llvm-project/clang/lib/StaticAnalyzer/Core/ConstraintManager.cpp
Gabor Marton 17e9ea6138 [analyzer][NFC] Add LLVM_UNLIKELY to assumeDualImpl
Aligned with the measures we had in D124674, this condition seems to be
unlikely.

Nevertheless, I've made some new measurments with stats just for this,
and data confirms this is indeed unlikely.

Differential Revision: https://reviews.llvm.org/D127190
2022-06-07 12:48:48 +02:00

124 lines
4.8 KiB
C++

//===- ConstraintManager.cpp - Constraints on symbolic values. ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defined the interface to manage constraints on symbolic values.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
#include "clang/AST/Type.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
#include "llvm/ADT/ScopeExit.h"
using namespace clang;
using namespace ento;
ConstraintManager::~ConstraintManager() = default;
static DefinedSVal getLocFromSymbol(const ProgramStateRef &State,
SymbolRef Sym) {
const MemRegion *R =
State->getStateManager().getRegionManager().getSymbolicRegion(Sym);
return loc::MemRegionVal(R);
}
ConditionTruthVal ConstraintManager::checkNull(ProgramStateRef State,
SymbolRef Sym) {
QualType Ty = Sym->getType();
DefinedSVal V = Loc::isLocType(Ty) ? getLocFromSymbol(State, Sym)
: nonloc::SymbolVal(Sym);
const ProgramStatePair &P = assumeDual(State, V);
if (P.first && !P.second)
return ConditionTruthVal(false);
if (!P.first && P.second)
return ConditionTruthVal(true);
return {};
}
template <typename AssumeFunction>
ConstraintManager::ProgramStatePair
ConstraintManager::assumeDualImpl(ProgramStateRef &State,
AssumeFunction &Assume) {
if (LLVM_UNLIKELY(State->isPosteriorlyOverconstrained()))
return {State, State};
// Assume functions might recurse (see `reAssume` or `tryRearrange`). During
// the recursion the State might not change anymore, that means we reached a
// fixpoint.
// We avoid infinite recursion of assume calls by checking already visited
// States on the stack of assume function calls.
const ProgramState *RawSt = State.get();
if (LLVM_UNLIKELY(AssumeStack.contains(RawSt)))
return {State, State};
AssumeStack.push(RawSt);
auto AssumeStackBuilder =
llvm::make_scope_exit([this]() { AssumeStack.pop(); });
ProgramStateRef StTrue = Assume(true);
if (!StTrue) {
ProgramStateRef StFalse = Assume(false);
if (LLVM_UNLIKELY(!StFalse)) { // both infeasible
ProgramStateRef StInfeasible = State->cloneAsPosteriorlyOverconstrained();
assert(StInfeasible->isPosteriorlyOverconstrained());
// Checkers might rely on the API contract that both returned states
// cannot be null. Thus, we return StInfeasible for both branches because
// it might happen that a Checker uncoditionally uses one of them if the
// other is a nullptr. This may also happen with the non-dual and
// adjacent `assume(true)` and `assume(false)` calls. By implementing
// assume in therms of assumeDual, we can keep our API contract there as
// well.
return ProgramStatePair(StInfeasible, StInfeasible);
}
return ProgramStatePair(nullptr, StFalse);
}
ProgramStateRef StFalse = Assume(false);
if (!StFalse) {
return ProgramStatePair(StTrue, nullptr);
}
return ProgramStatePair(StTrue, StFalse);
}
ConstraintManager::ProgramStatePair
ConstraintManager::assumeDual(ProgramStateRef State, DefinedSVal Cond) {
auto AssumeFun = [&](bool Assumption) {
return assumeInternal(State, Cond, Assumption);
};
return assumeDualImpl(State, AssumeFun);
}
ConstraintManager::ProgramStatePair
ConstraintManager::assumeInclusiveRangeDual(ProgramStateRef State, NonLoc Value,
const llvm::APSInt &From,
const llvm::APSInt &To) {
auto AssumeFun = [&](bool Assumption) {
return assumeInclusiveRangeInternal(State, Value, From, To, Assumption);
};
return assumeDualImpl(State, AssumeFun);
}
ProgramStateRef ConstraintManager::assume(ProgramStateRef State,
DefinedSVal Cond, bool Assumption) {
ConstraintManager::ProgramStatePair R = assumeDual(State, Cond);
return Assumption ? R.first : R.second;
}
ProgramStateRef
ConstraintManager::assumeInclusiveRange(ProgramStateRef State, NonLoc Value,
const llvm::APSInt &From,
const llvm::APSInt &To, bool InBound) {
ConstraintManager::ProgramStatePair R =
assumeInclusiveRangeDual(State, Value, From, To);
return InBound ? R.first : R.second;
}