend the element if necessary (e.g. an i8 is loaded
|
|
// into an i16 register)
|
|
if (Ins[InsIdx].VT.isInteger() &&
|
|
Ins[InsIdx].VT.getFixedSizeInBits() >
|
|
LoadVT.getFixedSizeInBits()) {
|
|
unsigned Extend = Ins[InsIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
|
|
: ISD::ZERO_EXTEND;
|
|
Elt = DAG.getNode(Extend, dl, Ins[InsIdx].VT, Elt);
|
|
}
|
|
InVals.push_back(Elt);
|
|
}
|
|
|
|
// Reset vector tracking state.
|
|
VecIdx = -1;
|
|
}
|
|
++InsIdx;
|
|
}
|
|
if (VTs.size() > 0)
|
|
--InsIdx;
|
|
continue;
|
|
}
|
|
|
|
// Param has ByVal attribute
|
|
// Return MoveParam(param symbol).
|
|
// Ideally, the param symbol can be returned directly,
|
|
// but when SDNode builder decides to use it in a CopyToReg(),
|
|
// machine instruction fails because TargetExternalSymbol
|
|
// (not lowered) is target dependent, and CopyToReg assumes
|
|
// the source is lowered.
|
|
EVT ObjectVT = getValueType(DL, Ty);
|
|
assert(ObjectVT == Ins[InsIdx].VT &&
|
|
"Ins type did not match function type");
|
|
SDValue Arg = getParamSymbol(DAG, i, PtrVT);
|
|
SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
|
|
if (p.getNode())
|
|
p.getNode()->setIROrder(i + 1);
|
|
InVals.push_back(p);
|
|
}
|
|
|
|
if (!OutChains.empty())
|
|
DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains));
|
|
|
|
return Chain;
|
|
}
|
|
|
|
// Use byte-store when the param adress of the return value is unaligned.
|
|
// This may happen when the return value is a field of a packed structure.
|
|
static SDValue LowerUnalignedStoreRet(SelectionDAG &DAG, SDValue Chain,
|
|
uint64_t Offset, EVT ElementType,
|
|
SDValue RetVal, const SDLoc &dl) {
|
|
// Bit logic only works on integer types
|
|
if (adjustElementType(ElementType))
|
|
RetVal = DAG.getNode(ISD::BITCAST, dl, ElementType, RetVal);
|
|
|
|
// Store each byte
|
|
for (unsigned i = 0, n = ElementType.getSizeInBits() / 8; i < n; i++) {
|
|
// Shift the byte to the last byte position
|
|
SDValue ShiftVal = DAG.getNode(ISD::SRL, dl, ElementType, RetVal,
|
|
DAG.getConstant(i * 8, dl, MVT::i32));
|
|
SDValue StoreOperands[] = {Chain, DAG.getConstant(Offset + i, dl, MVT::i32),
|
|
ShiftVal};
|
|
// Trunc store only the last byte by using
|
|
// st.param.b8
|
|
// The register type can be larger than b8.
|
|
Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetval, dl,
|
|
DAG.getVTList(MVT::Other), StoreOperands,
|
|
MVT::i8, MachinePointerInfo(), std::nullopt,
|
|
MachineMemOperand::MOStore);
|
|
}
|
|
return Chain;
|
|
}
|
|
|
|
SDValue
|
|
NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SDLoc &dl, SelectionDAG &DAG) const {
|
|
const MachineFunction &MF = DAG.getMachineFunction();
|
|
const Function &F = MF.getFunction();
|
|
Type *RetTy = MF.getFunction().getReturnType();
|
|
|
|
bool isABI = (STI.getSmVersion() >= 20);
|
|
assert(isABI && "Non-ABI compilation is not supported");
|
|
if (!isABI)
|
|
return Chain;
|
|
|
|
const DataLayout &DL = DAG.getDataLayout();
|
|
SmallVector<SDValue, 16> PromotedOutVals;
|
|
SmallVector<EVT, 16> VTs;
|
|
SmallVector<uint64_t, 16> Offsets;
|
|
ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets);
|
|
assert(VTs.size() == OutVals.size() && "Bad return value decomposition");
|
|
|
|
for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
|
|
SDValue PromotedOutVal = OutVals[i];
|
|
MVT PromotedVT;
|
|
if (PromoteScalarIntegerPTX(VTs[i], &PromotedVT)) {
|
|
VTs[i] = EVT(PromotedVT);
|
|
}
|
|
if (PromoteScalarIntegerPTX(PromotedOutVal.getValueType(), &PromotedVT)) {
|
|
llvm::ISD::NodeType Ext =
|
|
Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
PromotedOutVal = DAG.getNode(Ext, dl, PromotedVT, PromotedOutVal);
|
|
}
|
|
PromotedOutVals.push_back(PromotedOutVal);
|
|
}
|
|
|
|
auto VectorInfo = VectorizePTXValueVTs(
|
|
VTs, Offsets,
|
|
RetTy->isSized() ? getFunctionParamOptimizedAlign(&F, RetTy, DL)
|
|
: Align(1));
|
|
|
|
// PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
|
|
// 32-bits are sign extended or zero extended, depending on whether
|
|
// they are signed or unsigned types.
|
|
bool ExtendIntegerRetVal =
|
|
RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
|
|
|
|
SmallVector<SDValue, 6> StoreOperands;
|
|
for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
|
|
SDValue OutVal = OutVals[i];
|
|
SDValue RetVal = PromotedOutVals[i];
|
|
|
|
if (ExtendIntegerRetVal) {
|
|
RetVal = DAG.getNode(Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND
|
|
: ISD::ZERO_EXTEND,
|
|
dl, MVT::i32, RetVal);
|
|
} else if (OutVal.getValueSizeInBits() < 16) {
|
|
// Use 16-bit registers for small load-stores as it's the
|
|
// smallest general purpose register size supported by NVPTX.
|
|
RetVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, RetVal);
|
|
}
|
|
|
|
// If we have a PVF_SCALAR entry, it may not even be sufficiently aligned
|
|
// for a scalar store. In such cases, fall back to byte stores.
|
|
if (VectorInfo[i] == PVF_SCALAR && RetTy->isAggregateType()) {
|
|
EVT ElementType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
|
|
Align ElementTypeAlign =
|
|
DL.getABITypeAlign(ElementType.getTypeForEVT(RetTy->getContext()));
|
|
Align ElementAlign =
|
|
commonAlignment(DL.getABITypeAlign(RetTy), Offsets[i]);
|
|
if (ElementAlign < ElementTypeAlign) {
|
|
assert(StoreOperands.empty() && "Orphaned operand list.");
|
|
Chain = LowerUnalignedStoreRet(DAG, Chain, Offsets[i], ElementType,
|
|
RetVal, dl);
|
|
|
|
// The call to LowerUnalignedStoreRet inserted the necessary SDAG nodes
|
|
// into the graph, so just move on to the next element.
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// New load/store. Record chain and offset operands.
|
|
if (VectorInfo[i] & PVF_FIRST) {
|
|
assert(StoreOperands.empty() && "Orphaned operand list.");
|
|
StoreOperands.push_back(Chain);
|
|
StoreOperands.push_back(DAG.getConstant(Offsets[i], dl, MVT::i32));
|
|
}
|
|
|
|
// Record the value to return.
|
|
StoreOperands.push_back(RetVal);
|
|
|
|
// That's the last element of this store op.
|
|
if (VectorInfo[i] & PVF_LAST) {
|
|
NVPTXISD::NodeType Op;
|
|
unsigned NumElts = StoreOperands.size() - 2;
|
|
switch (NumElts) {
|
|
case 1:
|
|
Op = NVPTXISD::StoreRetval;
|
|
break;
|
|
case 2:
|
|
Op = NVPTXISD::StoreRetvalV2;
|
|
break;
|
|
case 4:
|
|
Op = NVPTXISD::StoreRetvalV4;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Invalid vector info.");
|
|
}
|
|
|
|
// Adjust type of load/store op if we've extended the scalar
|
|
// return value.
|
|
EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
|
|
Chain = DAG.getMemIntrinsicNode(
|
|
Op, dl, DAG.getVTList(MVT::Other), StoreOperands, TheStoreType,
|
|
MachinePointerInfo(), Align(1), MachineMemOperand::MOStore);
|
|
// Cleanup vector state.
|
|
StoreOperands.clear();
|
|
}
|
|
}
|
|
|
|
return DAG.getNode(NVPTXISD::RET_GLUE, dl, MVT::Other, Chain);
|
|
}
|
|
|
|
void NVPTXTargetLowering::LowerAsmOperandForConstraint(
|
|
SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
|
|
SelectionDAG &DAG) const {
|
|
if (Constraint.size() > 1)
|
|
return;
|
|
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
|
|
}
|
|
|
|
static unsigned getOpcForTextureInstr(unsigned Intrinsic) {
|
|
switch (Intrinsic) {
|
|
default:
|
|
return 0;
|
|
|
|
case Intrinsic::nvvm_tex_1d_v4f32_s32:
|
|
return NVPTXISD::Tex1DFloatS32;
|
|
case Intrinsic::nvvm_tex_1d_v4f32_f32:
|
|
return NVPTXISD::Tex1DFloatFloat;
|
|
case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
|
|
return NVPTXISD::Tex1DFloatFloatLevel;
|
|
case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
|
|
return NVPTXISD::Tex1DFloatFloatGrad;
|
|
case Intrinsic::nvvm_tex_1d_v4s32_s32:
|
|
return NVPTXISD::Tex1DS32S32;
|
|
case Intrinsic::nvvm_tex_1d_v4s32_f32:
|
|
return NVPTXISD::Tex1DS32Float;
|
|
case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
|
|
return NVPTXISD::Tex1DS32FloatLevel;
|
|
case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
|
|
return NVPTXISD::Tex1DS32FloatGrad;
|
|
case Intrinsic::nvvm_tex_1d_v4u32_s32:
|
|
return NVPTXISD::Tex1DU32S32;
|
|
case Intrinsic::nvvm_tex_1d_v4u32_f32:
|
|
return NVPTXISD::Tex1DU32Float;
|
|
case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
|
|
return NVPTXISD::Tex1DU32FloatLevel;
|
|
case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
|
|
return NVPTXISD::Tex1DU32FloatGrad;
|
|
|
|
case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
|
|
return NVPTXISD::Tex1DArrayFloatS32;
|
|
case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
|
|
return NVPTXISD::Tex1DArrayFloatFloat;
|
|
case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
|
|
return NVPTXISD::Tex1DArrayFloatFloatLevel;
|
|
case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
|
|
return NVPTXISD::Tex1DArrayFloatFloatGrad;
|
|
case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
|
|
return NVPTXISD::Tex1DArrayS32S32;
|
|
case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
|
|
return NVPTXISD::Tex1DArrayS32Float;
|
|
case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
|
|
return NVPTXISD::Tex1DArrayS32FloatLevel;
|
|
case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
|
|
return NVPTXISD::Tex1DArrayS32FloatGrad;
|
|
case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
|
|
return NVPTXISD::Tex1DArrayU32S32;
|
|
case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
|
|
return NVPTXISD::Tex1DArrayU32Float;
|
|
case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
|
|
return NVPTXISD::Tex1DArrayU32FloatLevel;
|
|
case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
|
|
return NVPTXISD::Tex1DArrayU32FloatGrad;
|
|
|
|
case Intrinsic::nvvm_tex_2d_v4f32_s32:
|
|
return NVPTXISD::Tex2DFloatS32;
|
|
case Intrinsic::nvvm_tex_2d_v4f32_f32:
|
|
return NVPTXISD::Tex2DFloatFloat;
|
|
case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
|
|
return NVPTXISD::Tex2DFloatFloatLevel;
|
|
case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
|
|
return NVPTXISD::Tex2DFloatFloatGrad;
|
|
case Intrinsic::nvvm_tex_2d_v4s32_s32:
|
|
return NVPTXISD::Tex2DS32S32;
|
|
case Intrinsic::nvvm_tex_2d_v4s32_f32:
|
|
return NVPTXISD::Tex2DS32Float;
|
|
case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
|
|
return NVPTXISD::Tex2DS32FloatLevel;
|
|
case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
|
|
return NVPTXISD::Tex2DS32FloatGrad;
|
|
case Intrinsic::nvvm_tex_2d_v4u32_s32:
|
|
return NVPTXISD::Tex2DU32S32;
|
|
case Intrinsic::nvvm_tex_2d_v4u32_f32:
|
|
return NVPTXISD::Tex2DU32Float;
|
|
case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
|
|
return NVPTXISD::Tex2DU32FloatLevel;
|
|
case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
|
|
return NVPTXISD::Tex2DU32FloatGrad;
|
|
|
|
case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
|
|
return NVPTXISD::Tex2DArrayFloatS32;
|
|
case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
|
|
return NVPTXISD::Tex2DArrayFloatFloat;
|
|
case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
|
|
return NVPTXISD::Tex2DArrayFloatFloatLevel;
|
|
case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
|
|
return NVPTXISD::Tex2DArrayFloatFloatGrad;
|
|
case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
|
|
return NVPTXISD::Tex2DArrayS32S32;
|
|
case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
|
|
return NVPTXISD::Tex2DArrayS32Float;
|
|
case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
|
|
return NVPTXISD::Tex2DArrayS32FloatLevel;
|
|
case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
|
|
return NVPTXISD::Tex2DArrayS32FloatGrad;
|
|
case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
|
|
return NVPTXISD::Tex2DArrayU32S32;
|
|
case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
|
|
return NVPTXISD::Tex2DArrayU32Float;
|
|
case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
|
|
return NVPTXISD::Tex2DArrayU32FloatLevel;
|
|
case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
|
|
return NVPTXISD::Tex2DArrayU32FloatGrad;
|
|
|
|
case Intrinsic::nvvm_tex_3d_v4f32_s32:
|
|
return NVPTXISD::Tex3DFloatS32;
|
|
case Intrinsic::nvvm_tex_3d_v4f32_f32:
|
|
return NVPTXISD::Tex3DFloatFloat;
|
|
case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
|
|
return NVPTXISD::Tex3DFloatFloatLevel;
|
|
case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
|
|
return NVPTXISD::Tex3DFloatFloatGrad;
|
|
case Intrinsic::nvvm_tex_3d_v4s32_s32:
|
|
return NVPTXISD::Tex3DS32S32;
|
|
case Intrinsic::nvvm_tex_3d_v4s32_f32:
|
|
return NVPTXISD::Tex3DS32Float;
|
|
case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
|
|
return NVPTXISD::Tex3DS32FloatLevel;
|
|
case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
|
|
return NVPTXISD::Tex3DS32FloatGrad;
|
|
case Intrinsic::nvvm_tex_3d_v4u32_s32:
|
|
return NVPTXISD::Tex3DU32S32;
|
|
case Intrinsic::nvvm_tex_3d_v4u32_f32:
|
|
return NVPTXISD::Tex3DU32Float;
|
|
case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
|
|
return NVPTXISD::Tex3DU32FloatLevel;
|
|
case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
|
|
return NVPTXISD::Tex3DU32FloatGrad;
|
|
|
|
case Intrinsic::nvvm_tex_cube_v4f32_f32:
|
|
return NVPTXISD::TexCubeFloatFloat;
|
|
case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
|
|
return NVPTXISD::TexCubeFloatFloatLevel;
|
|
case Intrinsic::nvvm_tex_cube_v4s32_f32:
|
|
return NVPTXISD::TexCubeS32Float;
|
|
case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
|
|
return NVPTXISD::TexCubeS32FloatLevel;
|
|
case Intrinsic::nvvm_tex_cube_v4u32_f32:
|
|
return NVPTXISD::TexCubeU32Float;
|
|
case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
|
|
return NVPTXISD::TexCubeU32FloatLevel;
|
|
|
|
case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
|
|
return NVPTXISD::TexCubeArrayFloatFloat;
|
|
case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
|
|
return NVPTXISD::TexCubeArrayFloatFloatLevel;
|
|
case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
|
|
return NVPTXISD::TexCubeArrayS32Float;
|
|
case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
|
|
return NVPTXISD::TexCubeArrayS32FloatLevel;
|
|
case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
|
|
return NVPTXISD::TexCubeArrayU32Float;
|
|
case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
|
|
return NVPTXISD::TexCubeArrayU32FloatLevel;
|
|
|
|
case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
|
|
return NVPTXISD::Tld4R2DFloatFloat;
|
|
case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
|
|
return NVPTXISD::Tld4G2DFloatFloat;
|
|
case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
|
|
return NVPTXISD::Tld4B2DFloatFloat;
|
|
case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
|
|
return NVPTXISD::Tld4A2DFloatFloat;
|
|
case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
|
|
return NVPTXISD::Tld4R2DS64Float;
|
|
case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
|
|
return NVPTXISD::Tld4G2DS64Float;
|
|
case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
|
|
return NVPTXISD::Tld4B2DS64Float;
|
|
case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
|
|
return NVPTXISD::Tld4A2DS64Float;
|
|
case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
|
|
return NVPTXISD::Tld4R2DU64Float;
|
|
case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
|
|
return NVPTXISD::Tld4G2DU64Float;
|
|
case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
|
|
return NVPTXISD::Tld4B2DU64Float;
|
|
case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
|
|
return NVPTXISD::Tld4A2DU64Float;
|
|
|
|
case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
|
|
return NVPTXISD::TexUnified1DFloatS32;
|
|
case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
|
|
return NVPTXISD::TexUnified1DFloatFloat;
|
|
case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
|
|
return NVPTXISD::TexUnified1DFloatFloatLevel;
|
|
case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
|
|
return NVPTXISD::TexUnified1DFloatFloatGrad;
|
|
case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
|
|
return NVPTXISD::TexUnified1DS32S32;
|
|
case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
|
|
return NVPTXISD::TexUnified1DS32Float;
|
|
case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
|
|
return NVPTXISD::TexUnified1DS32FloatLevel;
|
|
case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
|
|
return NVPTXISD::TexUnified1DS32FloatGrad;
|
|
case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
|
|
return NVPTXISD::TexUnified1DU32S32;
|
|
case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
|
|
return NVPTXISD::TexUnified1DU32Float;
|
|
case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
|
|
return NVPTXISD::TexUnified1DU32FloatLevel;
|
|
case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
|
|
return NVPTXISD::TexUnified1DU32FloatGrad;
|
|
|
|
case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
|
|
return NVPTXISD::TexUnified1DArrayFloatS32;
|
|
case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
|
|
return NVPTXISD::TexUnified1DArrayFloatFloat;
|
|
case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
|
|
return NVPTXISD::TexUnified1DArrayFloatFloatLevel;
|
|
case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
|
|
return NVPTXISD::TexUnified1DArrayFloatFloatGrad;
|
|
case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
|
|
return NVPTXISD::TexUnified1DArrayS32S32;
|
|
case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
|
|
return NVPTXISD::TexUnified1DArrayS32Float;
|
|
case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
|
|
return NVPTXISD::TexUnified1DArrayS32FloatLevel;
|
|
case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
|
|
return NVPTXISD::TexUnified1DArrayS32FloatGrad;
|
|
case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
|
|
return NVPTXISD::TexUnified1DArrayU32S32;
|
|
case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
|
|
return NVPTXISD::TexUnified1DArrayU32Float;
|
|
case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
|
|
return NVPTXISD::TexUnified1DArrayU32FloatLevel;
|
|
case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
|
|
return NVPTXISD::TexUnified1DArrayU32FloatGrad;
|
|
|
|
case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
|
|
return NVPTXISD::TexUnified2DFloatS32;
|
|
case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
|
|
return NVPTXISD::TexUnified2DFloatFloat;
|
|
case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
|
|
return NVPTXISD::TexUnified2DFloatFloatLevel;
|
|
case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
|
|
return NVPTXISD::TexUnified2DFloatFloatGrad;
|
|
case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
|
|
return NVPTXISD::TexUnified2DS32S32;
|
|
case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
|
|
return NVPTXISD::TexUnified2DS32Float;
|
|
case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
|
|
return NVPTXISD::TexUnified2DS32FloatLevel;
|
|
case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
|
|
return NVPTXISD::TexUnified2DS32FloatGrad;
|
|
case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
|
|
return NVPTXISD::TexUnified2DU32S32;
|
|
case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
|
|
return NVPTXISD::TexUnified2DU32Float;
|
|
case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
|
|
return NVPTXISD::TexUnified2DU32FloatLevel;
|
|
case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
|
|
return NVPTXISD::TexUnified2DU32FloatGrad;
|
|
|
|
case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
|
|
return NVPTXISD::TexUnified2DArrayFloatS32;
|
|
case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
|
|
return NVPTXISD::TexUnified2DArrayFloatFloat;
|
|
case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
|
|
return NVPTXISD::TexUnified2DArrayFloatFloatLevel;
|
|
case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
|
|
return NVPTXISD::TexUnified2DArrayFloatFloatGrad;
|
|
case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
|
|
return NVPTXISD::TexUnified2DArrayS32S32;
|
|
case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
|
|
return NVPTXISD::TexUnified2DArrayS32Float;
|
|
case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
|
|
return NVPTXISD::TexUnified2DArrayS32FloatLevel;
|
|
case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
|
|
return NVPTXISD::TexUnified2DArrayS32FloatGrad;
|
|
case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
|
|
return NVPTXISD::TexUnified2DArrayU32S32;
|
|
case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
|
|
return NVPTXISD::TexUnified2DArrayU32Float;
|
|
case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
|
|
return NVPTXISD::TexUnified2DArrayU32FloatLevel;
|
|
case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
|
|
return NVPTXISD::TexUnified2DArrayU32FloatGrad;
|
|
|
|
case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
|
|
return NVPTXISD::TexUnified3DFloatS32;
|
|
case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
|
|
return NVPTXISD::TexUnified3DFloatFloat;
|
|
case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
|
|
return NVPTXISD::TexUnified3DFloatFloatLevel;
|
|
case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
|
|
return NVPTXISD::TexUnified3DFloatFloatGrad;
|
|
case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
|
|
return NVPTXISD::TexUnified3DS32S32;
|
|
case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
|
|
return NVPTXISD::TexUnified3DS32Float;
|
|
case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
|
|
return NVPTXISD::TexUnified3DS32FloatLevel;
|
|
case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
|
|
return NVPTXISD::TexUnified3DS32FloatGrad;
|
|
case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
|
|
return NVPTXISD::TexUnified3DU32S32;
|
|
case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
|
|
return NVPTXISD::TexUnified3DU32Float;
|
|
case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
|
|
return NVPTXISD::TexUnified3DU32FloatLevel;
|
|
case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
|
|
return NVPTXISD::TexUnified3DU32FloatGrad;
|
|
|
|
case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
|
|
return NVPTXISD::TexUnifiedCubeFloatFloat;
|
|
case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
|
|
return NVPTXISD::TexUnifiedCubeFloatFloatLevel;
|
|
case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
|
|
return NVPTXISD::TexUnifiedCubeS32Float;
|
|
case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
|
|
return NVPTXISD::TexUnifiedCubeS32FloatLevel;
|
|
case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
|
|
return NVPTXISD::TexUnifiedCubeU32Float;
|
|
case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
|
|
return NVPTXISD::TexUnifiedCubeU32FloatLevel;
|
|
|
|
case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
|
|
return NVPTXISD::TexUnifiedCubeArrayFloatFloat;
|
|
case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
|
|
return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel;
|
|
case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
|
|
return NVPTXISD::TexUnifiedCubeArrayS32Float;
|
|
case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
|
|
return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel;
|
|
case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
|
|
return NVPTXISD::TexUnifiedCubeArrayU32Float;
|
|
case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
|
|
return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel;
|
|
|
|
case Intrinsic::nvvm_tex_unified_cube_grad_v4f32_f32:
|
|
return NVPTXISD::TexUnifiedCubeFloatFloatGrad;
|
|
case Intrinsic::nvvm_tex_unified_cube_grad_v4s32_f32:
|
|
return NVPTXISD::TexUnifiedCubeS32FloatGrad;
|
|
case Intrinsic::nvvm_tex_unified_cube_grad_v4u32_f32:
|
|
return NVPTXISD::TexUnifiedCubeU32FloatGrad;
|
|
case Intrinsic::nvvm_tex_unified_cube_array_grad_v4f32_f32:
|
|
return NVPTXISD::TexUnifiedCubeArrayFloatFloatGrad;
|
|
case Intrinsic::nvvm_tex_unified_cube_array_grad_v4s32_f32:
|
|
return NVPTXISD::TexUnifiedCubeArrayS32FloatGrad;
|
|
case Intrinsic::nvvm_tex_unified_cube_array_grad_v4u32_f32:
|
|
return NVPTXISD::TexUnifiedCubeArrayU32FloatGrad;
|
|
|
|
case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
|
|
return NVPTXISD::Tld4UnifiedR2DFloatFloat;
|
|
case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
|
|
return NVPTXISD::Tld4UnifiedG2DFloatFloat;
|
|
case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
|
|
return NVPTXISD::Tld4UnifiedB2DFloatFloat;
|
|
case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
|
|
return NVPTXISD::Tld4UnifiedA2DFloatFloat;
|
|
case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
|
|
return NVPTXISD::Tld4UnifiedR2DS64Float;
|
|
case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
|
|
return NVPTXISD::Tld4UnifiedG2DS64Float;
|
|
case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
|
|
return NVPTXISD::Tld4UnifiedB2DS64Float;
|
|
case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
|
|
return NVPTXISD::Tld4UnifiedA2DS64Float;
|
|
case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
|
|
return NVPTXISD::Tld4UnifiedR2DU64Float;
|
|
case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
|
|
return NVPTXISD::Tld4UnifiedG2DU64Float;
|
|
case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
|
|
return NVPTXISD::Tld4UnifiedB2DU64Float;
|
|
case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
|
|
return NVPTXISD::Tld4UnifiedA2DU64Float;
|
|
}
|
|
}
|
|
|
|
static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) {
|
|
switch (Intrinsic) {
|
|
default:
|
|
return 0;
|
|
case Intrinsic::nvvm_suld_1d_i8_clamp:
|
|
return NVPTXISD::Suld1DI8Clamp;
|
|
case Intrinsic::nvvm_suld_1d_i16_clamp:
|
|
return NVPTXISD::Suld1DI16Clamp;
|
|
case Intrinsic::nvvm_suld_1d_i32_clamp:
|
|
return NVPTXISD::Suld1DI32Clamp;
|
|
case Intrinsic::nvvm_suld_1d_i64_clamp:
|
|
return NVPTXISD::Suld1DI64Clamp;
|
|
case Intrinsic::nvvm_suld_1d_v2i8_clamp:
|
|
return NVPTXISD::Suld1DV2I8Clamp;
|
|
case Intrinsic::nvvm_suld_1d_v2i16_clamp:
|
|
return NVPTXISD::Suld1DV2I16Clamp;
|
|
case Intrinsic::nvvm_suld_1d_v2i32_clamp:
|
|
return NVPTXISD::Suld1DV2I32Clamp;
|
|
case Intrinsic::nvvm_suld_1d_v2i64_clamp:
|
|
return NVPTXISD::Suld1DV2I64Clamp;
|
|
case Intrinsic::nvvm_suld_1d_v4i8_clamp:
|
|
return NVPTXISD::Suld1DV4I8Clamp;
|
|
case Intrinsic::nvvm_suld_1d_v4i16_clamp:
|
|
return NVPTXISD::Suld1DV4I16Clamp;
|
|
case Intrinsic::nvvm_suld_1d_v4i32_clamp:
|
|
return NVPTXISD::Suld1DV4I32Clamp;
|
|
case Intrinsic::nvvm_suld_1d_array_i8_clamp:
|
|
return NVPTXISD::Suld1DArrayI8Clamp;
|
|
case Intrinsic::nvvm_suld_1d_array_i16_clamp:
|
|
return NVPTXISD::Suld1DArrayI16Clamp;
|
|
case Intrinsic::nvvm_suld_1d_array_i32_clamp:
|
|
return NVPTXISD::Suld1DArrayI32Clamp;
|
|
case Intrinsic::nvvm_suld_1d_array_i64_clamp:
|
|
return NVPTXISD::Suld1DArrayI64Clamp;
|
|
case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
|
|
return NVPTXISD::Suld1DArrayV2I8Clamp;
|
|
case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
|
|
return NVPTXISD::Suld1DArrayV2I16Clamp;
|
|
case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
|
|
return NVPTXISD::Suld1DArrayV2I32Clamp;
|
|
case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
|
|
return NVPTXISD::Suld1DArrayV2I64Clamp;
|
|
case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
|
|
return NVPTXISD::Suld1DArrayV4I8Clamp;
|
|
case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
|
|
return NVPTXISD::Suld1DArrayV4I16Clamp;
|
|
case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
|
|
return NVPTXISD::Suld1DArrayV4I32Clamp;
|
|
case Intrinsic::nvvm_suld_2d_i8_clamp:
|
|
return NVPTXISD::Suld2DI8Clamp;
|
|
case Intrinsic::nvvm_suld_2d_i16_clamp:
|
|
return NVPTXISD::Suld2DI16Clamp;
|
|
case Intrinsic::nvvm_suld_2d_i32_clamp:
|
|
return NVPTXISD::Suld2DI32Clamp;
|
|
case Intrinsic::nvvm_suld_2d_i64_clamp:
|
|
return NVPTXISD::Suld2DI64Clamp;
|
|
case Intrinsic::nvvm_suld_2d_v2i8_clamp:
|
|
return NVPTXISD::Suld2DV2I8Clamp;
|
|
case Intrinsic::nvvm_suld_2d_v2i16_clamp:
|
|
return NVPTXISD::Suld2DV2I16Clamp;
|
|
case Intrinsic::nvvm_suld_2d_v2i32_clamp:
|
|
return NVPTXISD::Suld2DV2I32Clamp;
|
|
case Intrinsic::nvvm_suld_2d_v2i64_clamp:
|
|
return NVPTXISD::Suld2DV2I64Clamp;
|
|
case Intrinsic::nvvm_suld_2d_v4i8_clamp:
|
|
return NVPTXISD::Suld2DV4I8Clamp;
|
|
case Intrinsic::nvvm_suld_2d_v4i16_clamp:
|
|
return NVPTXISD::Suld2DV4I16Clamp;
|
|
case Intrinsic::nvvm_suld_2d_v4i32_clamp:
|
|
return NVPTXISD::Suld2DV4I32Clamp;
|
|
case Intrinsic::nvvm_suld_2d_array_i8_clamp:
|
|
return NVPTXISD::Suld2DArrayI8Clamp;
|
|
case Intrinsic::nvvm_suld_2d_array_i16_clamp:
|
|
return NVPTXISD::Suld2DArrayI16Clamp;
|
|
case Intrinsic::nvvm_suld_2d_array_i32_clamp:
|
|
return NVPTXISD::Suld2DArrayI32Clamp;
|
|
case Intrinsic::nvvm_suld_2d_array_i64_clamp:
|
|
return NVPTXISD::Suld2DArrayI64Clamp;
|
|
case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
|
|
return NVPTXISD::Suld2DArrayV2I8Clamp;
|
|
case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
|
|
return NVPTXISD::Suld2DArrayV2I16Clamp;
|
|
case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
|
|
return NVPTXISD::Suld2DArrayV2I32Clamp;
|
|
case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
|
|
return NVPTXISD::Suld2DArrayV2I64Clamp;
|
|
case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
|
|
return NVPTXISD::Suld2DArrayV4I8Clamp;
|
|
case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
|
|
return NVPTXISD::Suld2DArrayV4I16Clamp;
|
|
case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
|
|
return NVPTXISD::Suld2DArrayV4I32Clamp;
|
|
case Intrinsic::nvvm_suld_3d_i8_clamp:
|
|
return NVPTXISD::Suld3DI8Clamp;
|
|
case Intrinsic::nvvm_suld_3d_i16_clamp:
|
|
return NVPTXISD::Suld3DI16Clamp;
|
|
case Intrinsic::nvvm_suld_3d_i32_clamp:
|
|
return NVPTXISD::Suld3DI32Clamp;
|
|
case Intrinsic::nvvm_suld_3d_i64_clamp:
|
|
return NVPTXISD::Suld3DI64Clamp;
|
|
case Intrinsic::nvvm_suld_3d_v2i8_clamp:
|
|
return NVPTXISD::Suld3DV2I8Clamp;
|
|
case Intrinsic::nvvm_suld_3d_v2i16_clamp:
|
|
return NVPTXISD::Suld3DV2I16Clamp;
|
|
case Intrinsic::nvvm_suld_3d_v2i32_clamp:
|
|
return NVPTXISD::Suld3DV2I32Clamp;
|
|
case Intrinsic::nvvm_suld_3d_v2i64_clamp:
|
|
return NVPTXISD::Suld3DV2I64Clamp;
|
|
case Intrinsic::nvvm_suld_3d_v4i8_clamp:
|
|
return NVPTXISD::Suld3DV4I8Clamp;
|
|
case Intrinsic::nvvm_suld_3d_v4i16_clamp:
|
|
return NVPTXISD::Suld3DV4I16Clamp;
|
|
case Intrinsic::nvvm_suld_3d_v4i32_clamp:
|
|
return NVPTXISD::Suld3DV4I32Clamp;
|
|
case Intrinsic::nvvm_suld_1d_i8_trap:
|
|
return NVPTXISD::Suld1DI8Trap;
|
|
case Intrinsic::nvvm_suld_1d_i16_trap:
|
|
return NVPTXISD::Suld1DI16Trap;
|
|
case Intrinsic::nvvm_suld_1d_i32_trap:
|
|
return NVPTXISD::Suld1DI32Trap;
|
|
case Intrinsic::nvvm_suld_1d_i64_trap:
|
|
return NVPTXISD::Suld1DI64Trap;
|
|
case Intrinsic::nvvm_suld_1d_v2i8_trap:
|
|
return NVPTXISD::Suld1DV2I8Trap;
|
|
case Intrinsic::nvvm_suld_1d_v2i16_trap:
|
|
return NVPTXISD::Suld1DV2I16Trap;
|
|
case Intrinsic::nvvm_suld_1d_v2i32_trap:
|
|
return NVPTXISD::Suld1DV2I32Trap;
|
|
case Intrinsic::nvvm_suld_1d_v2i64_trap:
|
|
return NVPTXISD::Suld1DV2I64Trap;
|
|
case Intrinsic::nvvm_suld_1d_v4i8_trap:
|
|
return NVPTXISD::Suld1DV4I8Trap;
|
|
case Intrinsic::nvvm_suld_1d_v4i16_trap:
|
|
return NVPTXISD::Suld1DV4I16Trap;
|
|
case Intrinsic::nvvm_suld_1d_v4i32_trap:
|
|
return NVPTXISD::Suld1DV4I32Trap;
|
|
case Intrinsic::nvvm_suld_1d_array_i8_trap:
|
|
return NVPTXISD::Suld1DArrayI8Trap;
|
|
case Intrinsic::nvvm_suld_1d_array_i16_trap:
|
|
return NVPTXISD::Suld1DArrayI16Trap;
|
|
case Intrinsic::nvvm_suld_1d_array_i32_trap:
|
|
return NVPTXISD::Suld1DArrayI32Trap;
|
|
case Intrinsic::nvvm_suld_1d_array_i64_trap:
|
|
return NVPTXISD::Suld1DArrayI64Trap;
|
|
case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
|
|
return NVPTXISD::Suld1DArrayV2I8Trap;
|
|
case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
|
|
return NVPTXISD::Suld1DArrayV2I16Trap;
|
|
case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
|
|
return NVPTXISD::Suld1DArrayV2I32Trap;
|
|
case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
|
|
return NVPTXISD::Suld1DArrayV2I64Trap;
|
|
case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
|
|
return NVPTXISD::Suld1DArrayV4I8Trap;
|
|
case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
|
|
return NVPTXISD::Suld1DArrayV4I16Trap;
|
|
case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
|
|
return NVPTXISD::Suld1DArrayV4I32Trap;
|
|
case Intrinsic::nvvm_suld_2d_i8_trap:
|
|
return NVPTXISD::Suld2DI8Trap;
|
|
case Intrinsic::nvvm_suld_2d_i16_trap:
|
|
return NVPTXISD::Suld2DI16Trap;
|
|
case Intrinsic::nvvm_suld_2d_i32_trap:
|
|
return NVPTXISD::Suld2DI32Trap;
|
|
case Intrinsic::nvvm_suld_2d_i64_trap:
|
|
return NVPTXISD::Suld2DI64Trap;
|
|
case Intrinsic::nvvm_suld_2d_v2i8_trap:
|
|
return NVPTXISD::Suld2DV2I8Trap;
|
|
case Intrinsic::nvvm_suld_2d_v2i16_trap:
|
|
return NVPTXISD::Suld2DV2I16Trap;
|
|
case Intrinsic::nvvm_suld_2d_v2i32_trap:
|
|
return NVPTXISD::Suld2DV2I32Trap;
|
|
case Intrinsic::nvvm_suld_2d_v2i64_trap:
|
|
return NVPTXISD::Suld2DV2I64Trap;
|
|
case Intrinsic::nvvm_suld_2d_v4i8_trap:
|
|
return NVPTXISD::Suld2DV4I8Trap;
|
|
case Intrinsic::nvvm_suld_2d_v4i16_trap:
|
|
return NVPTXISD::Suld2DV4I16Trap;
|
|
case Intrinsic::nvvm_suld_2d_v4i32_trap:
|
|
return NVPTXISD::Suld2DV4I32Trap;
|
|
case Intrinsic::nvvm_suld_2d_array_i8_trap:
|
|
return NVPTXISD::Suld2DArrayI8Trap;
|
|
case Intrinsic::nvvm_suld_2d_array_i16_trap:
|
|
return NVPTXISD::Suld2DArrayI16Trap;
|
|
case Intrinsic::nvvm_suld_2d_array_i32_trap:
|
|
return NVPTXISD::Suld2DArrayI32Trap;
|
|
case Intrinsic::nvvm_suld_2d_array_i64_trap:
|
|
return NVPTXISD::Suld2DArrayI64Trap;
|
|
case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
|
|
return NVPTXISD::Suld2DArrayV2I8Trap;
|
|
case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
|
|
return NVPTXISD::Suld2DArrayV2I16Trap;
|
|
case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
|
|
return NVPTXISD::Suld2DArrayV2I32Trap;
|
|
case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
|
|
return NVPTXISD::Suld2DArrayV2I64Trap;
|
|
case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
|
|
return NVPTXISD::Suld2DArrayV4I8Trap;
|
|
case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
|
|
return NVPTXISD::Suld2DArrayV4I16Trap;
|
|
case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
|
|
return NVPTXISD::Suld2DArrayV4I32Trap;
|
|
case Intrinsic::nvvm_suld_3d_i8_trap:
|
|
return NVPTXISD::Suld3DI8Trap;
|
|
case Intrinsic::nvvm_suld_3d_i16_trap:
|
|
return NVPTXISD::Suld3DI16Trap;
|
|
case Intrinsic::nvvm_suld_3d_i32_trap:
|
|
return NVPTXISD::Suld3DI32Trap;
|
|
case Intrinsic::nvvm_suld_3d_i64_trap:
|
|
return NVPTXISD::Suld3DI64Trap;
|
|
case Intrinsic::nvvm_suld_3d_v2i8_trap:
|
|
return NVPTXISD::Suld3DV2I8Trap;
|
|
case Intrinsic::nvvm_suld_3d_v2i16_trap:
|
|
return NVPTXISD::Suld3DV2I16Trap;
|
|
case Intrinsic::nvvm_suld_3d_v2i32_trap:
|
|
return NVPTXISD::Suld3DV2I32Trap;
|
|
case Intrinsic::nvvm_suld_3d_v2i64_trap:
|
|
return NVPTXISD::Suld3DV2I64Trap;
|
|
case Intrinsic::nvvm_suld_3d_v4i8_trap:
|
|
return NVPTXISD::Suld3DV4I8Trap;
|
|
case Intrinsic::nvvm_suld_3d_v4i16_trap:
|
|
return NVPTXISD::Suld3DV4I16Trap;
|
|
case Intrinsic::nvvm_suld_3d_v4i32_trap:
|
|
return NVPTXISD::Suld3DV4I32Trap;
|
|
case Intrinsic::nvvm_suld_1d_i8_zero:
|
|
return NVPTXISD::Suld1DI8Zero;
|
|
case Intrinsic::nvvm_suld_1d_i16_zero:
|
|
return NVPTXISD::Suld1DI16Zero;
|
|
case Intrinsic::nvvm_suld_1d_i32_zero:
|
|
return NVPTXISD::Suld1DI32Zero;
|
|
case Intrinsic::nvvm_suld_1d_i64_zero:
|
|
return NVPTXISD::Suld1DI64Zero;
|
|
case Intrinsic::nvvm_suld_1d_v2i8_zero:
|
|
return NVPTXISD::Suld1DV2I8Zero;
|
|
case Intrinsic::nvvm_suld_1d_v2i16_zero:
|
|
return NVPTXISD::Suld1DV2I16Zero;
|
|
case Intrinsic::nvvm_suld_1d_v2i32_zero:
|
|
return NVPTXISD::Suld1DV2I32Zero;
|
|
case Intrinsic::nvvm_suld_1d_v2i64_zero:
|
|
return NVPTXISD::Suld1DV2I64Zero;
|
|
case Intrinsic::nvvm_suld_1d_v4i8_zero:
|
|
return NVPTXISD::Suld1DV4I8Zero;
|
|
case Intrinsic::nvvm_suld_1d_v4i16_zero:
|
|
return NVPTXISD::Suld1DV4I16Zero;
|
|
case Intrinsic::nvvm_suld_1d_v4i32_zero:
|
|
return NVPTXISD::Suld1DV4I32Zero;
|
|
case Intrinsic::nvvm_suld_1d_array_i8_zero:
|
|
return NVPTXISD::Suld1DArrayI8Zero;
|
|
case Intrinsic::nvvm_suld_1d_array_i16_zero:
|
|
return NVPTXISD::Suld1DArrayI16Zero;
|
|
case Intrinsic::nvvm_suld_1d_array_i32_zero:
|
|
return NVPTXISD::Suld1DArrayI32Zero;
|
|
case Intrinsic::nvvm_suld_1d_array_i64_zero:
|
|
return NVPTXISD::Suld1DArrayI64Zero;
|
|
case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
|
|
return NVPTXISD::Suld1DArrayV2I8Zero;
|
|
case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
|
|
return NVPTXISD::Suld1DArrayV2I16Zero;
|
|
case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
|
|
return NVPTXISD::Suld1DArrayV2I32Zero;
|
|
case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
|
|
return NVPTXISD::Suld1DArrayV2I64Zero;
|
|
case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
|
|
return NVPTXISD::Suld1DArrayV4I8Zero;
|
|
case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
|
|
return NVPTXISD::Suld1DArrayV4I16Zero;
|
|
case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
|
|
return NVPTXISD::Suld1DArrayV4I32Zero;
|
|
case Intrinsic::nvvm_suld_2d_i8_zero:
|
|
return NVPTXISD::Suld2DI8Zero;
|
|
case Intrinsic::nvvm_suld_2d_i16_zero:
|
|
return NVPTXISD::Suld2DI16Zero;
|
|
case Intrinsic::nvvm_suld_2d_i32_zero:
|
|
return NVPTXISD::Suld2DI32Zero;
|
|
case Intrinsic::nvvm_suld_2d_i64_zero:
|
|
return NVPTXISD::Suld2DI64Zero;
|
|
case Intrinsic::nvvm_suld_2d_v2i8_zero:
|
|
return NVPTXISD::Suld2DV2I8Zero;
|
|
case Intrinsic::nvvm_suld_2d_v2i16_zero:
|
|
return NVPTXISD::Suld2DV2I16Zero;
|
|
case Intrinsic::nvvm_suld_2d_v2i32_zero:
|
|
return NVPTXISD::Suld2DV2I32Zero;
|
|
case Intrinsic::nvvm_suld_2d_v2i64_zero:
|
|
return NVPTXISD::Suld2DV2I64Zero;
|
|
case Intrinsic::nvvm_suld_2d_v4i8_zero:
|
|
return NVPTXISD::Suld2DV4I8Zero;
|
|
case Intrinsic::nvvm_suld_2d_v4i16_zero:
|
|
return NVPTXISD::Suld2DV4I16Zero;
|
|
case Intrinsic::nvvm_suld_2d_v4i32_zero:
|
|
return NVPTXISD::Suld2DV4I32Zero;
|
|
case Intrinsic::nvvm_suld_2d_array_i8_zero:
|
|
return NVPTXISD::Suld2DArrayI8Zero;
|
|
case Intrinsic::nvvm_suld_2d_array_i16_zero:
|
|
return NVPTXISD::Suld2DArrayI16Zero;
|
|
case Intrinsic::nvvm_suld_2d_array_i32_zero:
|
|
return NVPTXISD::Suld2DArrayI32Zero;
|
|
case Intrinsic::nvvm_suld_2d_array_i64_zero:
|
|
return NVPTXISD::Suld2DArrayI64Zero;
|
|
case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
|
|
return NVPTXISD::Suld2DArrayV2I8Zero;
|
|
case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
|
|
return NVPTXISD::Suld2DArrayV2I16Zero;
|
|
case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
|
|
return NVPTXISD::Suld2DArrayV2I32Zero;
|
|
case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
|
|
return NVPTXISD::Suld2DArrayV2I64Zero;
|
|
case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
|
|
return NVPTXISD::Suld2DArrayV4I8Zero;
|
|
case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
|
|
return NVPTXISD::Suld2DArrayV4I16Zero;
|
|
case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
|
|
return NVPTXISD::Suld2DArrayV4I32Zero;
|
|
case Intrinsic::nvvm_suld_3d_i8_zero:
|
|
return NVPTXISD::Suld3DI8Zero;
|
|
case Intrinsic::nvvm_suld_3d_i16_zero:
|
|
return NVPTXISD::Suld3DI16Zero;
|
|
case Intrinsic::nvvm_suld_3d_i32_zero:
|
|
return NVPTXISD::Suld3DI32Zero;
|
|
case Intrinsic::nvvm_suld_3d_i64_zero:
|
|
return NVPTXISD::Suld3DI64Zero;
|
|
case Intrinsic::nvvm_suld_3d_v2i8_zero:
|
|
return NVPTXISD::Suld3DV2I8Zero;
|
|
case Intrinsic::nvvm_suld_3d_v2i16_zero:
|
|
return NVPTXISD::Suld3DV2I16Zero;
|
|
case Intrinsic::nvvm_suld_3d_v2i32_zero:
|
|
return NVPTXISD::Suld3DV2I32Zero;
|
|
case Intrinsic::nvvm_suld_3d_v2i64_zero:
|
|
return NVPTXISD::Suld3DV2I64Zero;
|
|
case Intrinsic::nvvm_suld_3d_v4i8_zero:
|
|
return NVPTXISD::Suld3DV4I8Zero;
|
|
case Intrinsic::nvvm_suld_3d_v4i16_zero:
|
|
return NVPTXISD::Suld3DV4I16Zero;
|
|
case Intrinsic::nvvm_suld_3d_v4i32_zero:
|
|
return NVPTXISD::Suld3DV4I32Zero;
|
|
}
|
|
}
|
|
|
|
// llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
|
|
// TgtMemIntrinsic
|
|
// because we need the information that is only available in the "Value" type
|
|
// of destination
|
|
// pointer. In particular, the address space information.
|
|
bool NVPTXTargetLowering::getTgtMemIntrinsic(
|
|
IntrinsicInfo &Info, const CallInst &I,
|
|
MachineFunction &MF, unsigned Intrinsic) const {
|
|
switch (Intrinsic) {
|
|
default:
|
|
return false;
|
|
case Intrinsic::nvvm_match_all_sync_i32p:
|
|
case Intrinsic::nvvm_match_all_sync_i64p:
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
// memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute
|
|
// in order to model data exchange with other threads, but perform no real
|
|
// memory accesses.
|
|
Info.memVT = MVT::i1;
|
|
|
|
// Our result depends on both our and other thread's arguments.
|
|
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
|
|
return true;
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::v8f16;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
Info.align = Align(16);
|
|
return true;
|
|
}
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row_stride: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::v2i32;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
Info.align = Align(8);
|
|
return true;
|
|
}
|
|
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col:
|
|
case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row:
|
|
case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row_stride:
|
|
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col:
|
|
case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row:
|
|
case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row_stride:
|
|
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_b16:
|
|
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_trans_b16: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::v4i32;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
Info.align = Align(16);
|
|
return true;
|
|
}
|
|
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row:
|
|
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row:
|
|
case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row:
|
|
case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride:
|
|
case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col:
|
|
case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row:
|
|
case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride:
|
|
case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride:
|
|
case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row:
|
|
case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col:
|
|
case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col:
|
|
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_b16:
|
|
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_trans_b16: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::i32;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
Info.align = Align(4);
|
|
return true;
|
|
}
|
|
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::v4f16;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
Info.align = Align(16);
|
|
return true;
|
|
}
|
|
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col:
|
|
case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row:
|
|
case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row_stride: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::v8f32;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
Info.align = Align(16);
|
|
return true;
|
|
}
|
|
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row_stride:
|
|
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row_stride:
|
|
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::v8i32;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
Info.align = Align(16);
|
|
return true;
|
|
}
|
|
|
|
case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col:
|
|
case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row:
|
|
case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride:
|
|
case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col:
|
|
case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row:
|
|
case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride:
|
|
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_b16:
|
|
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_trans_b16: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::v2i32;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
Info.align = Align(8);
|
|
return true;
|
|
}
|
|
|
|
case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col:
|
|
case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row:
|
|
case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row_stride:
|
|
|
|
case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col:
|
|
case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row:
|
|
case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row_stride: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::f64;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
Info.align = Align(8);
|
|
return true;
|
|
}
|
|
|
|
case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col:
|
|
case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row:
|
|
case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row_stride: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::v2f64;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
Info.align = Align(16);
|
|
return true;
|
|
}
|
|
|
|
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
|
|
Info.opc = ISD::INTRINSIC_VOID;
|
|
Info.memVT = MVT::v4f16;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOStore;
|
|
Info.align = Align(16);
|
|
return true;
|
|
}
|
|
|
|
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col:
|
|
case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row:
|
|
case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row_stride: {
|
|
Info.opc = ISD::INTRINSIC_VOID;
|
|
Info.memVT = MVT::v8f32;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOStore;
|
|
Info.align = Align(16);
|
|
return true;
|
|
}
|
|
|
|
case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row:
|
|
case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row:
|
|
case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row:
|
|
case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: {
|
|
Info.opc = ISD::INTRINSIC_VOID;
|
|
Info.memVT = MVT::v8i32;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOStore;
|
|
Info.align = Align(16);
|
|
return true;
|
|
}
|
|
|
|
case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col:
|
|
case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row:
|
|
case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride:
|
|
case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col:
|
|
case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row:
|
|
case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride: {
|
|
Info.opc = ISD::INTRINSIC_VOID;
|
|
Info.memVT = MVT::v2i32;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOStore;
|
|
Info.align = Align(8);
|
|
return true;
|
|
}
|
|
|
|
case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col:
|
|
case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col_stride:
|
|
case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row:
|
|
case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row_stride: {
|
|
Info.opc = ISD::INTRINSIC_VOID;
|
|
Info.memVT = MVT::v2f64;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOStore;
|
|
Info.align = Align(16);
|
|
return true;
|
|
}
|
|
|
|
case Intrinsic::nvvm_atomic_load_inc_32:
|
|
case Intrinsic::nvvm_atomic_load_dec_32:
|
|
|
|
case Intrinsic::nvvm_atomic_add_gen_f_cta:
|
|
case Intrinsic::nvvm_atomic_add_gen_f_sys:
|
|
case Intrinsic::nvvm_atomic_add_gen_i_cta:
|
|
case Intrinsic::nvvm_atomic_add_gen_i_sys:
|
|
case Intrinsic::nvvm_atomic_and_gen_i_cta:
|
|
case Intrinsic::nvvm_atomic_and_gen_i_sys:
|
|
case Intrinsic::nvvm_atomic_cas_gen_i_cta:
|
|
case Intrinsic::nvvm_atomic_cas_gen_i_sys:
|
|
case Intrinsic::nvvm_atomic_dec_gen_i_cta:
|
|
case Intrinsic::nvvm_atomic_dec_gen_i_sys:
|
|
case Intrinsic::nvvm_atomic_inc_gen_i_cta:
|
|
case Intrinsic::nvvm_atomic_inc_gen_i_sys:
|
|
case Intrinsic::nvvm_atomic_max_gen_i_cta:
|
|
case Intrinsic::nvvm_atomic_max_gen_i_sys:
|
|
case Intrinsic::nvvm_atomic_min_gen_i_cta:
|
|
case Intrinsic::nvvm_atomic_min_gen_i_sys:
|
|
case Intrinsic::nvvm_atomic_or_gen_i_cta:
|
|
case Intrinsic::nvvm_atomic_or_gen_i_sys:
|
|
case Intrinsic::nvvm_atomic_exch_gen_i_cta:
|
|
case Intrinsic::nvvm_atomic_exch_gen_i_sys:
|
|
case Intrinsic::nvvm_atomic_xor_gen_i_cta:
|
|
case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
|
|
auto &DL = I.getDataLayout();
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = getValueType(DL, I.getType());
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
|
|
Info.align.reset();
|
|
return true;
|
|
}
|
|
|
|
case Intrinsic::nvvm_ldu_global_i:
|
|
case Intrinsic::nvvm_ldu_global_f:
|
|
case Intrinsic::nvvm_ldu_global_p: {
|
|
auto &DL = I.getDataLayout();
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
|
|
Info.memVT = getValueType(DL, I.getType());
|
|
else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
|
|
Info.memVT = getPointerTy(DL);
|
|
else
|
|
Info.memVT = getValueType(DL, I.getType());
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
|
|
|
|
return true;
|
|
}
|
|
case Intrinsic::nvvm_ldg_global_i:
|
|
case Intrinsic::nvvm_ldg_global_f:
|
|
case Intrinsic::nvvm_ldg_global_p: {
|
|
auto &DL = I.getDataLayout();
|
|
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
if (Intrinsic == Intrinsic::nvvm_ldg_global_i)
|
|
Info.memVT = getValueType(DL, I.getType());
|
|
else if(Intrinsic == Intrinsic::nvvm_ldg_global_p)
|
|
Info.memVT = getPointerTy(DL);
|
|
else
|
|
Info.memVT = getValueType(DL, I.getType());
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
|
|
|
|
return true;
|
|
}
|
|
|
|
case Intrinsic::nvvm_tex_1d_v4f32_s32:
|
|
case Intrinsic::nvvm_tex_1d_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
|
|
case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_2d_v4f32_s32:
|
|
case Intrinsic::nvvm_tex_2d_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
|
|
case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_3d_v4f32_s32:
|
|
case Intrinsic::nvvm_tex_3d_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_cube_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
|
|
case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
|
|
case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
|
|
case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
|
|
case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
|
|
case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
|
|
case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
|
|
case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
|
|
case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
|
|
case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_cube_grad_v4f32_f32:
|
|
case Intrinsic::nvvm_tex_unified_cube_array_grad_v4f32_f32:
|
|
case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
|
|
case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
|
|
case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
|
|
case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
|
|
Info.opc = getOpcForTextureInstr(Intrinsic);
|
|
Info.memVT = MVT::v4f32;
|
|
Info.ptrVal = nullptr;
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
Info.align = Align(16);
|
|
return true;
|
|
|
|
case Intrinsic::nvvm_tex_1d_v4s32_s32:
|
|
case Intrinsic::nvvm_tex_1d_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
|
|
case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_2d_v4s32_s32:
|
|
case Intrinsic::nvvm_tex_2d_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
|
|
case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_3d_v4s32_s32:
|
|
case Intrinsic::nvvm_tex_3d_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_cube_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_cube_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_1d_v4u32_s32:
|
|
case Intrinsic::nvvm_tex_1d_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
|
|
case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_2d_v4u32_s32:
|
|
case Intrinsic::nvvm_tex_2d_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
|
|
case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_3d_v4u32_s32:
|
|
case Intrinsic::nvvm_tex_3d_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
|
|
case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
|
|
case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
|
|
case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
|
|
case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
|
|
case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
|
|
case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
|
|
case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
|
|
case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
|
|
case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
|
|
case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
|
|
case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
|
|
case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
|
|
case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
|
|
case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
|
|
case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
|
|
case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
|
|
case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
|
|
case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_cube_grad_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_cube_grad_v4u32_f32:
|
|
case Intrinsic::nvvm_tex_unified_cube_array_grad_v4s32_f32:
|
|
case Intrinsic::nvvm_tex_unified_cube_array_grad_v4u32_f32:
|
|
case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
|
|
case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
|
|
case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
|
|
case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
|
|
case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
|
|
case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
|
|
case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
|
|
case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
|
|
Info.opc = getOpcForTextureInstr(Intrinsic);
|
|
Info.memVT = MVT::v4i32;
|
|
Info.ptrVal = nullptr;
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
Info.align = Align(16);
|
|
return true;
|
|
|
|
case Intrinsic::nvvm_suld_1d_i8_clamp:
|
|
case Intrinsic::nvvm_suld_1d_v2i8_clamp:
|
|
case Intrinsic::nvvm_suld_1d_v4i8_clamp:
|
|
case Intrinsic::nvvm_suld_1d_array_i8_clamp:
|
|
case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
|
|
case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
|
|
case Intrinsic::nvvm_suld_2d_i8_clamp:
|
|
case Intrinsic::nvvm_suld_2d_v2i8_clamp:
|
|
case Intrinsic::nvvm_suld_2d_v4i8_clamp:
|
|
case Intrinsic::nvvm_suld_2d_array_i8_clamp:
|
|
case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
|
|
case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
|
|
case Intrinsic::nvvm_suld_3d_i8_clamp:
|
|
case Intrinsic::nvvm_suld_3d_v2i8_clamp:
|
|
case Intrinsic::nvvm_suld_3d_v4i8_clamp:
|
|
case Intrinsic::nvvm_suld_1d_i8_trap:
|
|
case Intrinsic::nvvm_suld_1d_v2i8_trap:
|
|
case Intrinsic::nvvm_suld_1d_v4i8_trap:
|
|
case Intrinsic::nvvm_suld_1d_array_i8_trap:
|
|
case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
|
|
case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
|
|
case Intrinsic::nvvm_suld_2d_i8_trap:
|
|
case Intrinsic::nvvm_suld_2d_v2i8_trap:
|
|
case Intrinsic::nvvm_suld_2d_v4i8_trap:
|
|
case Intrinsic::nvvm_suld_2d_array_i8_trap:
|
|
case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
|
|
case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
|
|
case Intrinsic::nvvm_suld_3d_i8_trap:
|
|
case Intrinsic::nvvm_suld_3d_v2i8_trap:
|
|
case Intrinsic::nvvm_suld_3d_v4i8_trap:
|
|
case Intrinsic::nvvm_suld_1d_i8_zero:
|
|
case Intrinsic::nvvm_suld_1d_v2i8_zero:
|
|
case Intrinsic::nvvm_suld_1d_v4i8_zero:
|
|
case Intrinsic::nvvm_suld_1d_array_i8_zero:
|
|
case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
|
|
case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
|
|
case Intrinsic::nvvm_suld_2d_i8_zero:
|
|
case Intrinsic::nvvm_suld_2d_v2i8_zero:
|
|
case Intrinsic::nvvm_suld_2d_v4i8_zero:
|
|
case Intrinsic::nvvm_suld_2d_array_i8_zero:
|
|
case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
|
|
case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
|
|
case Intrinsic::nvvm_suld_3d_i8_zero:
|
|
case Intrinsic::nvvm_suld_3d_v2i8_zero:
|
|
case Intrinsic::nvvm_suld_3d_v4i8_zero:
|
|
Info.opc = getOpcForSurfaceInstr(Intrinsic);
|
|
Info.memVT = MVT::i8;
|
|
Info.ptrVal = nullptr;
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
Info.align = Align(16);
|
|
return true;
|
|
|
|
case Intrinsic::nvvm_suld_1d_i16_clamp:
|
|
case Intrinsic::nvvm_suld_1d_v2i16_clamp:
|
|
case Intrinsic::nvvm_suld_1d_v4i16_clamp:
|
|
case Intrinsic::nvvm_suld_1d_array_i16_clamp:
|
|
case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
|
|
case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
|
|
case Intrinsic::nvvm_suld_2d_i16_clamp:
|
|
case Intrinsic::nvvm_suld_2d_v2i16_clamp:
|
|
case Intrinsic::nvvm_suld_2d_v4i16_clamp:
|
|
case Intrinsic::nvvm_suld_2d_array_i16_clamp:
|
|
case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
|
|
case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
|
|
case Intrinsic::nvvm_suld_3d_i16_clamp:
|
|
case Intrinsic::nvvm_suld_3d_v2i16_clamp:
|
|
case Intrinsic::nvvm_suld_3d_v4i16_clamp:
|
|
case Intrinsic::nvvm_suld_1d_i16_trap:
|
|
case Intrinsic::nvvm_suld_1d_v2i16_trap:
|
|
case Intrinsic::nvvm_suld_1d_v4i16_trap:
|
|
case Intrinsic::nvvm_suld_1d_array_i16_trap:
|
|
case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
|
|
case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
|
|
case Intrinsic::nvvm_suld_2d_i16_trap:
|
|
case Intrinsic::nvvm_suld_2d_v2i16_trap:
|
|
case Intrinsic::nvvm_suld_2d_v4i16_trap:
|
|
case Intrinsic::nvvm_suld_2d_array_i16_trap:
|
|
case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
|
|
case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
|
|
case Intrinsic::nvvm_suld_3d_i16_trap:
|
|
case Intrinsic::nvvm_suld_3d_v2i16_trap:
|
|
case Intrinsic::nvvm_suld_3d_v4i16_trap:
|
|
case Intrinsic::nvvm_suld_1d_i16_zero:
|
|
case Intrinsic::nvvm_suld_1d_v2i16_zero:
|
|
case Intrinsic::nvvm_suld_1d_v4i16_zero:
|
|
case Intrinsic::nvvm_suld_1d_array_i16_zero:
|
|
case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
|
|
case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
|
|
case Intrinsic::nvvm_suld_2d_i16_zero:
|
|
case Intrinsic::nvvm_suld_2d_v2i16_zero:
|
|
case Intrinsic::nvvm_suld_2d_v4i16_zero:
|
|
case Intrinsic::nvvm_suld_2d_array_i16_zero:
|
|
case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
|
|
case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
|
|
case Intrinsic::nvvm_suld_3d_i16_zero:
|
|
case Intrinsic::nvvm_suld_3d_v2i16_zero:
|
|
case Intrinsic::nvvm_suld_3d_v4i16_zero:
|
|
Info.opc = getOpcForSurfaceInstr(Intrinsic);
|
|
Info.memVT = MVT::i16;
|
|
Info.ptrVal = nullptr;
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
Info.align = Align(16);
|
|
return true;
|
|
|
|
case Intrinsic::nvvm_suld_1d_i32_clamp:
|
|
case Intrinsic::nvvm_suld_1d_v2i32_clamp:
|
|
case Intrinsic::nvvm_suld_1d_v4i32_clamp:
|
|
case Intrinsic::nvvm_suld_1d_array_i32_clamp:
|
|
case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
|
|
case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
|
|
case Intrinsic::nvvm_suld_2d_i32_clamp:
|
|
case Intrinsic::nvvm_suld_2d_v2i32_clamp:
|
|
case Intrinsic::nvvm_suld_2d_v4i32_clamp:
|
|
case Intrinsic::nvvm_suld_2d_array_i32_clamp:
|
|
case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
|
|
case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
|
|
case Intrinsic::nvvm_suld_3d_i32_clamp:
|
|
case Intrinsic::nvvm_suld_3d_v2i32_clamp:
|
|
case Intrinsic::nvvm_suld_3d_v4i32_clamp:
|
|
case Intrinsic::nvvm_suld_1d_i32_trap:
|
|
case Intrinsic::nvvm_suld_1d_v2i32_trap:
|
|
case Intrinsic::nvvm_suld_1d_v4i32_trap:
|
|
case Intrinsic::nvvm_suld_1d_array_i32_trap:
|
|
case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
|
|
case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
|
|
case Intrinsic::nvvm_suld_2d_i32_trap:
|
|
case Intrinsic::nvvm_suld_2d_v2i32_trap:
|
|
case Intrinsic::nvvm_suld_2d_v4i32_trap:
|
|
case Intrinsic::nvvm_suld_2d_array_i32_trap:
|
|
case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
|
|
case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
|
|
case Intrinsic::nvvm_suld_3d_i32_trap:
|
|
case Intrinsic::nvvm_suld_3d_v2i32_trap:
|
|
case Intrinsic::nvvm_suld_3d_v4i32_trap:
|
|
case Intrinsic::nvvm_suld_1d_i32_zero:
|
|
case Intrinsic::nvvm_suld_1d_v2i32_zero:
|
|
case Intrinsic::nvvm_suld_1d_v4i32_zero:
|
|
case Intrinsic::nvvm_suld_1d_array_i32_zero:
|
|
case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
|
|
case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
|
|
case Intrinsic::nvvm_suld_2d_i32_zero:
|
|
case Intrinsic::nvvm_suld_2d_v2i32_zero:
|
|
case Intrinsic::nvvm_suld_2d_v4i32_zero:
|
|
case Intrinsic::nvvm_suld_2d_array_i32_zero:
|
|
case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
|
|
case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
|
|
case Intrinsic::nvvm_suld_3d_i32_zero:
|
|
case Intrinsic::nvvm_suld_3d_v2i32_zero:
|
|
case Intrinsic::nvvm_suld_3d_v4i32_zero:
|
|
Info.opc = getOpcForSurfaceInstr(Intrinsic);
|
|
Info.memVT = MVT::i32;
|
|
Info.ptrVal = nullptr;
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
Info.align = Align(16);
|
|
return true;
|
|
|
|
case Intrinsic::nvvm_suld_1d_i64_clamp:
|
|
case Intrinsic::nvvm_suld_1d_v2i64_clamp:
|
|
case Intrinsic::nvvm_suld_1d_array_i64_clamp:
|
|
case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
|
|
case Intrinsic::nvvm_suld_2d_i64_clamp:
|
|
case Intrinsic::nvvm_suld_2d_v2i64_clamp:
|
|
case Intrinsic::nvvm_suld_2d_array_i64_clamp:
|
|
case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
|
|
case Intrinsic::nvvm_suld_3d_i64_clamp:
|
|
case Intrinsic::nvvm_suld_3d_v2i64_clamp:
|
|
case Intrinsic::nvvm_suld_1d_i64_trap:
|
|
case Intrinsic::nvvm_suld_1d_v2i64_trap:
|
|
case Intrinsic::nvvm_suld_1d_array_i64_trap:
|
|
case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
|
|
case Intrinsic::nvvm_suld_2d_i64_trap:
|
|
case Intrinsic::nvvm_suld_2d_v2i64_trap:
|
|
case Intrinsic::nvvm_suld_2d_array_i64_trap:
|
|
case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
|
|
case Intrinsic::nvvm_suld_3d_i64_trap:
|
|
case Intrinsic::nvvm_suld_3d_v2i64_trap:
|
|
case Intrinsic::nvvm_suld_1d_i64_zero:
|
|
case Intrinsic::nvvm_suld_1d_v2i64_zero:
|
|
case Intrinsic::nvvm_suld_1d_array_i64_zero:
|
|
case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
|
|
case Intrinsic::nvvm_suld_2d_i64_zero:
|
|
case Intrinsic::nvvm_suld_2d_v2i64_zero:
|
|
case Intrinsic::nvvm_suld_2d_array_i64_zero:
|
|
case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
|
|
case Intrinsic::nvvm_suld_3d_i64_zero:
|
|
case Intrinsic::nvvm_suld_3d_v2i64_zero:
|
|
Info.opc = getOpcForSurfaceInstr(Intrinsic);
|
|
Info.memVT = MVT::i64;
|
|
Info.ptrVal = nullptr;
|
|
Info.offset = 0;
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
Info.align = Align(16);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// getFunctionParamOptimizedAlign - since function arguments are passed via
|
|
/// .param space, we may want to increase their alignment in a way that
|
|
/// ensures that we can effectively vectorize their loads & stores. We can
|
|
/// increase alignment only if the function has internal or has private
|
|
/// linkage as for other linkage types callers may already rely on default
|
|
/// alignment. To allow using 128-bit vectorized loads/stores, this function
|
|
/// ensures that alignment is 16 or greater.
|
|
Align NVPTXTargetLowering::getFunctionParamOptimizedAlign(
|
|
const Function *F, Type *ArgTy, const DataLayout &DL) const {
|
|
// Capping the alignment to 128 bytes as that is the maximum alignment
|
|
// supported by PTX.
|
|
const Align ABITypeAlign = std::min(Align(128), DL.getABITypeAlign(ArgTy));
|
|
|
|
// If a function has linkage different from internal or private, we
|
|
// must use default ABI alignment as external users rely on it. Same
|
|
// for a function that may be called from a function pointer.
|
|
if (!F || !F->hasLocalLinkage() ||
|
|
F->hasAddressTaken(/*Users=*/nullptr,
|
|
/*IgnoreCallbackUses=*/false,
|
|
/*IgnoreAssumeLikeCalls=*/true,
|
|
/*IgnoreLLVMUsed=*/true))
|
|
return ABITypeAlign;
|
|
|
|
assert(!isKernelFunction(*F) && "Expect kernels to have non-local linkage");
|
|
return std::max(Align(16), ABITypeAlign);
|
|
}
|
|
|
|
/// Helper for computing alignment of a device function byval parameter.
|
|
Align NVPTXTargetLowering::getFunctionByValParamAlign(
|
|
const Function *F, Type *ArgTy, Align InitialAlign,
|
|
const DataLayout &DL) const {
|
|
Align ArgAlign = InitialAlign;
|
|
// Try to increase alignment to enhance vectorization options.
|
|
if (F)
|
|
ArgAlign = std::max(ArgAlign, getFunctionParamOptimizedAlign(F, ArgTy, DL));
|
|
|
|
// Old ptx versions have a bug. When PTX code takes address of
|
|
// byval parameter with alignment < 4, ptxas generates code to
|
|
// spill argument into memory. Alas on sm_50+ ptxas generates
|
|
// SASS code that fails with misaligned access. To work around
|
|
// the problem, make sure that we align byval parameters by at
|
|
// least 4. This bug seems to be fixed at least starting from
|
|
// ptxas > 9.0.
|
|
// TODO: remove this after verifying the bug is not reproduced
|
|
// on non-deprecated ptxas versions.
|
|
if (ForceMinByValParamAlign)
|
|
ArgAlign = std::max(ArgAlign, Align(4));
|
|
|
|
return ArgAlign;
|
|
}
|
|
|
|
// Helper for getting a function parameter name. Name is composed from
|
|
// its index and the function name. Negative index corresponds to special
|
|
// parameter (unsized array) used for passing variable arguments.
|
|
std::string NVPTXTargetLowering::getParamName(const Function *F,
|
|
int Idx) const {
|
|
std::string ParamName;
|
|
raw_string_ostream ParamStr(ParamName);
|
|
|
|
ParamStr << getTargetMachine().getSymbol(F)->getName();
|
|
if (Idx < 0)
|
|
ParamStr << "_vararg";
|
|
else
|
|
ParamStr << "_param_" << Idx;
|
|
|
|
return ParamName;
|
|
}
|
|
|
|
/// isLegalAddressingMode - Return true if the addressing mode represented
|
|
/// by AM is legal for this target, for a load/store of the specified type.
|
|
/// Used to guide target specific optimizations, like loop strength reduction
|
|
/// (LoopStrengthReduce.cpp) and memory optimization for address mode
|
|
/// (CodeGenPrepare.cpp)
|
|
bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL,
|
|
const AddrMode &AM, Type *Ty,
|
|
unsigned AS, Instruction *I) const {
|
|
// AddrMode - This represents an addressing mode of:
|
|
// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
|
|
//
|
|
// The legal address modes are
|
|
// - [avar]
|
|
// - [areg]
|
|
// - [areg+immoff]
|
|
// - [immAddr]
|
|
|
|
// immoff must fit in a signed 32-bit int
|
|
if (!APInt(64, AM.BaseOffs).isSignedIntN(32))
|
|
return false;
|
|
|
|
if (AM.BaseGV)
|
|
return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
|
|
|
|
switch (AM.Scale) {
|
|
case 0: // "r", "r+i" or "i" is allowed
|
|
break;
|
|
case 1:
|
|
if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
|
|
return false;
|
|
// Otherwise we have r+i.
|
|
break;
|
|
default:
|
|
// No scale > 1 is allowed
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NVPTX Inline Assembly Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getConstraintType - Given a constraint letter, return the type of
|
|
/// constraint it is for this target.
|
|
NVPTXTargetLowering::ConstraintType
|
|
NVPTXTargetLowering::getConstraintType(StringRef Constraint) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
default:
|
|
break;
|
|
case 'b':
|
|
case 'r':
|
|
case 'h':
|
|
case 'c':
|
|
case 'l':
|
|
case 'f':
|
|
case 'd':
|
|
case 'q':
|
|
case '0':
|
|
case 'N':
|
|
return C_RegisterClass;
|
|
}
|
|
}
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass *>
|
|
NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
|
|
StringRef Constraint,
|
|
MVT VT) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'b':
|
|
return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
|
|
case 'c':
|
|
return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
|
|
case 'h':
|
|
return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
|
|
case 'r':
|
|
return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
|
|
case 'l':
|
|
case 'N':
|
|
return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
|
|
case 'q': {
|
|
if (STI.getSmVersion() < 70)
|
|
report_fatal_error("Inline asm with 128 bit operands is only "
|
|
"supported for sm_70 and higher!");
|
|
return std::make_pair(0U, &NVPTX::Int128RegsRegClass);
|
|
}
|
|
case 'f':
|
|
return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
|
|
case 'd':
|
|
return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
|
|
}
|
|
}
|
|
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NVPTX DAG Combining
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool NVPTXTargetLowering::allowFMA(MachineFunction &MF,
|
|
CodeGenOptLevel OptLevel) const {
|
|
// Always honor command-line argument
|
|
if (FMAContractLevelOpt.getNumOccurrences() > 0)
|
|
return FMAContractLevelOpt > 0;
|
|
|
|
// Do not contract if we're not optimizing the code.
|
|
if (OptLevel == CodeGenOptLevel::None)
|
|
return false;
|
|
|
|
// Honor TargetOptions flags that explicitly say fusion is okay.
|
|
if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast)
|
|
return true;
|
|
|
|
return allowUnsafeFPMath(MF);
|
|
}
|
|
|
|
bool NVPTXTargetLowering::allowUnsafeFPMath(MachineFunction &MF) const {
|
|
// Honor TargetOptions flags that explicitly say unsafe math is okay.
|
|
if (MF.getTarget().Options.UnsafeFPMath)
|
|
return true;
|
|
|
|
// Allow unsafe math if unsafe-fp-math attribute explicitly says so.
|
|
const Function &F = MF.getFunction();
|
|
return F.getFnAttribute("unsafe-fp-math").getValueAsBool();
|
|
}
|
|
|
|
static bool isConstZero(const SDValue &Operand) {
|
|
const auto *Const = dyn_cast<ConstantSDNode>(Operand);
|
|
return Const && Const->getZExtValue() == 0;
|
|
}
|
|
|
|
/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
|
|
/// operands N0 and N1. This is a helper for PerformADDCombine that is
|
|
/// called with the default operands, and if that fails, with commuted
|
|
/// operands.
|
|
static SDValue
|
|
PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
EVT VT = N0.getValueType();
|
|
|
|
// Since integer multiply-add costs the same as integer multiply
|
|
// but is more costly than integer add, do the fusion only when
|
|
// the mul is only used in the add.
|
|
// TODO: this may not be true for later architectures, consider relaxing this
|
|
if (!N0.getNode()->hasOneUse())
|
|
return SDValue();
|
|
|
|
// fold (add (mul a, b), c) -> (mad a, b, c)
|
|
//
|
|
if (N0.getOpcode() == ISD::MUL)
|
|
return DCI.DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT, N0.getOperand(0),
|
|
N0.getOperand(1), N1);
|
|
|
|
// fold (add (select cond, 0, (mul a, b)), c)
|
|
// -> (select cond, c, (mad a, b, c))
|
|
//
|
|
if (N0.getOpcode() == ISD::SELECT) {
|
|
unsigned ZeroOpNum;
|
|
if (isConstZero(N0->getOperand(1)))
|
|
ZeroOpNum = 1;
|
|
else if (isConstZero(N0->getOperand(2)))
|
|
ZeroOpNum = 2;
|
|
else
|
|
return SDValue();
|
|
|
|
SDValue M = N0->getOperand((ZeroOpNum == 1) ? 2 : 1);
|
|
if (M->getOpcode() != ISD::MUL || !M.getNode()->hasOneUse())
|
|
return SDValue();
|
|
|
|
SDValue MAD = DCI.DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT,
|
|
M->getOperand(0), M->getOperand(1), N1);
|
|
return DCI.DAG.getSelect(SDLoc(N), VT, N0->getOperand(0),
|
|
((ZeroOpNum == 1) ? N1 : MAD),
|
|
((ZeroOpNum == 1) ? MAD : N1));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue
|
|
PerformFADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
CodeGenOptLevel OptLevel) {
|
|
EVT VT = N0.getValueType();
|
|
if (N0.getOpcode() == ISD::FMUL) {
|
|
const auto *TLI = static_cast<const NVPTXTargetLowering *>(
|
|
&DCI.DAG.getTargetLoweringInfo());
|
|
if (!TLI->allowFMA(DCI.DAG.getMachineFunction(), OptLevel))
|
|
return SDValue();
|
|
|
|
// For floating point:
|
|
// Do the fusion only when the mul has less than 5 uses and all
|
|
// are add.
|
|
// The heuristic is that if a use is not an add, then that use
|
|
// cannot be fused into fma, therefore mul is still needed anyway.
|
|
// If there are more than 4 uses, even if they are all add, fusing
|
|
// them will increase register pressue.
|
|
//
|
|
int numUses = 0;
|
|
int nonAddCount = 0;
|
|
for (const SDNode *User : N0.getNode()->uses()) {
|
|
numUses++;
|
|
if (User->getOpcode() != ISD::FADD)
|
|
++nonAddCount;
|
|
if (numUses >= 5)
|
|
return SDValue();
|
|
}
|
|
if (nonAddCount) {
|
|
int orderNo = N->getIROrder();
|
|
int orderNo2 = N0.getNode()->getIROrder();
|
|
// simple heuristics here for considering potential register
|
|
// pressure, the logics here is that the differnce are used
|
|
// to measure the distance between def and use, the longer distance
|
|
// more likely cause register pressure.
|
|
if (orderNo - orderNo2 < 500)
|
|
return SDValue();
|
|
|
|
// Now, check if at least one of the FMUL's operands is live beyond the
|
|
// node N, which guarantees that the FMA will not increase register
|
|
// pressure at node N.
|
|
bool opIsLive = false;
|
|
const SDNode *left = N0.getOperand(0).getNode();
|
|
const SDNode *right = N0.getOperand(1).getNode();
|
|
|
|
if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
|
|
opIsLive = true;
|
|
|
|
if (!opIsLive)
|
|
for (const SDNode *User : left->uses()) {
|
|
int orderNo3 = User->getIROrder();
|
|
if (orderNo3 > orderNo) {
|
|
opIsLive = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!opIsLive)
|
|
for (const SDNode *User : right->uses()) {
|
|
int orderNo3 = User->getIROrder();
|
|
if (orderNo3 > orderNo) {
|
|
opIsLive = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!opIsLive)
|
|
return SDValue();
|
|
}
|
|
|
|
return DCI.DAG.getNode(ISD::FMA, SDLoc(N), VT, N0.getOperand(0),
|
|
N0.getOperand(1), N1);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformStoreCombineHelper(SDNode *N, std::size_t Front,
|
|
std::size_t Back) {
|
|
if (all_of(N->ops().drop_front(Front).drop_back(Back),
|
|
[](const SDUse &U) { return U.get()->isUndef(); }))
|
|
// Operand 0 is the previous value in the chain. Cannot return EntryToken
|
|
// as the previous value will become unused and eliminated later.
|
|
return N->getOperand(0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformStoreParamCombine(SDNode *N) {
|
|
// Operands from the 3rd to the 2nd last one are the values to be stored.
|
|
// {Chain, ArgID, Offset, Val, Glue}
|
|
return PerformStoreCombineHelper(N, 3, 1);
|
|
}
|
|
|
|
static SDValue PerformStoreRetvalCombine(SDNode *N) {
|
|
// Operands from the 2nd to the last one are the values to be stored
|
|
return PerformStoreCombineHelper(N, 2, 0);
|
|
}
|
|
|
|
/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
|
|
///
|
|
static SDValue PerformADDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
CodeGenOptLevel OptLevel) {
|
|
if (OptLevel == CodeGenOptLevel::None)
|
|
return SDValue();
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
// Skip non-integer, non-scalar case
|
|
EVT VT = N0.getValueType();
|
|
if (VT.isVector() || VT != MVT::i32)
|
|
return SDValue();
|
|
|
|
// First try with the default operand order.
|
|
if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI))
|
|
return Result;
|
|
|
|
// If that didn't work, try again with the operands commuted.
|
|
return PerformADDCombineWithOperands(N, N1, N0, DCI);
|
|
}
|
|
|
|
/// PerformFADDCombine - Target-specific dag combine xforms for ISD::FADD.
|
|
///
|
|
static SDValue PerformFADDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
CodeGenOptLevel OptLevel) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
EVT VT = N0.getValueType();
|
|
if (VT.isVector() || !(VT == MVT::f32 || VT == MVT::f64))
|
|
return SDValue();
|
|
|
|
// First try with the default operand order.
|
|
if (SDValue Result = PerformFADDCombineWithOperands(N, N0, N1, DCI, OptLevel))
|
|
return Result;
|
|
|
|
// If that didn't work, try again with the operands commuted.
|
|
return PerformFADDCombineWithOperands(N, N1, N0, DCI, OptLevel);
|
|
}
|
|
|
|
static SDValue PerformANDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
// The type legalizer turns a vector load of i8 values into a zextload to i16
|
|
// registers, optionally ANY_EXTENDs it (if target type is integer),
|
|
// and ANDs off the high 8 bits. Since we turn this load into a
|
|
// target-specific DAG node, the DAG combiner fails to eliminate these AND
|
|
// nodes. Do that here.
|
|
SDValue Val = N->getOperand(0);
|
|
SDValue Mask = N->getOperand(1);
|
|
|
|
if (isa<ConstantSDNode>(Val)) {
|
|
std::swap(Val, Mask);
|
|
}
|
|
|
|
SDValue AExt;
|
|
|
|
// Convert BFE-> truncate i16 -> and 255
|
|
// To just BFE-> truncate i16, as the value already has all the bits in the
|
|
// right places.
|
|
if (Val.getOpcode() == ISD::TRUNCATE) {
|
|
SDValue BFE = Val.getOperand(0);
|
|
if (BFE.getOpcode() != NVPTXISD::BFE)
|
|
return SDValue();
|
|
|
|
ConstantSDNode *BFEBits = dyn_cast<ConstantSDNode>(BFE.getOperand(0));
|
|
if (!BFEBits)
|
|
return SDValue();
|
|
uint64_t BFEBitsVal = BFEBits->getZExtValue();
|
|
|
|
ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
|
|
if (!MaskCnst) {
|
|
// Not an AND with a constant
|
|
return SDValue();
|
|
}
|
|
uint64_t MaskVal = MaskCnst->getZExtValue();
|
|
|
|
if (MaskVal != (uint64_t(1) << BFEBitsVal) - 1)
|
|
return SDValue();
|
|
// If we get here, the AND is unnecessary. Just replace it with the trunc
|
|
DCI.CombineTo(N, Val, false);
|
|
}
|
|
// Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and
|
|
if (Val.getOpcode() == ISD::ANY_EXTEND) {
|
|
AExt = Val;
|
|
Val = Val->getOperand(0);
|
|
}
|
|
|
|
if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) {
|
|
Val = Val->getOperand(0);
|
|
}
|
|
|
|
if (Val->getOpcode() == NVPTXISD::LoadV2 ||
|
|
Val->getOpcode() == NVPTXISD::LoadV4) {
|
|
ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
|
|
if (!MaskCnst) {
|
|
// Not an AND with a constant
|
|
return SDValue();
|
|
}
|
|
|
|
uint64_t MaskVal = MaskCnst->getZExtValue();
|
|
if (MaskVal != 0xff) {
|
|
// Not an AND that chops off top 8 bits
|
|
return SDValue();
|
|
}
|
|
|
|
MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
|
|
if (!Mem) {
|
|
// Not a MemSDNode?!?
|
|
return SDValue();
|
|
}
|
|
|
|
EVT MemVT = Mem->getMemoryVT();
|
|
if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
|
|
// We only handle the i8 case
|
|
return SDValue();
|
|
}
|
|
|
|
unsigned ExtType = Val->getConstantOperandVal(Val->getNumOperands() - 1);
|
|
if (ExtType == ISD::SEXTLOAD) {
|
|
// If for some reason the load is a sextload, the and is needed to zero
|
|
// out the high 8 bits
|
|
return SDValue();
|
|
}
|
|
|
|
bool AddTo = false;
|
|
if (AExt.getNode() != nullptr) {
|
|
// Re-insert the ext as a zext.
|
|
Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
|
|
AExt.getValueType(), Val);
|
|
AddTo = true;
|
|
}
|
|
|
|
// If we get here, the AND is unnecessary. Just replace it with the load
|
|
DCI.CombineTo(N, Val, AddTo);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformREMCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
CodeGenOptLevel OptLevel) {
|
|
assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM);
|
|
|
|
// Don't do anything at less than -O2.
|
|
if (OptLevel < CodeGenOptLevel::Default)
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
bool IsSigned = N->getOpcode() == ISD::SREM;
|
|
unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV;
|
|
|
|
const SDValue &Num = N->getOperand(0);
|
|
const SDValue &Den = N->getOperand(1);
|
|
|
|
for (const SDNode *U : Num->uses()) {
|
|
if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
|
|
U->getOperand(1) == Den) {
|
|
// Num % Den -> Num - (Num / Den) * Den
|
|
return DAG.getNode(ISD::SUB, DL, VT, Num,
|
|
DAG.getNode(ISD::MUL, DL, VT,
|
|
DAG.getNode(DivOpc, DL, VT, Num, Den),
|
|
Den));
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
enum OperandSignedness {
|
|
Signed = 0,
|
|
Unsigned,
|
|
Unknown
|
|
};
|
|
|
|
/// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
|
|
/// that can be demoted to \p OptSize bits without loss of information. The
|
|
/// signedness of the operand, if determinable, is placed in \p S.
|
|
static bool IsMulWideOperandDemotable(SDValue Op,
|
|
unsigned OptSize,
|
|
OperandSignedness &S) {
|
|
S = Unknown;
|
|
|
|
if (Op.getOpcode() == ISD::SIGN_EXTEND ||
|
|
Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
|
|
EVT OrigVT = Op.getOperand(0).getValueType();
|
|
if (OrigVT.getFixedSizeInBits() <= OptSize) {
|
|
S = Signed;
|
|
return true;
|
|
}
|
|
} else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
|
|
EVT OrigVT = Op.getOperand(0).getValueType();
|
|
if (OrigVT.getFixedSizeInBits() <= OptSize) {
|
|
S = Unsigned;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
|
|
/// be demoted to \p OptSize bits without loss of information. If the operands
|
|
/// contain a constant, it should appear as the RHS operand. The signedness of
|
|
/// the operands is placed in \p IsSigned.
|
|
static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS,
|
|
unsigned OptSize,
|
|
bool &IsSigned) {
|
|
OperandSignedness LHSSign;
|
|
|
|
// The LHS operand must be a demotable op
|
|
if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
|
|
return false;
|
|
|
|
// We should have been able to determine the signedness from the LHS
|
|
if (LHSSign == Unknown)
|
|
return false;
|
|
|
|
IsSigned = (LHSSign == Signed);
|
|
|
|
// The RHS can be a demotable op or a constant
|
|
if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) {
|
|
const APInt &Val = CI->getAPIntValue();
|
|
if (LHSSign == Unsigned) {
|
|
return Val.isIntN(OptSize);
|
|
} else {
|
|
return Val.isSignedIntN(OptSize);
|
|
}
|
|
} else {
|
|
OperandSignedness RHSSign;
|
|
if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
|
|
return false;
|
|
|
|
return LHSSign == RHSSign;
|
|
}
|
|
}
|
|
|
|
/// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
|
|
/// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
|
|
/// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
|
|
/// amount.
|
|
static SDValue TryMULWIDECombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
EVT MulType = N->getValueType(0);
|
|
if (MulType != MVT::i32 && MulType != MVT::i64) {
|
|
return SDValue();
|
|
}
|
|
|
|
SDLoc DL(N);
|
|
unsigned OptSize = MulType.getSizeInBits() >> 1;
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
|
|
// Canonicalize the multiply so the constant (if any) is on the right
|
|
if (N->getOpcode() == ISD::MUL) {
|
|
if (isa<ConstantSDNode>(LHS)) {
|
|
std::swap(LHS, RHS);
|
|
}
|
|
}
|
|
|
|
// If we have a SHL, determine the actual multiply amount
|
|
if (N->getOpcode() == ISD::SHL) {
|
|
ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS);
|
|
if (!ShlRHS) {
|
|
return SDValue();
|
|
}
|
|
|
|
APInt ShiftAmt = ShlRHS->getAPIntValue();
|
|
unsigned BitWidth = MulType.getSizeInBits();
|
|
if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
|
|
APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
|
|
RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
|
|
} else {
|
|
return SDValue();
|
|
}
|
|
}
|
|
|
|
bool Signed;
|
|
// Verify that our operands are demotable
|
|
if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
|
|
return SDValue();
|
|
}
|
|
|
|
EVT DemotedVT;
|
|
if (MulType == MVT::i32) {
|
|
DemotedVT = MVT::i16;
|
|
} else {
|
|
DemotedVT = MVT::i32;
|
|
}
|
|
|
|
// Truncate the operands to the correct size. Note that these are just for
|
|
// type consistency and will (likely) be eliminated in later phases.
|
|
SDValue TruncLHS =
|
|
DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
|
|
SDValue TruncRHS =
|
|
DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
|
|
|
|
unsigned Opc;
|
|
if (Signed) {
|
|
Opc = NVPTXISD::MUL_WIDE_SIGNED;
|
|
} else {
|
|
Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
|
|
}
|
|
|
|
return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
|
|
}
|
|
|
|
static bool isConstOne(const SDValue &Operand) {
|
|
const auto *Const = dyn_cast<ConstantSDNode>(Operand);
|
|
return Const && Const->getZExtValue() == 1;
|
|
}
|
|
|
|
static SDValue matchMADConstOnePattern(SDValue Add) {
|
|
if (Add->getOpcode() != ISD::ADD)
|
|
return SDValue();
|
|
|
|
if (isConstOne(Add->getOperand(0)))
|
|
return Add->getOperand(1);
|
|
|
|
if (isConstOne(Add->getOperand(1)))
|
|
return Add->getOperand(0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue combineMADConstOne(SDValue X, SDValue Add, EVT VT, SDLoc DL,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
|
|
if (SDValue Y = matchMADConstOnePattern(Add))
|
|
return DCI.DAG.getNode(NVPTXISD::IMAD, DL, VT, X, Y, X);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue combineMulSelectConstOne(SDValue X, SDValue Select, EVT VT,
|
|
SDLoc DL,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
if (Select->getOpcode() != ISD::SELECT)
|
|
return SDValue();
|
|
|
|
SDValue Cond = Select->getOperand(0);
|
|
|
|
unsigned ConstOpNo;
|
|
if (isConstOne(Select->getOperand(1)))
|
|
ConstOpNo = 1;
|
|
else if (isConstOne(Select->getOperand(2)))
|
|
ConstOpNo = 2;
|
|
else
|
|
return SDValue();
|
|
|
|
SDValue Y = Select->getOperand((ConstOpNo == 1) ? 2 : 1);
|
|
|
|
// Do not combine if the resulting sequence is not obviously profitable.
|
|
if (!matchMADConstOnePattern(Y))
|
|
return SDValue();
|
|
|
|
SDValue NewMul = DCI.DAG.getNode(ISD::MUL, DL, VT, X, Y);
|
|
|
|
return DCI.DAG.getNode(ISD::SELECT, DL, VT, Cond,
|
|
(ConstOpNo == 1) ? X : NewMul,
|
|
(ConstOpNo == 1) ? NewMul : X);
|
|
}
|
|
|
|
static SDValue
|
|
PerformMULCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
|
|
EVT VT = N0.getValueType();
|
|
if (VT.isVector())
|
|
return SDValue();
|
|
|
|
if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
|
|
// (mul x, (add y, 1)) -> (mad x, y, x)
|
|
if (SDValue Res = combineMADConstOne(N0, N1, VT, DL, DCI))
|
|
return Res;
|
|
if (SDValue Res = combineMADConstOne(N1, N0, VT, DL, DCI))
|
|
return Res;
|
|
|
|
// (mul x, (select y, 1)) -> (select (mul x, y), x)
|
|
if (SDValue Res = combineMulSelectConstOne(N0, N1, VT, DL, DCI))
|
|
return Res;
|
|
if (SDValue Res = combineMulSelectConstOne(N1, N0, VT, DL, DCI))
|
|
return Res;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
|
|
static SDValue PerformMULCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
CodeGenOptLevel OptLevel) {
|
|
if (OptLevel == CodeGenOptLevel::None)
|
|
return SDValue();
|
|
|
|
if (SDValue Ret = TryMULWIDECombine(N, DCI))
|
|
return Ret;
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
return PerformMULCombineWithOperands(N, N0, N1, DCI);
|
|
}
|
|
|
|
/// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
|
|
static SDValue PerformSHLCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
CodeGenOptLevel OptLevel) {
|
|
if (OptLevel > CodeGenOptLevel::None) {
|
|
// Try mul.wide combining at OptLevel > 0
|
|
if (SDValue Ret = TryMULWIDECombine(N, DCI))
|
|
return Ret;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformSETCCCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
unsigned int SmVersion) {
|
|
EVT CCType = N->getValueType(0);
|
|
SDValue A = N->getOperand(0);
|
|
SDValue B = N->getOperand(1);
|
|
|
|
EVT AType = A.getValueType();
|
|
if (!(CCType == MVT::v2i1 && (AType == MVT::v2f16 || AType == MVT::v2bf16)))
|
|
return SDValue();
|
|
|
|
if (A.getValueType() == MVT::v2bf16 && SmVersion < 90)
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
// setp.f16x2 returns two scalar predicates, which we need to
|
|
// convert back to v2i1. The returned result will be scalarized by
|
|
// the legalizer, but the comparison will remain a single vector
|
|
// instruction.
|
|
SDValue CCNode = DCI.DAG.getNode(
|
|
A.getValueType() == MVT::v2f16 ? NVPTXISD::SETP_F16X2
|
|
: NVPTXISD::SETP_BF16X2,
|
|
DL, DCI.DAG.getVTList(MVT::i1, MVT::i1), {A, B, N->getOperand(2)});
|
|
return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0),
|
|
CCNode.getValue(1));
|
|
}
|
|
|
|
static SDValue PerformEXTRACTCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SDValue Vector = N->getOperand(0);
|
|
if (Vector->getOpcode() == ISD::FREEZE)
|
|
Vector = Vector->getOperand(0);
|
|
SDLoc DL(N);
|
|
EVT VectorVT = Vector.getValueType();
|
|
if (Vector->getOpcode() == ISD::LOAD && VectorVT.isSimple() &&
|
|
IsPTXVectorType(VectorVT.getSimpleVT()))
|
|
return SDValue(); // Native vector loads already combine nicely w/
|
|
// extract_vector_elt.
|
|
// Don't mess with singletons or v2*16, v4i8 and v8i8 types, we already
|
|
// handle them OK.
|
|
if (VectorVT.getVectorNumElements() == 1 || Isv2x16VT(VectorVT) ||
|
|
VectorVT == MVT::v4i8 || VectorVT == MVT::v8i8)
|
|
return SDValue();
|
|
|
|
// Don't mess with undef values as sra may be simplified to 0, not undef.
|
|
if (Vector->isUndef() || ISD::allOperandsUndef(Vector.getNode()))
|
|
return SDValue();
|
|
|
|
uint64_t VectorBits = VectorVT.getSizeInBits();
|
|
// We only handle the types we can extract in-register.
|
|
if (!(VectorBits == 16 || VectorBits == 32 || VectorBits == 64))
|
|
return SDValue();
|
|
|
|
ConstantSDNode *Index = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
// Index == 0 is handled by generic DAG combiner.
|
|
if (!Index || Index->getZExtValue() == 0)
|
|
return SDValue();
|
|
|
|
MVT IVT = MVT::getIntegerVT(VectorBits);
|
|
EVT EltVT = VectorVT.getVectorElementType();
|
|
EVT EltIVT = EltVT.changeTypeToInteger();
|
|
uint64_t EltBits = EltVT.getScalarSizeInBits();
|
|
|
|
SDValue Result = DCI.DAG.getNode(
|
|
ISD::TRUNCATE, DL, EltIVT,
|
|
DCI.DAG.getNode(
|
|
ISD::SRA, DL, IVT, DCI.DAG.getNode(ISD::BITCAST, DL, IVT, Vector),
|
|
DCI.DAG.getConstant(Index->getZExtValue() * EltBits, DL, IVT)));
|
|
|
|
// If element has non-integer type, bitcast it back to the expected type.
|
|
if (EltVT != EltIVT)
|
|
Result = DCI.DAG.getNode(ISD::BITCAST, DL, EltVT, Result);
|
|
// Past legalizer, we may need to extent i8 -> i16 to match the register type.
|
|
if (EltVT != N->getValueType(0))
|
|
Result = DCI.DAG.getNode(ISD::ANY_EXTEND, DL, N->getValueType(0), Result);
|
|
|
|
return Result;
|
|
}
|
|
|
|
static SDValue PerformVSELECTCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SDValue VA = N->getOperand(1);
|
|
EVT VectorVT = VA.getValueType();
|
|
if (VectorVT != MVT::v4i8)
|
|
return SDValue();
|
|
|
|
// We need to split vselect into individual per-element operations Because we
|
|
// use BFE/BFI instruction for byte extraction/insertion, we do end up with
|
|
// 32-bit values, so we may as well do comparison as i32 to avoid conversions
|
|
// to/from i16 normally used for i8 values.
|
|
SmallVector<SDValue, 4> E;
|
|
SDLoc DL(N);
|
|
SDValue VCond = N->getOperand(0);
|
|
SDValue VB = N->getOperand(2);
|
|
for (int I = 0; I < 4; ++I) {
|
|
SDValue C = DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i1, VCond,
|
|
DCI.DAG.getConstant(I, DL, MVT::i32));
|
|
SDValue EA = DCI.DAG.getAnyExtOrTrunc(
|
|
DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, VA,
|
|
DCI.DAG.getConstant(I, DL, MVT::i32)),
|
|
DL, MVT::i32);
|
|
SDValue EB = DCI.DAG.getAnyExtOrTrunc(
|
|
DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, VB,
|
|
DCI.DAG.getConstant(I, DL, MVT::i32)),
|
|
DL, MVT::i32);
|
|
E.push_back(DCI.DAG.getAnyExtOrTrunc(
|
|
DCI.DAG.getNode(ISD::SELECT, DL, MVT::i32, C, EA, EB), DL, MVT::i8));
|
|
}
|
|
return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v4i8, E);
|
|
}
|
|
|
|
static SDValue PerformLOADCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
|
|
// Lower a v16i8 load into a LoadV4 operation with i32 results instead of
|
|
// letting ReplaceLoadVector split it into smaller loads during legalization.
|
|
// This is done at dag-combine1 time, so that vector operations with i8
|
|
// elements can be optimised away instead of being needlessly split during
|
|
// legalization, which involves storing to the stack and loading it back.
|
|
EVT VT = N->getValueType(0);
|
|
bool CorrectlyAligned =
|
|
DCI.DAG.getTargetLoweringInfo().allowsMemoryAccessForAlignment(
|
|
*DAG.getContext(), DAG.getDataLayout(), LD->getMemoryVT(),
|
|
*LD->getMemOperand());
|
|
if (!(VT == MVT::v16i8 && CorrectlyAligned))
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
|
|
// Create a v4i32 vector load operation, effectively <4 x v4i8>.
|
|
unsigned Opc = NVPTXISD::LoadV4;
|
|
EVT NewVT = MVT::v4i32;
|
|
EVT EltVT = NewVT.getVectorElementType();
|
|
unsigned NumElts = NewVT.getVectorNumElements();
|
|
EVT RetVTs[] = {EltVT, EltVT, EltVT, EltVT, MVT::Other};
|
|
SDVTList RetVTList = DAG.getVTList(RetVTs);
|
|
SmallVector<SDValue, 8> Ops(N->ops());
|
|
Ops.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL));
|
|
SDValue NewLoad = DAG.getMemIntrinsicNode(Opc, DL, RetVTList, Ops, NewVT,
|
|
LD->getMemOperand());
|
|
SDValue NewChain = NewLoad.getValue(NumElts);
|
|
|
|
// Create a vector of the same type returned by the original load.
|
|
SmallVector<SDValue, 4> Elts;
|
|
for (unsigned i = 0; i < NumElts; i++)
|
|
Elts.push_back(NewLoad.getValue(i));
|
|
return DCI.DAG.getMergeValues(
|
|
{DCI.DAG.getBitcast(VT, DCI.DAG.getBuildVector(NewVT, DL, Elts)),
|
|
NewChain},
|
|
DL);
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
CodeGenOptLevel OptLevel = getTargetMachine().getOptLevel();
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case ISD::ADD:
|
|
return PerformADDCombine(N, DCI, OptLevel);
|
|
case ISD::FADD:
|
|
return PerformFADDCombine(N, DCI, OptLevel);
|
|
case ISD::MUL:
|
|
return PerformMULCombine(N, DCI, OptLevel);
|
|
case ISD::SHL:
|
|
return PerformSHLCombine(N, DCI, OptLevel);
|
|
case ISD::AND:
|
|
return PerformANDCombine(N, DCI);
|
|
case ISD::UREM:
|
|
case ISD::SREM:
|
|
return PerformREMCombine(N, DCI, OptLevel);
|
|
case ISD::SETCC:
|
|
return PerformSETCCCombine(N, DCI, STI.getSmVersion());
|
|
case ISD::LOAD:
|
|
return PerformLOADCombine(N, DCI);
|
|
case NVPTXISD::StoreRetval:
|
|
case NVPTXISD::StoreRetvalV2:
|
|
case NVPTXISD::StoreRetvalV4:
|
|
return PerformStoreRetvalCombine(N);
|
|
case NVPTXISD::StoreParam:
|
|
case NVPTXISD::StoreParamV2:
|
|
case NVPTXISD::StoreParamV4:
|
|
return PerformStoreParamCombine(N);
|
|
case ISD::EXTRACT_VECTOR_ELT:
|
|
return PerformEXTRACTCombine(N, DCI);
|
|
case ISD::VSELECT:
|
|
return PerformVSELECTCombine(N, DCI);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
|
|
static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
EVT ResVT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
assert(ResVT.isVector() && "Vector load must have vector type");
|
|
|
|
// We only handle "native" vector sizes for now, e.g. <4 x double> is not
|
|
// legal. We can (and should) split that into 2 loads of <2 x double> here
|
|
// but I'm leaving that as a TODO for now.
|
|
assert(ResVT.isSimple() && "Can only handle simple types");
|
|
switch (ResVT.getSimpleVT().SimpleTy) {
|
|
default:
|
|
return;
|
|
case MVT::v2i8:
|
|
case MVT::v2i16:
|
|
case MVT::v2i32:
|
|
case MVT::v2i64:
|
|
case MVT::v2f16:
|
|
case MVT::v2f32:
|
|
case MVT::v2f64:
|
|
case MVT::v4i8:
|
|
case MVT::v4i16:
|
|
case MVT::v4i32:
|
|
case MVT::v4f16:
|
|
case MVT::v4bf16:
|
|
case MVT::v4f32:
|
|
case MVT::v8f16: // <4 x f16x2>
|
|
case MVT::v8bf16: // <4 x bf16x2>
|
|
case MVT::v8i16: // <4 x i16x2>
|
|
// This is a "native" vector type
|
|
break;
|
|
}
|
|
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
|
|
Align Alignment = LD->getAlign();
|
|
auto &TD = DAG.getDataLayout();
|
|
Align PrefAlign =
|
|
TD.getPrefTypeAlign(LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
|
|
if (Alignment < PrefAlign) {
|
|
// This load is not sufficiently aligned, so bail out and let this vector
|
|
// load be scalarized. Note that we may still be able to emit smaller
|
|
// vector loads. For example, if we are loading a <4 x float> with an
|
|
// alignment of 8, this check will fail but the legalizer will try again
|
|
// with 2 x <2 x float>, which will succeed with an alignment of 8.
|
|
return;
|
|
}
|
|
|
|
EVT EltVT = ResVT.getVectorElementType();
|
|
unsigned NumElts = ResVT.getVectorNumElements();
|
|
|
|
// Since LoadV2 is a target node, we cannot rely on DAG type legalization.
|
|
// Therefore, we must ensure the type is legal. For i1 and i8, we set the
|
|
// loaded type to i16 and propagate the "real" type as the memory type.
|
|
bool NeedTrunc = false;
|
|
if (EltVT.getSizeInBits() < 16) {
|
|
EltVT = MVT::i16;
|
|
NeedTrunc = true;
|
|
}
|
|
|
|
unsigned Opcode = 0;
|
|
SDVTList LdResVTs;
|
|
bool Load16x2 = false;
|
|
|
|
switch (NumElts) {
|
|
default:
|
|
return;
|
|
case 2:
|
|
Opcode = NVPTXISD::LoadV2;
|
|
LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
|
|
break;
|
|
case 4: {
|
|
Opcode = NVPTXISD::LoadV4;
|
|
EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
|
|
LdResVTs = DAG.getVTList(ListVTs);
|
|
break;
|
|
}
|
|
case 8: {
|
|
// v8f16 is a special case. PTX doesn't have ld.v8.f16
|
|
// instruction. Instead, we split the vector into v2f16 chunks and
|
|
// load them with ld.v4.b32.
|
|
assert(Is16bitsType(EltVT.getSimpleVT()) && "Unsupported v8 vector type.");
|
|
Load16x2 = true;
|
|
Opcode = NVPTXISD::LoadV4;
|
|
EVT VVT;
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
case MVT::f16:
|
|
VVT = MVT::v2f16;
|
|
break;
|
|
case MVT::bf16:
|
|
VVT = MVT::v2bf16;
|
|
break;
|
|
case MVT::i16:
|
|
VVT = MVT::v2i16;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unsupported v8 vector type.");
|
|
}
|
|
EVT ListVTs[] = {VVT, VVT, VVT, VVT, MVT::Other};
|
|
LdResVTs = DAG.getVTList(ListVTs);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Copy regular operands
|
|
SmallVector<SDValue, 8> OtherOps(N->ops());
|
|
|
|
// The select routine does not have access to the LoadSDNode instance, so
|
|
// pass along the extension information
|
|
OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL));
|
|
|
|
SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
|
|
LD->getMemoryVT(),
|
|
LD->getMemOperand());
|
|
|
|
SmallVector<SDValue, 8> ScalarRes;
|
|
if (Load16x2) {
|
|
// Split v2f16 subvectors back into individual elements.
|
|
NumElts /= 2;
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue SubVector = NewLD.getValue(i);
|
|
SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
|
|
DAG.getIntPtrConstant(0, DL));
|
|
SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
|
|
DAG.getIntPtrConstant(1, DL));
|
|
ScalarRes.push_back(E0);
|
|
ScalarRes.push_back(E1);
|
|
}
|
|
} else {
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue Res = NewLD.getValue(i);
|
|
if (NeedTrunc)
|
|
Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
|
|
ScalarRes.push_back(Res);
|
|
}
|
|
}
|
|
|
|
SDValue LoadChain = NewLD.getValue(NumElts);
|
|
|
|
SDValue BuildVec = DAG.getBuildVector(ResVT, DL, ScalarRes);
|
|
|
|
Results.push_back(BuildVec);
|
|
Results.push_back(LoadChain);
|
|
}
|
|
|
|
static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue Intrin = N->getOperand(1);
|
|
SDLoc DL(N);
|
|
|
|
// Get the intrinsic ID
|
|
unsigned IntrinNo = Intrin.getNode()->getAsZExtVal();
|
|
switch (IntrinNo) {
|
|
default:
|
|
return;
|
|
case Intrinsic::nvvm_ldg_global_i:
|
|
case Intrinsic::nvvm_ldg_global_f:
|
|
case Intrinsic::nvvm_ldg_global_p:
|
|
case Intrinsic::nvvm_ldu_global_i:
|
|
case Intrinsic::nvvm_ldu_global_f:
|
|
case Intrinsic::nvvm_ldu_global_p: {
|
|
EVT ResVT = N->getValueType(0);
|
|
|
|
if (ResVT.isVector()) {
|
|
// Vector LDG/LDU
|
|
|
|
unsigned NumElts = ResVT.getVectorNumElements();
|
|
EVT EltVT = ResVT.getVectorElementType();
|
|
|
|
// Since LDU/LDG are target nodes, we cannot rely on DAG type
|
|
// legalization.
|
|
// Therefore, we must ensure the type is legal. For i1 and i8, we set the
|
|
// loaded type to i16 and propagate the "real" type as the memory type.
|
|
bool NeedTrunc = false;
|
|
if (EltVT.getSizeInBits() < 16) {
|
|
EltVT = MVT::i16;
|
|
NeedTrunc = true;
|
|
}
|
|
|
|
unsigned Opcode = 0;
|
|
SDVTList LdResVTs;
|
|
|
|
switch (NumElts) {
|
|
default:
|
|
return;
|
|
case 2:
|
|
switch (IntrinNo) {
|
|
default:
|
|
return;
|
|
case Intrinsic::nvvm_ldg_global_i:
|
|
case Intrinsic::nvvm_ldg_global_f:
|
|
case Intrinsic::nvvm_ldg_global_p:
|
|
Opcode = NVPTXISD::LDGV2;
|
|
break;
|
|
case Intrinsic::nvvm_ldu_global_i:
|
|
case Intrinsic::nvvm_ldu_global_f:
|
|
case Intrinsic::nvvm_ldu_global_p:
|
|
Opcode = NVPTXISD::LDUV2;
|
|
break;
|
|
}
|
|
LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
|
|
break;
|
|
case 4: {
|
|
switch (IntrinNo) {
|
|
default:
|
|
return;
|
|
case Intrinsic::nvvm_ldg_global_i:
|
|
case Intrinsic::nvvm_ldg_global_f:
|
|
case Intrinsic::nvvm_ldg_global_p:
|
|
Opcode = NVPTXISD::LDGV4;
|
|
break;
|
|
case Intrinsic::nvvm_ldu_global_i:
|
|
case Intrinsic::nvvm_ldu_global_f:
|
|
case Intrinsic::nvvm_ldu_global_p:
|
|
Opcode = NVPTXISD::LDUV4;
|
|
break;
|
|
}
|
|
EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
|
|
LdResVTs = DAG.getVTList(ListVTs);
|
|
break;
|
|
}
|
|
}
|
|
|
|
SmallVector<SDValue, 8> OtherOps;
|
|
|
|
// Copy regular operands
|
|
|
|
OtherOps.push_back(Chain); // Chain
|
|
// Skip operand 1 (intrinsic ID)
|
|
// Others
|
|
OtherOps.append(N->op_begin() + 2, N->op_end());
|
|
|
|
MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
|
|
|
|
SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
|
|
MemSD->getMemoryVT(),
|
|
MemSD->getMemOperand());
|
|
|
|
SmallVector<SDValue, 4> ScalarRes;
|
|
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue Res = NewLD.getValue(i);
|
|
if (NeedTrunc)
|
|
Res =
|
|
DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
|
|
ScalarRes.push_back(Res);
|
|
}
|
|
|
|
SDValue LoadChain = NewLD.getValue(NumElts);
|
|
|
|
SDValue BuildVec =
|
|
DAG.getBuildVector(ResVT, DL, ScalarRes);
|
|
|
|
Results.push_back(BuildVec);
|
|
Results.push_back(LoadChain);
|
|
} else {
|
|
// i8 LDG/LDU
|
|
assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
|
|
"Custom handling of non-i8 ldu/ldg?");
|
|
|
|
// Just copy all operands as-is
|
|
SmallVector<SDValue, 4> Ops(N->ops());
|
|
|
|
// Force output to i16
|
|
SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
|
|
|
|
MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
|
|
|
|
// We make sure the memory type is i8, which will be used during isel
|
|
// to select the proper instruction.
|
|
SDValue NewLD =
|
|
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops,
|
|
MVT::i8, MemSD->getMemOperand());
|
|
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
|
|
NewLD.getValue(0)));
|
|
Results.push_back(NewLD.getValue(1));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ReplaceCopyFromReg_128(SDNode *N, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
// Change the CopyFromReg to output 2 64-bit results instead of a 128-bit
|
|
// result so that it can pass the legalization
|
|
SDLoc DL(N);
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue Reg = N->getOperand(1);
|
|
SDValue Glue = N->getOperand(2);
|
|
|
|
assert(Reg.getValueType() == MVT::i128 &&
|
|
"Custom lowering for CopyFromReg with 128-bit reg only");
|
|
SmallVector<EVT, 4> ResultsType = {MVT::i64, MVT::i64, N->getValueType(1),
|
|
N->getValueType(2)};
|
|
SmallVector<SDValue, 3> NewOps = {Chain, Reg, Glue};
|
|
|
|
SDValue NewValue = DAG.getNode(ISD::CopyFromReg, DL, ResultsType, NewOps);
|
|
SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128,
|
|
{NewValue.getValue(0), NewValue.getValue(1)});
|
|
|
|
Results.push_back(Pair);
|
|
Results.push_back(NewValue.getValue(2));
|
|
Results.push_back(NewValue.getValue(3));
|
|
}
|
|
|
|
void NVPTXTargetLowering::ReplaceNodeResults(
|
|
SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
report_fatal_error("Unhandled custom legalization");
|
|
case ISD::LOAD:
|
|
ReplaceLoadVector(N, DAG, Results);
|
|
return;
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
|
|
return;
|
|
case ISD::CopyFromReg:
|
|
ReplaceCopyFromReg_128(N, DAG, Results);
|
|
return;
|
|
}
|
|
}
|
|
|
|
NVPTXTargetLowering::AtomicExpansionKind
|
|
NVPTXTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
|
|
Type *Ty = AI->getValOperand()->getType();
|
|
|
|
if (AI->isFloatingPointOperation()) {
|
|
if (AI->getOperation() == AtomicRMWInst::BinOp::FAdd) {
|
|
if (Ty->isHalfTy() && STI.getSmVersion() >= 70 &&
|
|
STI.getPTXVersion() >= 63)
|
|
return AtomicExpansionKind::None;
|
|
if (Ty->isBFloatTy() && STI.getSmVersion() >= 90 &&
|
|
STI.getPTXVersion() >= 78)
|
|
return AtomicExpansionKind::None;
|
|
if (Ty->isFloatTy())
|
|
return AtomicExpansionKind::None;
|
|
if (Ty->isDoubleTy() && STI.hasAtomAddF64())
|
|
return AtomicExpansionKind::None;
|
|
}
|
|
return AtomicExpansionKind::CmpXChg;
|
|
}
|
|
|
|
assert(Ty->isIntegerTy() && "Ty should be integer at this point");
|
|
auto ITy = cast<llvm::IntegerType>(Ty);
|
|
|
|
switch (AI->getOperation()) {
|
|
default:
|
|
return AtomicExpansionKind::CmpXChg;
|
|
case AtomicRMWInst::BinOp::And:
|
|
case AtomicRMWInst::BinOp::Or:
|
|
case AtomicRMWInst::BinOp::Xor:
|
|
case AtomicRMWInst::BinOp::Xchg:
|
|
switch (ITy->getBitWidth()) {
|
|
case 8:
|
|
case 16:
|
|
return AtomicExpansionKind::CmpXChg;
|
|
case 32:
|
|
return AtomicExpansionKind::None;
|
|
case 64:
|
|
if (STI.hasAtomBitwise64())
|
|
return AtomicExpansionKind::None;
|
|
return AtomicExpansionKind::CmpXChg;
|
|
default:
|
|
llvm_unreachable("unsupported width encountered");
|
|
}
|
|
case AtomicRMWInst::BinOp::Add:
|
|
case AtomicRMWInst::BinOp::Sub:
|
|
case AtomicRMWInst::BinOp::Max:
|
|
case AtomicRMWInst::BinOp::Min:
|
|
case AtomicRMWInst::BinOp::UMax:
|
|
case AtomicRMWInst::BinOp::UMin:
|
|
switch (ITy->getBitWidth()) {
|
|
case 8:
|
|
case 16:
|
|
return AtomicExpansionKind::CmpXChg;
|
|
case 32:
|
|
return AtomicExpansionKind::None;
|
|
case 64:
|
|
if (STI.hasAtomMinMax64())
|
|
return AtomicExpansionKind::None;
|
|
return AtomicExpansionKind::CmpXChg;
|
|
default:
|
|
llvm_unreachable("unsupported width encountered");
|
|
}
|
|
}
|
|
|
|
return AtomicExpansionKind::CmpXChg;
|
|
}
|
|
|
|
// Pin NVPTXTargetObjectFile's vtables to this file.
|
|
NVPTXTargetObjectFile::~NVPTXTargetObjectFile() = default;
|
|
|
|
MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal(
|
|
const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
|
|
return getDataSection();
|
|
}
|