
__clc_mem_fence and __clc_work_group_barrier function have two parameters memory_scope and memory_order. The design allows the clc functions to implement SPIR-V ControlBarrier and MemoryBarrier functions in the future. The default memory ordering in clc is set to __ATOMIC_SEQ_CST, which is also the default and strongest ordering in OpenCL and C++. OpenCL cl_mem_fence_flags parameter is converted to combination of __MEMORY_SCOPE_DEVICE and __MEMORY_SCOPE_WRKGRP, which is passed to clc. llvm-diff shows no change to nvptx64--nvidiacl.bc. llvm-diff show a small change to amdgcn--amdhsa.bc and the number of LLVM IR instruction is reduced by 1: https://alive2.llvm.org/ce/z/_Uhqvt
libclc
libclc is an open source implementation of the library requirements of the OpenCL C programming language, as specified by the OpenCL 1.1 Specification. The following sections of the specification impose library requirements:
- 6.1: Supported Data Types
- 6.2.3: Explicit Conversions
- 6.2.4.2: Reinterpreting Types Using as_type() and as_typen()
- 6.9: Preprocessor Directives and Macros
- 6.11: Built-in Functions
- 9.3: Double Precision Floating-Point
- 9.4: 64-bit Atomics
- 9.5: Writing to 3D image memory objects
- 9.6: Half Precision Floating-Point
libclc is intended to be used with the Clang compiler's OpenCL frontend.
libclc is designed to be portable and extensible. To this end, it provides generic implementations of most library requirements, allowing the target to override the generic implementation at the granularity of individual functions.
libclc currently supports PTX, AMDGPU, SPIRV and CLSPV targets, but support for more targets is welcome.
Compiling and installing
(in the following instructions you can use make
or ninja
)
For an in-tree build, Clang must also be built at the same time:
$ cmake <path-to>/llvm-project/llvm/CMakeLists.txt -DLLVM_ENABLE_PROJECTS="libclc;clang" \
-DCMAKE_BUILD_TYPE=Release -G Ninja
$ ninja
Then install:
$ ninja install
Note you can use the DESTDIR
Makefile variable to do staged installs.
$ DESTDIR=/path/for/staged/install ninja install
To build out of tree, or in other words, against an existing LLVM build or install:
$ cmake <path-to>/llvm-project/libclc/CMakeLists.txt -DCMAKE_BUILD_TYPE=Release \
-G Ninja -DLLVM_DIR=$(<path-to>/llvm-config --cmakedir)
$ ninja
Then install as before.
In both cases this will include all supported targets. You can choose which
targets are enabled by passing -DLIBCLC_TARGETS_TO_BUILD
to CMake. The default
is all
.
In both cases, the LLVM used must include the targets you want libclc support for
(AMDGPU
and NVPTX
are enabled in LLVM by default). Apart from SPIRV
where you do
not need an LLVM target but you do need the
llvm-spirv tool available.
Either build this in-tree, or place it in the directory pointed to by
LLVM_TOOLS_BINARY_DIR
.