Kazu Hirata 0a81ace004 [mlir] Use std::optional instead of llvm::Optional (NFC)
This patch replaces (llvm::|)Optional< with std::optional<.  I'll post
a separate patch to remove #include "llvm/ADT/Optional.h".

This is part of an effort to migrate from llvm::Optional to
std::optional:

https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
2023-01-14 01:25:58 -08:00

1041 lines
43 KiB
C++

//===- SparseTensorCodegen.cpp - Sparse tensor primitives conversion ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pass that converts sparse tensor types and primitives to actual compiler
// visible buffers and actual compiler IR that implements these primitives on
// the selected sparse tensor storage schemes. This pass provides an alternative
// to the SparseTensorConversion pass, eliminating the dependence on a runtime
// support library, and providing much more opportunities for subsequent
// compiler optimization of the generated code.
//
//===----------------------------------------------------------------------===//
#include "CodegenUtils.h"
#include "SparseTensorStorageLayout.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/DialectConversion.h"
#include <optional>
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
using FuncGeneratorType =
function_ref<void(OpBuilder &, ModuleOp, func::FuncOp, RankedTensorType)>;
static constexpr const char kInsertFuncNamePrefix[] = "_insert_";
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
/// Flatten a list of operands that may contain sparse tensors.
static void flattenOperands(ValueRange operands,
SmallVectorImpl<Value> &flattened) {
// In case of
// sparse_tensor, c, sparse_tensor
// ==>
// memref ..., c, memref ...
for (auto operand : operands) {
if (getSparseTensorEncoding(operand.getType())) {
auto tuple = getTuple(operand);
// An unrealized_conversion_cast will be inserted by type converter to
// inter-mix the gap between 1:N conversion between sparse tensors and
// fields. In this case, take the operands in the cast and replace the
// sparse tensor output with the flattened type array.
flattened.append(tuple.getOperands().begin(), tuple.getOperands().end());
} else {
flattened.push_back(operand);
}
}
}
/// Adds index conversions where needed.
static Value toType(OpBuilder &builder, Location loc, Value value, Type tp) {
if (value.getType() != tp)
return builder.create<arith::IndexCastOp>(loc, tp, value);
return value;
}
/// Generates a load with proper index typing.
static Value genLoad(OpBuilder &builder, Location loc, Value mem, Value idx) {
idx = toType(builder, loc, idx, builder.getIndexType());
return builder.create<memref::LoadOp>(loc, mem, idx);
}
/// Generates a store with proper index typing and (for indices) proper value.
static void genStore(OpBuilder &builder, Location loc, Value val, Value mem,
Value idx) {
idx = toType(builder, loc, idx, builder.getIndexType());
val = toType(builder, loc, val,
mem.getType().cast<ShapedType>().getElementType());
builder.create<memref::StoreOp>(loc, val, mem, idx);
}
/// Creates a straightforward counting for-loop.
static scf::ForOp createFor(OpBuilder &builder, Location loc, Value upper,
MutableArrayRef<Value> fields,
Value lower = Value()) {
Type indexType = builder.getIndexType();
if (!lower)
lower = constantZero(builder, loc, indexType);
Value one = constantOne(builder, loc, indexType);
scf::ForOp forOp = builder.create<scf::ForOp>(loc, lower, upper, one, fields);
for (unsigned i = 0, e = fields.size(); i < e; i++)
fields[i] = forOp.getRegionIterArg(i);
builder.setInsertionPointToStart(forOp.getBody());
return forOp;
}
/// Gets the dimension size for the given sparse tensor at the given
/// original dimension 'dim'. Returns std::nullopt if no sparse encoding is
/// attached to the given tensor type.
static std::optional<Value>
sizeFromTensorAtDim(OpBuilder &builder, Location loc,
const SparseTensorDescriptor &desc, unsigned dim) {
RankedTensorType rtp = desc.getTensorType();
// Access into static dimension can query original type directly.
// Note that this is typically already done by DimOp's folding.
auto shape = rtp.getShape();
if (!ShapedType::isDynamic(shape[dim]))
return constantIndex(builder, loc, shape[dim]);
// Any other query can consult the dimSizes array at field DimSizesIdx,
// accounting for the reordering applied to the sparse storage.
return desc.getDimSize(builder, loc, toStoredDim(rtp, dim));
}
// Gets the dimension size at the given stored dimension 'd', either as a
// constant for a static size, or otherwise dynamically through memSizes.
Value sizeAtStoredDim(OpBuilder &builder, Location loc,
MutSparseTensorDescriptor desc, unsigned d) {
RankedTensorType rtp = desc.getTensorType();
unsigned dim = toOrigDim(rtp, d);
auto shape = rtp.getShape();
if (!ShapedType::isDynamic(shape[dim]))
return constantIndex(builder, loc, shape[dim]);
return desc.getDimSize(builder, loc, d);
}
static void createPushback(OpBuilder &builder, Location loc,
MutSparseTensorDescriptor desc,
SparseTensorFieldKind kind,
std::optional<unsigned> dim, Value value,
Value repeat = Value()) {
Type etp = desc.getMemRefElementType(kind, dim);
Value field = desc.getMemRefField(kind, dim);
StorageSpecifierKind specFieldKind = toSpecifierKind(kind);
auto pushBackOp = builder.create<PushBackOp>(
loc, desc.getSpecifierField(builder, loc, specFieldKind, dim), field,
toType(builder, loc, value, etp), repeat);
desc.setMemRefField(kind, dim, pushBackOp.getOutBuffer());
desc.setSpecifierField(builder, loc, specFieldKind, dim,
pushBackOp.getNewSize());
}
/// Generates code that allocates a sparse storage scheme for given rank.
static void allocSchemeForRank(OpBuilder &builder, Location loc,
MutSparseTensorDescriptor desc, unsigned r0) {
RankedTensorType rtp = desc.getTensorType();
unsigned rank = rtp.getShape().size();
Value linear = constantIndex(builder, loc, 1);
for (unsigned r = r0; r < rank; r++) {
if (isCompressedDim(rtp, r)) {
// Append linear x pointers, initialized to zero. Since each compressed
// dimension initially already has a single zero entry, this maintains
// the desired "linear + 1" length property at all times.
Type ptrType = getSparseTensorEncoding(rtp).getPointerType();
Value ptrZero = constantZero(builder, loc, ptrType);
createPushback(builder, loc, desc, SparseTensorFieldKind::PtrMemRef, r,
ptrZero, linear);
return;
}
if (isSingletonDim(rtp, r)) {
return; // nothing to do
}
// Keep compounding the size, but nothing needs to be initialized
// at this level. We will eventually reach a compressed level or
// otherwise the values array for the from-here "all-dense" case.
assert(isDenseDim(rtp, r));
Value size = sizeAtStoredDim(builder, loc, desc, r);
linear = builder.create<arith::MulIOp>(loc, linear, size);
}
// Reached values array so prepare for an insertion.
Value valZero = constantZero(builder, loc, rtp.getElementType());
createPushback(builder, loc, desc, SparseTensorFieldKind::ValMemRef,
std::nullopt, valZero, linear);
}
/// Creates allocation operation.
static Value createAllocation(OpBuilder &builder, Location loc,
MemRefType memRefType, Value sz,
bool enableInit) {
Value buffer = builder.create<memref::AllocOp>(loc, memRefType, sz);
Type elemType = memRefType.getElementType();
if (enableInit) {
Value fillValue = constantZero(builder, loc, elemType);
builder.create<linalg::FillOp>(loc, fillValue, buffer);
}
return buffer;
}
/// Creates allocation for each field in sparse tensor type. Note that
/// for all dynamic memrefs, the memory size is really the capacity of
/// the "vector", while the actual size resides in the sizes array.
///
/// TODO: for efficiency, we will need heuristis to make educated guesses
/// on the required capacities (see heuristic variable).
///
static void createAllocFields(OpBuilder &builder, Location loc, Type type,
ValueRange dynSizes, bool enableInit,
SmallVectorImpl<Value> &fields) {
RankedTensorType rtp = type.cast<RankedTensorType>();
// Build original sizes.
SmallVector<Value> sizes;
auto shape = rtp.getShape();
unsigned rank = shape.size();
for (unsigned r = 0, o = 0; r < rank; r++) {
if (ShapedType::isDynamic(shape[r]))
sizes.push_back(dynSizes[o++]);
else
sizes.push_back(constantIndex(builder, loc, shape[r]));
}
Value heuristic = constantIndex(builder, loc, 16);
Value valHeuristic = heuristic;
SparseTensorEncodingAttr enc = getSparseTensorEncoding(rtp);
if (enc.isAllDense()) {
Value linear = sizes[0];
for (unsigned r = 1; r < rank; r++) {
linear = builder.create<arith::MulIOp>(loc, linear, sizes[r]);
}
valHeuristic = linear;
}
foreachFieldAndTypeInSparseTensor(
rtp,
[&builder, &fields, rtp, loc, heuristic, valHeuristic,
enableInit](Type fType, unsigned fIdx, SparseTensorFieldKind fKind,
unsigned /*dim*/, DimLevelType /*dlt*/) -> bool {
assert(fields.size() == fIdx);
Value field;
switch (fKind) {
case SparseTensorFieldKind::StorageSpec:
field = SparseTensorSpecifier::getInitValue(builder, loc, rtp);
break;
case SparseTensorFieldKind::PtrMemRef:
case SparseTensorFieldKind::IdxMemRef:
case SparseTensorFieldKind::ValMemRef:
field = createAllocation(builder, loc, fType.cast<MemRefType>(),
fKind == SparseTensorFieldKind::ValMemRef
? valHeuristic
: heuristic,
enableInit);
break;
}
assert(field);
fields.push_back(field);
// Returns true to continue the iteration.
return true;
});
MutSparseTensorDescriptor desc(rtp, fields);
// Initialize the storage scheme to an empty tensor. Initialized memSizes
// to all zeros, sets the dimSizes to known values and gives all pointer
// fields an initial zero entry, so that it is easier to maintain the
// "linear + 1" length property.
Value ptrZero =
constantZero(builder, loc, getSparseTensorEncoding(rtp).getPointerType());
for (unsigned r = 0; r < rank; r++) {
unsigned ro = toOrigDim(rtp, r);
// Fills dim sizes array.
desc.setDimSize(builder, loc, r, sizes[ro]);
// Pushes a leading zero to pointers memref.
if (isCompressedDim(rtp, r)) {
createPushback(builder, loc, desc, SparseTensorFieldKind::PtrMemRef, r,
ptrZero);
}
}
allocSchemeForRank(builder, loc, desc, /*rank=*/0);
}
/// Helper method that generates block specific to compressed case:
///
/// plo = pointers[d][pos[d-1]]
/// phi = pointers[d][pos[d-1]+1]
/// msz = indices[d].size()
/// if (plo < phi) {
/// present = indices[d][phi-1] == i[d]
/// } else { // first insertion
/// present = false
/// pointers[d][pos[d-1]] = msz
/// }
/// if (present) { // index already present
/// next = phi-1
/// } else {
/// indices[d].push_back(i[d])
/// pointers[d][pos[d-1]+1] = msz+1
/// next = msz
/// <prepare dimension d + 1>
/// }
/// pos[d] = next
static Value genCompressed(OpBuilder &builder, Location loc,
MutSparseTensorDescriptor desc,
SmallVectorImpl<Value> &indices, Value value,
Value pos, unsigned d) {
RankedTensorType rtp = desc.getTensorType();
unsigned rank = rtp.getShape().size();
SmallVector<Type> types;
Type indexType = builder.getIndexType();
Type boolType = builder.getIntegerType(1);
unsigned idxIndex;
unsigned idxStride;
std::tie(idxIndex, idxStride) = desc.getIdxMemRefIndexAndStride(d);
Value one = constantIndex(builder, loc, 1);
Value pp1 = builder.create<arith::AddIOp>(loc, pos, one);
Value plo = genLoad(builder, loc, desc.getPtrMemRef(d), pos);
Value phi = genLoad(builder, loc, desc.getPtrMemRef(d), pp1);
Value msz = desc.getIdxMemSize(builder, loc, d);
Value idxStrideC;
if (idxStride > 1) {
idxStrideC = constantIndex(builder, loc, idxStride);
msz = builder.create<arith::DivUIOp>(loc, msz, idxStrideC);
}
Value phim1 = builder.create<arith::SubIOp>(
loc, toType(builder, loc, phi, indexType), one);
// Conditional expression.
Value lt =
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, plo, phi);
types.push_back(boolType);
scf::IfOp ifOp1 = builder.create<scf::IfOp>(loc, types, lt, /*else*/ true);
types.pop_back();
builder.setInsertionPointToStart(&ifOp1.getThenRegion().front());
Value crd = genLoad(
builder, loc, desc.getMemRefField(idxIndex),
idxStride > 1 ? builder.create<arith::MulIOp>(loc, phim1, idxStrideC)
: phim1);
Value eq = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
toType(builder, loc, crd, indexType),
indices[d]);
builder.create<scf::YieldOp>(loc, eq);
builder.setInsertionPointToStart(&ifOp1.getElseRegion().front());
if (d > 0)
genStore(builder, loc, msz, desc.getPtrMemRef(d), pos);
builder.create<scf::YieldOp>(loc, constantI1(builder, loc, false));
builder.setInsertionPointAfter(ifOp1);
Value p = ifOp1.getResult(0);
// If present construct. Note that for a non-unique dimension level, we
// simply set the condition to false and rely on CSE/DCE to clean up the IR.
//
// TODO: generate less temporary IR?
//
for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
types.push_back(desc.getField(i).getType());
types.push_back(indexType);
if (!isUniqueDim(rtp, d))
p = constantI1(builder, loc, false);
scf::IfOp ifOp2 = builder.create<scf::IfOp>(loc, types, p, /*else*/ true);
// If present (fields unaffected, update next to phim1).
builder.setInsertionPointToStart(&ifOp2.getThenRegion().front());
// FIXME: This does not looks like a clean way, but probably the most
// efficient way.
desc.getFields().push_back(phim1);
builder.create<scf::YieldOp>(loc, desc.getFields());
desc.getFields().pop_back();
// If !present (changes fields, update next).
builder.setInsertionPointToStart(&ifOp2.getElseRegion().front());
Value mszp1 = builder.create<arith::AddIOp>(loc, msz, one);
genStore(builder, loc, mszp1, desc.getPtrMemRef(d), pp1);
createPushback(builder, loc, desc, SparseTensorFieldKind::IdxMemRef, d,
indices[d]);
// Prepare the next dimension "as needed".
if ((d + 1) < rank)
allocSchemeForRank(builder, loc, desc, d + 1);
desc.getFields().push_back(msz);
builder.create<scf::YieldOp>(loc, desc.getFields());
desc.getFields().pop_back();
// Update fields and return next pos.
builder.setInsertionPointAfter(ifOp2);
unsigned o = 0;
for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
desc.setField(i, ifOp2.getResult(o++));
return ifOp2.getResult(o);
}
/// Generates code along an insertion path without the need for a "cursor".
/// This current insertion strategy comes at the expense of some testing
/// overhead for each insertion. The strategy will be optimized later for
/// common insertion patterns. The current insertion strategy also assumes
/// insertions occur in "a reasonable order" that enables building the
/// storage scheme in an appending/inserting kind of fashion (i.e. no
/// in-between insertions that need data movement). The implementation
/// relies on CSE/DCE to clean up all bookkeeping that is not needed.
///
/// TODO: better unord/not-unique; also generalize, optimize, specialize!
///
static void genInsertBody(OpBuilder &builder, ModuleOp module,
func::FuncOp func, RankedTensorType rtp) {
OpBuilder::InsertionGuard insertionGuard(builder);
Block *entryBlock = func.addEntryBlock();
builder.setInsertionPointToStart(entryBlock);
Location loc = func.getLoc();
ValueRange args = entryBlock->getArguments();
unsigned rank = rtp.getShape().size();
// Construct fields and indices arrays from parameters.
ValueRange tmp = args.drop_back(rank + 1);
SmallVector<Value> fields(tmp.begin(), tmp.end());
MutSparseTensorDescriptor desc(rtp, fields);
tmp = args.take_back(rank + 1).drop_back();
SmallVector<Value> indices(tmp.begin(), tmp.end());
Value value = args.back();
Value pos = constantZero(builder, loc, builder.getIndexType());
// Generate code for every dimension.
for (unsigned d = 0; d < rank; d++) {
if (isCompressedDim(rtp, d)) {
// Create:
// if (!present) {
// indices[d].push_back(i[d])
// <update pointers and prepare dimension d + 1>
// }
// pos[d] = indices.size() - 1
// <insert @ pos[d] at next dimension d + 1>
pos = genCompressed(builder, loc, desc, indices, value, pos, d);
} else if (isSingletonDim(rtp, d)) {
// Create:
// indices[d].push_back(i[d])
// pos[d] = pos[d-1]
// <insert @ pos[d] at next dimension d + 1>
createPushback(builder, loc, desc, SparseTensorFieldKind::IdxMemRef, d,
indices[d]);
} else {
assert(isDenseDim(rtp, d));
// Construct the new position as:
// pos[d] = size * pos[d-1] + i[d]
// <insert @ pos[d] at next dimension d + 1>
Value size = sizeAtStoredDim(builder, loc, desc, d);
Value mult = builder.create<arith::MulIOp>(loc, size, pos);
pos = builder.create<arith::AddIOp>(loc, mult, indices[d]);
}
}
// Reached the actual value append/insert.
if (!isDenseDim(rtp, rank - 1))
createPushback(builder, loc, desc, SparseTensorFieldKind::ValMemRef,
std::nullopt, value);
else
genStore(builder, loc, value, desc.getValMemRef(), pos);
builder.create<func::ReturnOp>(loc, fields);
}
/// Generates a call to a function to perform an insertion operation. If the
/// function doesn't exist yet, call `createFunc` to generate the function.
static void genInsertionCallHelper(OpBuilder &builder,
MutSparseTensorDescriptor desc,
SmallVectorImpl<Value> &indices, Value value,
func::FuncOp insertPoint,
StringRef namePrefix,
FuncGeneratorType createFunc) {
// The mangled name of the function has this format:
// <namePrefix>_<DLT>_<shape>_<ordering>_<eltType>
// _<indexBitWidth>_<pointerBitWidth>
RankedTensorType rtp = desc.getTensorType();
SmallString<32> nameBuffer;
llvm::raw_svector_ostream nameOstream(nameBuffer);
nameOstream << namePrefix;
unsigned rank = rtp.getShape().size();
assert(rank == indices.size());
for (unsigned d = 0; d < rank; d++) {
nameOstream << toMLIRString(getDimLevelType(rtp, d)) << "_";
}
// Static dim sizes are used in the generated code while dynamic sizes are
// loaded from the dimSizes buffer. This is the reason for adding the shape
// to the function name.
for (auto d : rtp.getShape())
nameOstream << d << "_";
SparseTensorEncodingAttr enc = getSparseTensorEncoding(rtp);
// Permutation information is also used in generating insertion.
if (enc.getDimOrdering() && !enc.getDimOrdering().isIdentity())
nameOstream << enc.getDimOrdering() << "_";
nameOstream << rtp.getElementType() << "_";
nameOstream << enc.getIndexBitWidth() << "_" << enc.getPointerBitWidth();
// Look up the function.
ModuleOp module = insertPoint->getParentOfType<ModuleOp>();
MLIRContext *context = module.getContext();
auto result = SymbolRefAttr::get(context, nameOstream.str());
auto func = module.lookupSymbol<func::FuncOp>(result.getAttr());
// Construct parameters for fields and indices.
SmallVector<Value> operands(desc.getFields().begin(), desc.getFields().end());
operands.append(indices.begin(), indices.end());
operands.push_back(value);
Location loc = insertPoint.getLoc();
if (!func) {
// Create the function.
OpBuilder::InsertionGuard insertionGuard(builder);
builder.setInsertionPoint(insertPoint);
func = builder.create<func::FuncOp>(
loc, nameOstream.str(),
FunctionType::get(context, ValueRange(operands).getTypes(),
ValueRange(desc.getFields()).getTypes()));
func.setPrivate();
createFunc(builder, module, func, rtp);
}
// Generate a call to perform the insertion and update `fields` with values
// returned from the call.
func::CallOp call = builder.create<func::CallOp>(loc, func, operands);
for (size_t i = 0, e = desc.getNumFields(); i < e; i++) {
desc.getFields()[i] = call.getResult(i);
}
}
/// Generations insertion finalization code.
static void genEndInsert(OpBuilder &builder, Location loc,
MutSparseTensorDescriptor desc) {
RankedTensorType rtp = desc.getTensorType();
unsigned rank = rtp.getShape().size();
for (unsigned d = 0; d < rank; d++) {
if (isCompressedDim(rtp, d)) {
// Compressed dimensions need a pointer cleanup for all entries
// that were not visited during the insertion pass.
//
// TODO: avoid cleanup and keep compressed scheme consistent at all
// times?
//
if (d > 0) {
Type ptrType = getSparseTensorEncoding(rtp).getPointerType();
Value ptrMemRef = desc.getPtrMemRef(d);
Value hi = desc.getPtrMemSize(builder, loc, d);
Value zero = constantIndex(builder, loc, 0);
Value one = constantIndex(builder, loc, 1);
// Vector of only one, but needed by createFor's prototype.
SmallVector<Value, 1> inits{genLoad(builder, loc, ptrMemRef, zero)};
scf::ForOp loop = createFor(builder, loc, hi, inits, one);
Value i = loop.getInductionVar();
Value oldv = loop.getRegionIterArg(0);
Value newv = genLoad(builder, loc, ptrMemRef, i);
Value ptrZero = constantZero(builder, loc, ptrType);
Value cond = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, newv, ptrZero);
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, TypeRange(ptrType),
cond, /*else*/ true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
genStore(builder, loc, oldv, ptrMemRef, i);
builder.create<scf::YieldOp>(loc, oldv);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<scf::YieldOp>(loc, newv);
builder.setInsertionPointAfter(ifOp);
builder.create<scf::YieldOp>(loc, ifOp.getResult(0));
builder.setInsertionPointAfter(loop);
}
} else {
assert(isDenseDim(rtp, d) || isSingletonDim(rtp, d));
}
}
}
//===----------------------------------------------------------------------===//
// Codegen rules.
//===----------------------------------------------------------------------===//
/// Sparse tensor storage conversion rule for returns.
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
SmallVector<Value> flattened;
flattenOperands(adaptor.getOperands(), flattened);
// Create a return with the flattened value extracted from sparse tensors.
rewriter.replaceOpWithNewOp<func::ReturnOp>(op, flattened);
return success();
}
};
/// Sparse tensor storage conversion rule for calls.
class SparseCallConverter : public OpConversionPattern<func::CallOp> {
public:
// The default CallOp converter can not handle 1:N type conversion.
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::CallOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
// In case of:
// sparse_tensor, f, sparse_tensor = call @foo(...)
// ==>
// memref..., f, memref = call @foo(...) replace with
// cast(memref...)->sparse_tensor, f, cast(memref...)->sparse_tensor
SmallVector<Type> finalRetTy;
if (failed(typeConverter->convertTypes(op.getResultTypes(), finalRetTy)))
return failure();
// (1) Genereates new call with flattened return value.
SmallVector<Value> flattened;
flattenOperands(adaptor.getOperands(), flattened);
auto newCall = rewriter.create<func::CallOp>(loc, op.getCallee(),
finalRetTy, flattened);
// (2) Create cast operation for sparse tensor returns.
SmallVector<Value> castedRet;
// Tracks the offset of current return value (of the orignal call)
// relative to the new call (after sparse tensor flattening);
unsigned retOffset = 0;
// Temporal buffer to hold the flattened list of type for
// a sparse tensor.
SmallVector<Type> sparseFlat;
for (auto ret : op.getResults()) {
assert(retOffset < newCall.getNumResults());
auto retType = ret.getType();
if (failed(typeConverter->convertType(retType, sparseFlat)))
// This should never happen.
llvm_unreachable("Failed to convert type in sparse tensor codegen");
// Converted types can not be empty when the type conversion succeed.
assert(!sparseFlat.empty());
if (sparseFlat.size() > 1) {
auto flatSize = sparseFlat.size();
ValueRange fields(iterator_range<ResultRange::iterator>(
newCall.result_begin() + retOffset,
newCall.result_begin() + retOffset + flatSize));
castedRet.push_back(genTuple(rewriter, loc, retType, fields));
retOffset += flatSize;
} else {
// If this is an 1:1 conversion, no need for casting.
castedRet.push_back(newCall.getResult(retOffset));
retOffset++;
}
sparseFlat.clear();
}
assert(castedRet.size() == op.getNumResults());
rewriter.replaceOp(op, castedRet);
return success();
}
};
/// Sparse codegen rule for dimension accesses.
class SparseDimOpConverter : public OpConversionPattern<tensor::DimOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
std::optional<int64_t> index = op.getConstantIndex();
if (!index || !getSparseTensorEncoding(adaptor.getSource().getType()))
return failure();
auto desc = getDescriptorFromTensorTuple(adaptor.getSource());
auto sz = sizeFromTensorAtDim(rewriter, op.getLoc(), desc, *index);
if (!sz)
return failure();
rewriter.replaceOp(op, *sz);
return success();
}
};
/// Sparse codegen rule for trivial tensor casts.
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only rewrite identically annotated source/dest.
auto encDst = getSparseTensorEncoding(op.getType());
auto encSrc = getSparseTensorEncoding(op.getSource().getType());
if (!encDst || encDst != encSrc)
return failure();
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse codgen rule for the alloc operator.
class SparseTensorAllocConverter
: public OpConversionPattern<bufferization::AllocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
SparseTensorAllocConverter(TypeConverter &typeConverter, MLIRContext *context,
bool enableInit)
: OpConversionPattern(typeConverter, context),
enableBufferInitialization(enableInit) {}
LogicalResult
matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
RankedTensorType resType = op.getType();
auto enc = getSparseTensorEncoding(resType);
if (!enc)
return failure();
if (op.getCopy())
return rewriter.notifyMatchFailure(op, "tensor copy not implemented");
// Construct allocation for each field.
Location loc = op.getLoc();
SmallVector<Value> fields;
createAllocFields(rewriter, loc, resType, adaptor.getOperands(),
enableBufferInitialization, fields);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op, genTuple(rewriter, loc, resType, fields));
return success();
}
private:
bool enableBufferInitialization;
};
/// Sparse codegen rule for the dealloc operator.
class SparseTensorDeallocConverter
: public OpConversionPattern<bufferization::DeallocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto enc = getSparseTensorEncoding(op.getTensor().getType());
if (!enc)
return failure();
// Replace the sparse tensor deallocation with field deallocations.
Location loc = op.getLoc();
SmallVector<Value> fields;
auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields);
for (auto input : desc.getMemRefFields())
// Deallocate every buffer used to store the sparse tensor handler.
rewriter.create<memref::DeallocOp>(loc, input);
rewriter.eraseOp(op);
return success();
}
};
/// Sparse codegen rule for tensor rematerialization.
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(LoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Prepare descriptor.
SmallVector<Value> fields;
auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields);
// Generate optional insertion finalization code.
if (op.getHasInserts())
genEndInsert(rewriter, op.getLoc(), desc);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op, genTuple(rewriter, op.getLoc(), desc));
return success();
}
};
/// Sparse codegen rule for the expand op.
class SparseExpandConverter : public OpConversionPattern<ExpandOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!getSparseTensorEncoding(op.getTensor().getType()))
return failure();
Location loc = op->getLoc();
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
RankedTensorType srcType =
op.getTensor().getType().cast<RankedTensorType>();
Type eltType = srcType.getElementType();
Type boolType = rewriter.getIntegerType(1);
Type idxType = rewriter.getIndexType();
// All initialization should be done on entry of the loop nest.
rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
// Determine the size for access expansion (always the innermost stored
// dimension size, translated back to original dimension). Note that we
// recursively rewrite the new DimOp on the **original** tensor.
unsigned innerDim = toOrigDim(srcType, srcType.getRank() - 1);
auto sz = sizeFromTensorAtDim(rewriter, loc, desc, innerDim);
assert(sz); // This for sure is a sparse tensor
// Generate a memref for `sz` elements of type `t`.
auto genAlloc = [&](Type t) {
auto memTp = MemRefType::get({ShapedType::kDynamic}, t);
return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{*sz});
};
// Allocate temporary buffers for values/filled-switch and added.
// We do not use stack buffers for this, since the expanded size may
// be rather large (as it envelops a single expanded dense dimension).
Value values = genAlloc(eltType);
Value filled = genAlloc(boolType);
Value added = genAlloc(idxType);
Value zero = constantZero(rewriter, loc, idxType);
// Reset the values/filled-switch to all-zero/false. Note that this
// introduces an O(N) operation into the computation, but this reset
// operation is amortized over the innermost loops for the access
// pattern expansion. As noted in the operation doc, we would like
// to amortize this setup cost even between kernels.
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, eltType)},
ValueRange{values});
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, boolType)},
ValueRange{filled});
// Replace expansion op with these buffers and initial index.
assert(op.getNumResults() == 4);
rewriter.replaceOp(op, {values, filled, added, zero});
return success();
}
};
/// Sparse codegen rule for the compress operator.
class SparseCompressConverter : public OpConversionPattern<CompressOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CompressOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
SmallVector<Value> fields;
auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields);
Value values = adaptor.getValues();
Value filled = adaptor.getFilled();
Value added = adaptor.getAdded();
Value count = adaptor.getCount();
RankedTensorType dstType = desc.getTensorType();
Type eltType = dstType.getElementType();
// Prepare indices.
SmallVector<Value> indices(adaptor.getIndices());
// If the innermost dimension is ordered, we need to sort the indices
// in the "added" array prior to applying the compression.
unsigned rank = dstType.getShape().size();
if (isOrderedDim(dstType, rank - 1))
rewriter.create<SortOp>(loc, count, ValueRange{added}, ValueRange{});
// While performing the insertions, we also need to reset the elements
// of the values/filled-switch by only iterating over the set elements,
// to ensure that the runtime complexity remains proportional to the
// sparsity of the expanded access pattern.
//
// Generate
// out_memrefs = for (i = 0; i < count; i++)(in_memrefs) {
// index = added[i];
// value = values[index];
// insert({prev_indices, index}, value);
// new_memrefs = insert(in_memrefs, {prev_indices, index}, value);
// values[index] = 0;
// filled[index] = false;
// yield new_memrefs
// }
scf::ForOp loop = createFor(rewriter, loc, count, desc.getFields());
Value i = loop.getInductionVar();
Value index = genLoad(rewriter, loc, added, i);
Value value = genLoad(rewriter, loc, values, index);
indices.push_back(index);
// TODO: faster for subsequent insertions?
auto insertPoint = op->template getParentOfType<func::FuncOp>();
genInsertionCallHelper(rewriter, desc, indices, value, insertPoint,
kInsertFuncNamePrefix, genInsertBody);
genStore(rewriter, loc, constantZero(rewriter, loc, eltType), values,
index);
genStore(rewriter, loc, constantI1(rewriter, loc, false), filled, index);
rewriter.create<scf::YieldOp>(loc, desc.getFields());
rewriter.setInsertionPointAfter(loop);
Value result = genTuple(rewriter, loc, dstType, loop->getResults());
// Deallocate the buffers on exit of the full loop nest.
Operation *parent = getTop(op);
rewriter.setInsertionPointAfter(parent);
rewriter.create<memref::DeallocOp>(loc, values);
rewriter.create<memref::DeallocOp>(loc, filled);
rewriter.create<memref::DeallocOp>(loc, added);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op, result);
return success();
}
};
/// Sparse codegen rule for the insert operator.
class SparseInsertConverter : public OpConversionPattern<InsertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(InsertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
SmallVector<Value> fields;
auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields);
// Prepare and indices.
SmallVector<Value> indices(adaptor.getIndices());
// Generate insertion.
Value value = adaptor.getValue();
auto insertPoint = op->template getParentOfType<func::FuncOp>();
genInsertionCallHelper(rewriter, desc, indices, value, insertPoint,
kInsertFuncNamePrefix, genInsertBody);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op, genTuple(rewriter, op.getLoc(), desc));
return success();
}
};
/// Sparse codegen rule for pointer accesses.
class SparseToPointersConverter : public OpConversionPattern<ToPointersOp> {
public:
using OpAdaptor = typename ToPointersOp::Adaptor;
using OpConversionPattern<ToPointersOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested pointer access with corresponding field.
// The cast_op is inserted by type converter to intermix 1:N type
// conversion.
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
uint64_t dim = op.getDimension().getZExtValue();
rewriter.replaceOp(op, desc.getPtrMemRef(dim));
return success();
}
};
/// Sparse codegen rule for index accesses.
class SparseToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
public:
using OpAdaptor = typename ToIndicesOp::Adaptor;
using OpConversionPattern<ToIndicesOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested pointer access with corresponding field.
// The cast_op is inserted by type converter to intermix 1:N type
// conversion.
Location loc = op.getLoc();
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
uint64_t dim = op.getDimension().getZExtValue();
Value field = desc.getIdxMemRefOrView(rewriter, loc, dim);
// Insert a cast to bridge the actual type to the user expected type. If the
// actual type and the user expected type aren't compatible, the compiler or
// the runtime will issue an error.
Type resType = op.getResult().getType();
if (resType != field.getType())
field = rewriter.create<memref::CastOp>(loc, resType, field);
rewriter.replaceOp(op, field);
return success();
}
};
/// Sparse codegen rule for accessing the linear indices buffer.
class SparseToIndicesBufferConverter
: public OpConversionPattern<ToIndicesBufferOp> {
public:
using OpAdaptor = typename ToIndicesBufferOp::Adaptor;
using OpConversionPattern<ToIndicesBufferOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToIndicesBufferOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested pointer access with corresponding field.
// The cast_op is inserted by type converter to intermix 1:N type
// conversion.
SmallVector<Value> fields;
auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields);
rewriter.replaceOp(op, desc.getAOSMemRef());
return success();
}
};
/// Sparse codegen rule for value accesses.
class SparseToValuesConverter : public OpConversionPattern<ToValuesOp> {
public:
using OpAdaptor = typename ToValuesOp::Adaptor;
using OpConversionPattern<ToValuesOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested pointer access with corresponding field.
// The cast_op is inserted by type converter to intermix 1:N type
// conversion.
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
rewriter.replaceOp(op, desc.getValMemRef());
return success();
}
};
/// Sparse codegen rule for the convert operator.
class SparseConvertConverter : public OpConversionPattern<ConvertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
SparseTensorEncodingAttr encDst = getSparseTensorEncoding(op.getType());
SparseTensorEncodingAttr encSrc =
getSparseTensorEncoding(op.getSource().getType());
if (encDst != encSrc) {
// This should be handled by rewriting before codegen.
return failure();
}
rewriter.replaceOp(op, adaptor.getSource());
return success();
}
};
/// Sparse codegen rule for number of entries operator.
class SparseNumberOfEntriesConverter
: public OpConversionPattern<NumberOfEntriesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NumberOfEntriesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Query memSizes for the actually stored values.
rewriter.replaceOp(
op, genValMemSize(rewriter, op.getLoc(), adaptor.getTensor()));
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Public method for populating conversion rules.
//===----------------------------------------------------------------------===//
/// Populates the given patterns list with conversion rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparseTensorCodegenPatterns(
TypeConverter &typeConverter, RewritePatternSet &patterns,
bool enableBufferInitialization) {
patterns.add<SparseReturnConverter, SparseCallConverter, SparseDimOpConverter,
SparseCastConverter, SparseTensorDeallocConverter,
SparseTensorLoadConverter, SparseExpandConverter,
SparseCompressConverter, SparseInsertConverter,
SparseToPointersConverter, SparseToIndicesConverter,
SparseToIndicesBufferConverter, SparseToValuesConverter,
SparseConvertConverter, SparseNumberOfEntriesConverter>(
typeConverter, patterns.getContext());
patterns.add<SparseTensorAllocConverter>(typeConverter, patterns.getContext(),
enableBufferInitialization);
}