llvm-project/llvm/lib/Transforms/Coroutines/SuspendCrossingInfo.cpp
Tyler Nowicki 0989a775ae
[Coroutines] Verify normalization was not missed (#108096)
* Add asserts to verify normalization of the coroutine happened.
* This will be important when normalization becomes part of an ABI
object.

--- From a previous discussion here
https://github.com/llvm/llvm-project/pull/108076

Normalization performs these important steps:

split around each suspend, this adds BBs before/after each suspend so
each suspend now exists in its own block.
split around coro.end (similar to above)
break critical edges and add single-edge phis in the new blocks (also
removing other single-edge phis).
Each of these things can individually be tested
A) Check that each suspend is the only inst in its BB
B) Check that coro.end is the only inst in its BB
C) Check that each edge of a multi-edge phis is preceded by single-edge
phi in an immediate pred

For 1) and 2) I believe the purpose of the transform is in part for
suspend crossing info's analysis so it can specifically 'mark' the
suspend blocks and identify the end of the coroutine. There are some
existing places within suspend crossing info that visit the CoroSuspends
and CoroEnds so we could check A) and B) there.

For 3) I believe the purpose of this transform is for insertSpills to
work properly. Infact there is already a check for the result of this
transform!

assert(PN->getNumIncomingValues() == 1 &&
           "unexpected number of incoming "
           "values in the PHINode");

I think to verify the result of normalization we just need to add checks
A) and B) to suspend crossing info.
2024-09-12 14:00:49 -04:00

208 lines
7.1 KiB
C++

//===- SuspendCrossingInfo.cpp - Utility for suspend crossing values ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// The SuspendCrossingInfo maintains data that allows to answer a question
// whether given two BasicBlocks A and B there is a path from A to B that
// passes through a suspend point. Note, SuspendCrossingInfo is invalidated
// by changes to the CFG including adding/removing BBs due to its use of BB
// ptrs in the BlockToIndexMapping.
//===----------------------------------------------------------------------===//
#include "SuspendCrossingInfo.h"
// The "coro-suspend-crossing" flag is very noisy. There is another debug type,
// "coro-frame", which results in leaner debug spew.
#define DEBUG_TYPE "coro-suspend-crossing"
namespace llvm {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
static std::string getBasicBlockLabel(const BasicBlock *BB) {
if (BB->hasName())
return BB->getName().str();
std::string S;
raw_string_ostream OS(S);
BB->printAsOperand(OS, false);
return OS.str().substr(1);
}
LLVM_DUMP_METHOD void SuspendCrossingInfo::dump(
StringRef Label, BitVector const &BV,
const ReversePostOrderTraversal<Function *> &RPOT) const {
dbgs() << Label << ":";
for (const BasicBlock *BB : RPOT) {
auto BBNo = Mapping.blockToIndex(BB);
if (BV[BBNo])
dbgs() << " " << getBasicBlockLabel(BB);
}
dbgs() << "\n";
}
LLVM_DUMP_METHOD void SuspendCrossingInfo::dump() const {
if (Block.empty())
return;
BasicBlock *const B = Mapping.indexToBlock(0);
Function *F = B->getParent();
ReversePostOrderTraversal<Function *> RPOT(F);
for (const BasicBlock *BB : RPOT) {
auto BBNo = Mapping.blockToIndex(BB);
dbgs() << getBasicBlockLabel(BB) << ":\n";
dump(" Consumes", Block[BBNo].Consumes, RPOT);
dump(" Kills", Block[BBNo].Kills, RPOT);
}
dbgs() << "\n";
}
#endif
bool SuspendCrossingInfo::hasPathCrossingSuspendPoint(BasicBlock *From,
BasicBlock *To) const {
size_t const FromIndex = Mapping.blockToIndex(From);
size_t const ToIndex = Mapping.blockToIndex(To);
bool const Result = Block[ToIndex].Kills[FromIndex];
LLVM_DEBUG(if (Result) dbgs() << From->getName() << " => " << To->getName()
<< " crosses suspend point\n");
return Result;
}
bool SuspendCrossingInfo::hasPathOrLoopCrossingSuspendPoint(
BasicBlock *From, BasicBlock *To) const {
size_t const FromIndex = Mapping.blockToIndex(From);
size_t const ToIndex = Mapping.blockToIndex(To);
bool Result = Block[ToIndex].Kills[FromIndex] ||
(From == To && Block[ToIndex].KillLoop);
LLVM_DEBUG(if (Result) dbgs() << From->getName() << " => " << To->getName()
<< " crosses suspend point (path or loop)\n");
return Result;
}
template <bool Initialize>
bool SuspendCrossingInfo::computeBlockData(
const ReversePostOrderTraversal<Function *> &RPOT) {
bool Changed = false;
for (const BasicBlock *BB : RPOT) {
auto BBNo = Mapping.blockToIndex(BB);
auto &B = Block[BBNo];
// We don't need to count the predecessors when initialization.
if constexpr (!Initialize)
// If all the predecessors of the current Block don't change,
// the BlockData for the current block must not change too.
if (all_of(predecessors(B), [this](BasicBlock *BB) {
return !Block[Mapping.blockToIndex(BB)].Changed;
})) {
B.Changed = false;
continue;
}
// Saved Consumes and Kills bitsets so that it is easy to see
// if anything changed after propagation.
auto SavedConsumes = B.Consumes;
auto SavedKills = B.Kills;
for (BasicBlock *PI : predecessors(B)) {
auto PrevNo = Mapping.blockToIndex(PI);
auto &P = Block[PrevNo];
// Propagate Kills and Consumes from predecessors into B.
B.Consumes |= P.Consumes;
B.Kills |= P.Kills;
// If block P is a suspend block, it should propagate kills into block
// B for every block P consumes.
if (P.Suspend)
B.Kills |= P.Consumes;
}
if (B.Suspend) {
// If block B is a suspend block, it should kill all of the blocks it
// consumes.
B.Kills |= B.Consumes;
} else if (B.End) {
// If block B is an end block, it should not propagate kills as the
// blocks following coro.end() are reached during initial invocation
// of the coroutine while all the data are still available on the
// stack or in the registers.
B.Kills.reset();
} else {
// This is reached when B block it not Suspend nor coro.end and it
// need to make sure that it is not in the kill set.
B.KillLoop |= B.Kills[BBNo];
B.Kills.reset(BBNo);
}
if constexpr (!Initialize) {
B.Changed = (B.Kills != SavedKills) || (B.Consumes != SavedConsumes);
Changed |= B.Changed;
}
}
return Changed;
}
SuspendCrossingInfo::SuspendCrossingInfo(
Function &F, const SmallVectorImpl<AnyCoroSuspendInst *> &CoroSuspends,
const SmallVectorImpl<AnyCoroEndInst *> &CoroEnds)
: Mapping(F) {
const size_t N = Mapping.size();
Block.resize(N);
// Initialize every block so that it consumes itself
for (size_t I = 0; I < N; ++I) {
auto &B = Block[I];
B.Consumes.resize(N);
B.Kills.resize(N);
B.Consumes.set(I);
B.Changed = true;
}
// Mark all CoroEnd Blocks. We do not propagate Kills beyond coro.ends as
// the code beyond coro.end is reachable during initial invocation of the
// coroutine.
for (auto *CE : CoroEnds) {
// Verify CoroEnd was normalized
assert(CE->getParent()->getFirstInsertionPt() == CE->getIterator() &&
CE->getParent()->size() <= 2 && "CoroEnd must be in its own BB");
getBlockData(CE->getParent()).End = true;
}
// Mark all suspend blocks and indicate that they kill everything they
// consume. Note, that crossing coro.save also requires a spill, as any code
// between coro.save and coro.suspend may resume the coroutine and all of the
// state needs to be saved by that time.
auto markSuspendBlock = [&](IntrinsicInst *BarrierInst) {
BasicBlock *SuspendBlock = BarrierInst->getParent();
auto &B = getBlockData(SuspendBlock);
B.Suspend = true;
B.Kills |= B.Consumes;
};
for (auto *CSI : CoroSuspends) {
// Verify CoroSuspend was normalized
assert(CSI->getParent()->getFirstInsertionPt() == CSI->getIterator() &&
CSI->getParent()->size() <= 2 &&
"CoroSuspend must be in its own BB");
markSuspendBlock(CSI);
if (auto *Save = CSI->getCoroSave())
markSuspendBlock(Save);
}
// It is considered to be faster to use RPO traversal for forward-edges
// dataflow analysis.
ReversePostOrderTraversal<Function *> RPOT(&F);
computeBlockData</*Initialize=*/true>(RPOT);
while (computeBlockData</*Initialize*/ false>(RPOT))
;
LLVM_DEBUG(dump());
}
} // namespace llvm