llvm-project/llvm/lib/Transforms/Utils/SampleProfileInference.cpp
spupyrev 45b155924e [BOLT] using jump weights in profi
We want to use profile inference (profi) in BOLT for stale profile matching.
This is the second change for existing usages of profi (e.g., CSSPGO):

(i) Added the ability to provide (estimated) jump weights for the algorithm. The
goal of the algorithm is to create a valid control flow for a given function
(that is, one in which incoming counts equal outgoing counts for every basic
block while minimally modifying the original input block and jump weights). The
input jump weights will be provided based on collected LBR profiles in BOLT.

(ii) Added the corresponding options to ProfiParams.

(iii) Slightly modified / simplified the construction of the flow network in profi
so as it utilizes fewer auxiliary nodes. This is done by introducing parallel
edges to the network (which is supported by MMF) and reduces the size of the
network from 3*|V| to 2*|V|, where |V| is the number of basic blocks in the
function.

**Inference (profile quality) impact:**
The diff is supposed to be a no-op for the inferred counts. However, our
implementation of MCF is not fully deterministic and might return different
results depending on the input network model. Since we changed the model
construction, there are a few differences in comparison to the original
implementation. I checked manually on an internal benchmark and see a minor
difference (+/- 1 count for certain basic blocks) in just a dozen of instances
(out of 10000+ input functions). Hence, the diff is highly unlikely to have an
impact for existing prod workloads.

**Runtime impact:**
I measure up to 10% speedup for block-only (ie CSSPGO/AutoFDO) inference and up
to 50% speedup for block+jump inference (ie BOLT) in comparison to the original
unoptimized version.

Reviewed By: hoy

Differential Revision: https://reviews.llvm.org/D139870
2023-01-11 14:34:43 -08:00

1348 lines
49 KiB
C++

//===- SampleProfileInference.cpp - Adjust sample profiles in the IR ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a profile inference algorithm. Given an incomplete and
// possibly imprecise block counts, the algorithm reconstructs realistic block
// and edge counts that satisfy flow conservation rules, while minimally modify
// input block counts.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/SampleProfileInference.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <queue>
#include <set>
#include <stack>
using namespace llvm;
#define DEBUG_TYPE "sample-profile-inference"
namespace {
static cl::opt<bool> SampleProfileEvenFlowDistribution(
"sample-profile-even-flow-distribution", cl::init(true), cl::Hidden,
cl::desc("Try to evenly distribute flow when there are multiple equally "
"likely options."));
static cl::opt<bool> SampleProfileRebalanceUnknown(
"sample-profile-rebalance-unknown", cl::init(true), cl::Hidden,
cl::desc("Evenly re-distribute flow among unknown subgraphs."));
static cl::opt<bool> SampleProfileJoinIslands(
"sample-profile-join-islands", cl::init(true), cl::Hidden,
cl::desc("Join isolated components having positive flow."));
static cl::opt<unsigned> SampleProfileProfiCostBlockInc(
"sample-profile-profi-cost-block-inc", cl::init(10), cl::Hidden,
cl::desc("The cost of increasing a block's count by one."));
static cl::opt<unsigned> SampleProfileProfiCostBlockDec(
"sample-profile-profi-cost-block-dec", cl::init(20), cl::Hidden,
cl::desc("The cost of decreasing a block's count by one."));
static cl::opt<unsigned> SampleProfileProfiCostBlockEntryInc(
"sample-profile-profi-cost-block-entry-inc", cl::init(40), cl::Hidden,
cl::desc("The cost of increasing the entry block's count by one."));
static cl::opt<unsigned> SampleProfileProfiCostBlockEntryDec(
"sample-profile-profi-cost-block-entry-dec", cl::init(10), cl::Hidden,
cl::desc("The cost of decreasing the entry block's count by one."));
static cl::opt<unsigned> SampleProfileProfiCostBlockZeroInc(
"sample-profile-profi-cost-block-zero-inc", cl::init(11), cl::Hidden,
cl::desc("The cost of increasing a count of zero-weight block by one."));
static cl::opt<unsigned> SampleProfileProfiCostBlockUnknownInc(
"sample-profile-profi-cost-block-unknown-inc", cl::init(0), cl::Hidden,
cl::desc("The cost of increasing an unknown block's count by one."));
/// A value indicating an infinite flow/capacity/weight of a block/edge.
/// Not using numeric_limits<int64_t>::max(), as the values can be summed up
/// during the execution.
static constexpr int64_t INF = ((int64_t)1) << 50;
/// The minimum-cost maximum flow algorithm.
///
/// The algorithm finds the maximum flow of minimum cost on a given (directed)
/// network using a modified version of the classical Moore-Bellman-Ford
/// approach. The algorithm applies a number of augmentation iterations in which
/// flow is sent along paths of positive capacity from the source to the sink.
/// The worst-case time complexity of the implementation is O(v(f)*m*n), where
/// where m is the number of edges, n is the number of vertices, and v(f) is the
/// value of the maximum flow. However, the observed running time on typical
/// instances is sub-quadratic, that is, o(n^2).
///
/// The input is a set of edges with specified costs and capacities, and a pair
/// of nodes (source and sink). The output is the flow along each edge of the
/// minimum total cost respecting the given edge capacities.
class MinCostMaxFlow {
public:
MinCostMaxFlow(const ProfiParams &Params) : Params(Params) {}
// Initialize algorithm's data structures for a network of a given size.
void initialize(uint64_t NodeCount, uint64_t SourceNode, uint64_t SinkNode) {
Source = SourceNode;
Target = SinkNode;
Nodes = std::vector<Node>(NodeCount);
Edges = std::vector<std::vector<Edge>>(NodeCount, std::vector<Edge>());
if (Params.EvenFlowDistribution)
AugmentingEdges =
std::vector<std::vector<Edge *>>(NodeCount, std::vector<Edge *>());
}
// Run the algorithm.
int64_t run() {
LLVM_DEBUG(dbgs() << "Starting profi for " << Nodes.size() << " nodes\n");
// Iteratively find an augmentation path/dag in the network and send the
// flow along its edges
size_t AugmentationIters = applyFlowAugmentation();
// Compute the total flow and its cost
int64_t TotalCost = 0;
int64_t TotalFlow = 0;
for (uint64_t Src = 0; Src < Nodes.size(); Src++) {
for (auto &Edge : Edges[Src]) {
if (Edge.Flow > 0) {
TotalCost += Edge.Cost * Edge.Flow;
if (Src == Source)
TotalFlow += Edge.Flow;
}
}
}
LLVM_DEBUG(dbgs() << "Completed profi after " << AugmentationIters
<< " iterations with " << TotalFlow << " total flow"
<< " of " << TotalCost << " cost\n");
(void)TotalFlow;
(void)AugmentationIters;
return TotalCost;
}
/// Adding an edge to the network with a specified capacity and a cost.
/// Multiple edges between a pair of nodes are allowed but self-edges
/// are not supported.
void addEdge(uint64_t Src, uint64_t Dst, int64_t Capacity, int64_t Cost) {
assert(Capacity > 0 && "adding an edge of zero capacity");
assert(Src != Dst && "loop edge are not supported");
Edge SrcEdge;
SrcEdge.Dst = Dst;
SrcEdge.Cost = Cost;
SrcEdge.Capacity = Capacity;
SrcEdge.Flow = 0;
SrcEdge.RevEdgeIndex = Edges[Dst].size();
Edge DstEdge;
DstEdge.Dst = Src;
DstEdge.Cost = -Cost;
DstEdge.Capacity = 0;
DstEdge.Flow = 0;
DstEdge.RevEdgeIndex = Edges[Src].size();
Edges[Src].push_back(SrcEdge);
Edges[Dst].push_back(DstEdge);
}
/// Adding an edge to the network of infinite capacity and a given cost.
void addEdge(uint64_t Src, uint64_t Dst, int64_t Cost) {
addEdge(Src, Dst, INF, Cost);
}
/// Get the total flow from a given source node.
/// Returns a list of pairs (target node, amount of flow to the target).
const std::vector<std::pair<uint64_t, int64_t>> getFlow(uint64_t Src) const {
std::vector<std::pair<uint64_t, int64_t>> Flow;
for (const auto &Edge : Edges[Src]) {
if (Edge.Flow > 0)
Flow.push_back(std::make_pair(Edge.Dst, Edge.Flow));
}
return Flow;
}
/// Get the total flow between a pair of nodes.
int64_t getFlow(uint64_t Src, uint64_t Dst) const {
int64_t Flow = 0;
for (const auto &Edge : Edges[Src]) {
if (Edge.Dst == Dst) {
Flow += Edge.Flow;
}
}
return Flow;
}
private:
/// Iteratively find an augmentation path/dag in the network and send the
/// flow along its edges. The method returns the number of applied iterations.
size_t applyFlowAugmentation() {
size_t AugmentationIters = 0;
while (findAugmentingPath()) {
uint64_t PathCapacity = computeAugmentingPathCapacity();
while (PathCapacity > 0) {
bool Progress = false;
if (Params.EvenFlowDistribution) {
// Identify node/edge candidates for augmentation
identifyShortestEdges(PathCapacity);
// Find an augmenting DAG
auto AugmentingOrder = findAugmentingDAG();
// Apply the DAG augmentation
Progress = augmentFlowAlongDAG(AugmentingOrder);
PathCapacity = computeAugmentingPathCapacity();
}
if (!Progress) {
augmentFlowAlongPath(PathCapacity);
PathCapacity = 0;
}
AugmentationIters++;
}
}
return AugmentationIters;
}
/// Compute the capacity of the cannonical augmenting path. If the path is
/// saturated (that is, no flow can be sent along the path), then return 0.
uint64_t computeAugmentingPathCapacity() {
uint64_t PathCapacity = INF;
uint64_t Now = Target;
while (Now != Source) {
uint64_t Pred = Nodes[Now].ParentNode;
auto &Edge = Edges[Pred][Nodes[Now].ParentEdgeIndex];
assert(Edge.Capacity >= Edge.Flow && "incorrect edge flow");
uint64_t EdgeCapacity = uint64_t(Edge.Capacity - Edge.Flow);
PathCapacity = std::min(PathCapacity, EdgeCapacity);
Now = Pred;
}
return PathCapacity;
}
/// Check for existence of an augmenting path with a positive capacity.
bool findAugmentingPath() {
// Initialize data structures
for (auto &Node : Nodes) {
Node.Distance = INF;
Node.ParentNode = uint64_t(-1);
Node.ParentEdgeIndex = uint64_t(-1);
Node.Taken = false;
}
std::queue<uint64_t> Queue;
Queue.push(Source);
Nodes[Source].Distance = 0;
Nodes[Source].Taken = true;
while (!Queue.empty()) {
uint64_t Src = Queue.front();
Queue.pop();
Nodes[Src].Taken = false;
// Although the residual network contains edges with negative costs
// (in particular, backward edges), it can be shown that there are no
// negative-weight cycles and the following two invariants are maintained:
// (i) Dist[Source, V] >= 0 and (ii) Dist[V, Target] >= 0 for all nodes V,
// where Dist is the length of the shortest path between two nodes. This
// allows to prune the search-space of the path-finding algorithm using
// the following early-stop criteria:
// -- If we find a path with zero-distance from Source to Target, stop the
// search, as the path is the shortest since Dist[Source, Target] >= 0;
// -- If we have Dist[Source, V] > Dist[Source, Target], then do not
// process node V, as it is guaranteed _not_ to be on a shortest path
// from Source to Target; it follows from inequalities
// Dist[Source, Target] >= Dist[Source, V] + Dist[V, Target]
// >= Dist[Source, V]
if (!Params.EvenFlowDistribution && Nodes[Target].Distance == 0)
break;
if (Nodes[Src].Distance > Nodes[Target].Distance)
continue;
// Process adjacent edges
for (uint64_t EdgeIdx = 0; EdgeIdx < Edges[Src].size(); EdgeIdx++) {
auto &Edge = Edges[Src][EdgeIdx];
if (Edge.Flow < Edge.Capacity) {
uint64_t Dst = Edge.Dst;
int64_t NewDistance = Nodes[Src].Distance + Edge.Cost;
if (Nodes[Dst].Distance > NewDistance) {
// Update the distance and the parent node/edge
Nodes[Dst].Distance = NewDistance;
Nodes[Dst].ParentNode = Src;
Nodes[Dst].ParentEdgeIndex = EdgeIdx;
// Add the node to the queue, if it is not there yet
if (!Nodes[Dst].Taken) {
Queue.push(Dst);
Nodes[Dst].Taken = true;
}
}
}
}
}
return Nodes[Target].Distance != INF;
}
/// Update the current flow along the augmenting path.
void augmentFlowAlongPath(uint64_t PathCapacity) {
assert(PathCapacity > 0 && "found an incorrect augmenting path");
uint64_t Now = Target;
while (Now != Source) {
uint64_t Pred = Nodes[Now].ParentNode;
auto &Edge = Edges[Pred][Nodes[Now].ParentEdgeIndex];
auto &RevEdge = Edges[Now][Edge.RevEdgeIndex];
Edge.Flow += PathCapacity;
RevEdge.Flow -= PathCapacity;
Now = Pred;
}
}
/// Find an Augmenting DAG order using a modified version of DFS in which we
/// can visit a node multiple times. In the DFS search, when scanning each
/// edge out of a node, continue search at Edge.Dst endpoint if it has not
/// been discovered yet and its NumCalls < MaxDfsCalls. The algorithm
/// runs in O(MaxDfsCalls * |Edges| + |Nodes|) time.
/// It returns an Augmenting Order (Taken nodes in decreasing Finish time)
/// that starts with Source and ends with Target.
std::vector<uint64_t> findAugmentingDAG() {
// We use a stack based implemenation of DFS to avoid recursion.
// Defining DFS data structures:
// A pair (NodeIdx, EdgeIdx) at the top of the Stack denotes that
// - we are currently visiting Nodes[NodeIdx] and
// - the next edge to scan is Edges[NodeIdx][EdgeIdx]
typedef std::pair<uint64_t, uint64_t> StackItemType;
std::stack<StackItemType> Stack;
std::vector<uint64_t> AugmentingOrder;
// Phase 0: Initialize Node attributes and Time for DFS run
for (auto &Node : Nodes) {
Node.Discovery = 0;
Node.Finish = 0;
Node.NumCalls = 0;
Node.Taken = false;
}
uint64_t Time = 0;
// Mark Target as Taken
// Taken attribute will be propagated backwards from Target towards Source
Nodes[Target].Taken = true;
// Phase 1: Start DFS traversal from Source
Stack.emplace(Source, 0);
Nodes[Source].Discovery = ++Time;
while (!Stack.empty()) {
auto NodeIdx = Stack.top().first;
auto EdgeIdx = Stack.top().second;
// If we haven't scanned all edges out of NodeIdx, continue scanning
if (EdgeIdx < Edges[NodeIdx].size()) {
auto &Edge = Edges[NodeIdx][EdgeIdx];
auto &Dst = Nodes[Edge.Dst];
Stack.top().second++;
if (Edge.OnShortestPath) {
// If we haven't seen Edge.Dst so far, continue DFS search there
if (Dst.Discovery == 0 && Dst.NumCalls < MaxDfsCalls) {
Dst.Discovery = ++Time;
Stack.emplace(Edge.Dst, 0);
Dst.NumCalls++;
} else if (Dst.Taken && Dst.Finish != 0) {
// Else, if Edge.Dst already have a path to Target, so that NodeIdx
Nodes[NodeIdx].Taken = true;
}
}
} else {
// If we are done scanning all edge out of NodeIdx
Stack.pop();
// If we haven't found a path from NodeIdx to Target, forget about it
if (!Nodes[NodeIdx].Taken) {
Nodes[NodeIdx].Discovery = 0;
} else {
// If we have found a path from NodeIdx to Target, then finish NodeIdx
// and propagate Taken flag to DFS parent unless at the Source
Nodes[NodeIdx].Finish = ++Time;
// NodeIdx == Source if and only if the stack is empty
if (NodeIdx != Source) {
assert(!Stack.empty() && "empty stack while running dfs");
Nodes[Stack.top().first].Taken = true;
}
AugmentingOrder.push_back(NodeIdx);
}
}
}
// Nodes are collected decreasing Finish time, so the order is reversed
std::reverse(AugmentingOrder.begin(), AugmentingOrder.end());
// Phase 2: Extract all forward (DAG) edges and fill in AugmentingEdges
for (size_t Src : AugmentingOrder) {
AugmentingEdges[Src].clear();
for (auto &Edge : Edges[Src]) {
uint64_t Dst = Edge.Dst;
if (Edge.OnShortestPath && Nodes[Src].Taken && Nodes[Dst].Taken &&
Nodes[Dst].Finish < Nodes[Src].Finish) {
AugmentingEdges[Src].push_back(&Edge);
}
}
assert((Src == Target || !AugmentingEdges[Src].empty()) &&
"incorrectly constructed augmenting edges");
}
return AugmentingOrder;
}
/// Update the current flow along the given (acyclic) subgraph specified by
/// the vertex order, AugmentingOrder. The objective is to send as much flow
/// as possible while evenly distributing flow among successors of each node.
/// After the update at least one edge is saturated.
bool augmentFlowAlongDAG(const std::vector<uint64_t> &AugmentingOrder) {
// Phase 0: Initialization
for (uint64_t Src : AugmentingOrder) {
Nodes[Src].FracFlow = 0;
Nodes[Src].IntFlow = 0;
for (auto &Edge : AugmentingEdges[Src]) {
Edge->AugmentedFlow = 0;
}
}
// Phase 1: Send a unit of fractional flow along the DAG
uint64_t MaxFlowAmount = INF;
Nodes[Source].FracFlow = 1.0;
for (uint64_t Src : AugmentingOrder) {
assert((Src == Target || Nodes[Src].FracFlow > 0.0) &&
"incorrectly computed fractional flow");
// Distribute flow evenly among successors of Src
uint64_t Degree = AugmentingEdges[Src].size();
for (auto &Edge : AugmentingEdges[Src]) {
double EdgeFlow = Nodes[Src].FracFlow / Degree;
Nodes[Edge->Dst].FracFlow += EdgeFlow;
if (Edge->Capacity == INF)
continue;
uint64_t MaxIntFlow = double(Edge->Capacity - Edge->Flow) / EdgeFlow;
MaxFlowAmount = std::min(MaxFlowAmount, MaxIntFlow);
}
}
// Stop early if we cannot send any (integral) flow from Source to Target
if (MaxFlowAmount == 0)
return false;
// Phase 2: Send an integral flow of MaxFlowAmount
Nodes[Source].IntFlow = MaxFlowAmount;
for (uint64_t Src : AugmentingOrder) {
if (Src == Target)
break;
// Distribute flow evenly among successors of Src, rounding up to make
// sure all flow is sent
uint64_t Degree = AugmentingEdges[Src].size();
// We are guaranteeed that Node[Src].IntFlow <= SuccFlow * Degree
uint64_t SuccFlow = (Nodes[Src].IntFlow + Degree - 1) / Degree;
for (auto &Edge : AugmentingEdges[Src]) {
uint64_t Dst = Edge->Dst;
uint64_t EdgeFlow = std::min(Nodes[Src].IntFlow, SuccFlow);
EdgeFlow = std::min(EdgeFlow, uint64_t(Edge->Capacity - Edge->Flow));
Nodes[Dst].IntFlow += EdgeFlow;
Nodes[Src].IntFlow -= EdgeFlow;
Edge->AugmentedFlow += EdgeFlow;
}
}
assert(Nodes[Target].IntFlow <= MaxFlowAmount);
Nodes[Target].IntFlow = 0;
// Phase 3: Send excess flow back traversing the nodes backwards.
// Because of rounding, not all flow can be sent along the edges of Src.
// Hence, sending the remaining flow back to maintain flow conservation
for (size_t Idx = AugmentingOrder.size() - 1; Idx > 0; Idx--) {
uint64_t Src = AugmentingOrder[Idx - 1];
// Try to send excess flow back along each edge.
// Make sure we only send back flow we just augmented (AugmentedFlow).
for (auto &Edge : AugmentingEdges[Src]) {
uint64_t Dst = Edge->Dst;
if (Nodes[Dst].IntFlow == 0)
continue;
uint64_t EdgeFlow = std::min(Nodes[Dst].IntFlow, Edge->AugmentedFlow);
Nodes[Dst].IntFlow -= EdgeFlow;
Nodes[Src].IntFlow += EdgeFlow;
Edge->AugmentedFlow -= EdgeFlow;
}
}
// Phase 4: Update flow values along all edges
bool HasSaturatedEdges = false;
for (uint64_t Src : AugmentingOrder) {
// Verify that we have sent all the excess flow from the node
assert(Src == Source || Nodes[Src].IntFlow == 0);
for (auto &Edge : AugmentingEdges[Src]) {
assert(uint64_t(Edge->Capacity - Edge->Flow) >= Edge->AugmentedFlow);
// Update flow values along the edge and its reverse copy
auto &RevEdge = Edges[Edge->Dst][Edge->RevEdgeIndex];
Edge->Flow += Edge->AugmentedFlow;
RevEdge.Flow -= Edge->AugmentedFlow;
if (Edge->Capacity == Edge->Flow && Edge->AugmentedFlow > 0)
HasSaturatedEdges = true;
}
}
// The augmentation is successful iff at least one edge becomes saturated
return HasSaturatedEdges;
}
/// Identify candidate (shortest) edges for augmentation.
void identifyShortestEdges(uint64_t PathCapacity) {
assert(PathCapacity > 0 && "found an incorrect augmenting DAG");
// To make sure the augmentation DAG contains only edges with large residual
// capacity, we prune all edges whose capacity is below a fraction of
// the capacity of the augmented path.
// (All edges of the path itself are always in the DAG)
uint64_t MinCapacity = std::max(PathCapacity / 2, uint64_t(1));
// Decide which edges are on a shortest path from Source to Target
for (size_t Src = 0; Src < Nodes.size(); Src++) {
// An edge cannot be augmenting if the endpoint has large distance
if (Nodes[Src].Distance > Nodes[Target].Distance)
continue;
for (auto &Edge : Edges[Src]) {
uint64_t Dst = Edge.Dst;
Edge.OnShortestPath =
Src != Target && Dst != Source &&
Nodes[Dst].Distance <= Nodes[Target].Distance &&
Nodes[Dst].Distance == Nodes[Src].Distance + Edge.Cost &&
Edge.Capacity > Edge.Flow &&
uint64_t(Edge.Capacity - Edge.Flow) >= MinCapacity;
}
}
}
/// Maximum number of DFS iterations for DAG finding.
static constexpr uint64_t MaxDfsCalls = 10;
/// A node in a flow network.
struct Node {
/// The cost of the cheapest path from the source to the current node.
int64_t Distance;
/// The node preceding the current one in the path.
uint64_t ParentNode;
/// The index of the edge between ParentNode and the current node.
uint64_t ParentEdgeIndex;
/// An indicator of whether the current node is in a queue.
bool Taken;
/// Data fields utilized in DAG-augmentation:
/// Fractional flow.
double FracFlow;
/// Integral flow.
uint64_t IntFlow;
/// Discovery time.
uint64_t Discovery;
/// Finish time.
uint64_t Finish;
/// NumCalls.
uint64_t NumCalls;
};
/// An edge in a flow network.
struct Edge {
/// The cost of the edge.
int64_t Cost;
/// The capacity of the edge.
int64_t Capacity;
/// The current flow on the edge.
int64_t Flow;
/// The destination node of the edge.
uint64_t Dst;
/// The index of the reverse edge between Dst and the current node.
uint64_t RevEdgeIndex;
/// Data fields utilized in DAG-augmentation:
/// Whether the edge is currently on a shortest path from Source to Target.
bool OnShortestPath;
/// Extra flow along the edge.
uint64_t AugmentedFlow;
};
/// The set of network nodes.
std::vector<Node> Nodes;
/// The set of network edges.
std::vector<std::vector<Edge>> Edges;
/// Source node of the flow.
uint64_t Source;
/// Target (sink) node of the flow.
uint64_t Target;
/// Augmenting edges.
std::vector<std::vector<Edge *>> AugmentingEdges;
/// Params for flow computation.
const ProfiParams &Params;
};
/// A post-processing adjustment of the control flow. It applies two steps by
/// rerouting some flow and making it more realistic:
///
/// - First, it removes all isolated components ("islands") with a positive flow
/// that are unreachable from the entry block. For every such component, we
/// find the shortest from the entry to an exit passing through the component,
/// and increase the flow by one unit along the path.
///
/// - Second, it identifies all "unknown subgraphs" consisting of basic blocks
/// with no sampled counts. Then it rebalnces the flow that goes through such
/// a subgraph so that each branch is taken with probability 50%.
/// An unknown subgraph is such that for every two nodes u and v:
/// - u dominates v and u is not unknown;
/// - v post-dominates u; and
/// - all inner-nodes of all (u,v)-paths are unknown.
///
class FlowAdjuster {
public:
FlowAdjuster(const ProfiParams &Params, FlowFunction &Func)
: Params(Params), Func(Func) {}
/// Apply the post-processing.
void run() {
if (Params.JoinIslands) {
// Adjust the flow to get rid of isolated components
joinIsolatedComponents();
}
if (Params.RebalanceUnknown) {
// Rebalance the flow inside unknown subgraphs
rebalanceUnknownSubgraphs();
}
}
private:
void joinIsolatedComponents() {
// Find blocks that are reachable from the source
auto Visited = BitVector(NumBlocks(), false);
findReachable(Func.Entry, Visited);
// Iterate over all non-reachable blocks and adjust their weights
for (uint64_t I = 0; I < NumBlocks(); I++) {
auto &Block = Func.Blocks[I];
if (Block.Flow > 0 && !Visited[I]) {
// Find a path from the entry to an exit passing through the block I
auto Path = findShortestPath(I);
// Increase the flow along the path
assert(Path.size() > 0 && Path[0]->Source == Func.Entry &&
"incorrectly computed path adjusting control flow");
Func.Blocks[Func.Entry].Flow += 1;
for (auto &Jump : Path) {
Jump->Flow += 1;
Func.Blocks[Jump->Target].Flow += 1;
// Update reachability
findReachable(Jump->Target, Visited);
}
}
}
}
/// Run BFS from a given block along the jumps with a positive flow and mark
/// all reachable blocks.
void findReachable(uint64_t Src, BitVector &Visited) {
if (Visited[Src])
return;
std::queue<uint64_t> Queue;
Queue.push(Src);
Visited[Src] = true;
while (!Queue.empty()) {
Src = Queue.front();
Queue.pop();
for (auto *Jump : Func.Blocks[Src].SuccJumps) {
uint64_t Dst = Jump->Target;
if (Jump->Flow > 0 && !Visited[Dst]) {
Queue.push(Dst);
Visited[Dst] = true;
}
}
}
}
/// Find the shortest path from the entry block to an exit block passing
/// through a given block.
std::vector<FlowJump *> findShortestPath(uint64_t BlockIdx) {
// A path from the entry block to BlockIdx
auto ForwardPath = findShortestPath(Func.Entry, BlockIdx);
// A path from BlockIdx to an exit block
auto BackwardPath = findShortestPath(BlockIdx, AnyExitBlock);
// Concatenate the two paths
std::vector<FlowJump *> Result;
Result.insert(Result.end(), ForwardPath.begin(), ForwardPath.end());
Result.insert(Result.end(), BackwardPath.begin(), BackwardPath.end());
return Result;
}
/// Apply the Dijkstra algorithm to find the shortest path from a given
/// Source to a given Target block.
/// If Target == -1, then the path ends at an exit block.
std::vector<FlowJump *> findShortestPath(uint64_t Source, uint64_t Target) {
// Quit early, if possible
if (Source == Target)
return std::vector<FlowJump *>();
if (Func.Blocks[Source].isExit() && Target == AnyExitBlock)
return std::vector<FlowJump *>();
// Initialize data structures
auto Distance = std::vector<int64_t>(NumBlocks(), INF);
auto Parent = std::vector<FlowJump *>(NumBlocks(), nullptr);
Distance[Source] = 0;
std::set<std::pair<uint64_t, uint64_t>> Queue;
Queue.insert(std::make_pair(Distance[Source], Source));
// Run the Dijkstra algorithm
while (!Queue.empty()) {
uint64_t Src = Queue.begin()->second;
Queue.erase(Queue.begin());
// If we found a solution, quit early
if (Src == Target ||
(Func.Blocks[Src].isExit() && Target == AnyExitBlock))
break;
for (auto *Jump : Func.Blocks[Src].SuccJumps) {
uint64_t Dst = Jump->Target;
int64_t JumpDist = jumpDistance(Jump);
if (Distance[Dst] > Distance[Src] + JumpDist) {
Queue.erase(std::make_pair(Distance[Dst], Dst));
Distance[Dst] = Distance[Src] + JumpDist;
Parent[Dst] = Jump;
Queue.insert(std::make_pair(Distance[Dst], Dst));
}
}
}
// If Target is not provided, find the closest exit block
if (Target == AnyExitBlock) {
for (uint64_t I = 0; I < NumBlocks(); I++) {
if (Func.Blocks[I].isExit() && Parent[I] != nullptr) {
if (Target == AnyExitBlock || Distance[Target] > Distance[I]) {
Target = I;
}
}
}
}
assert(Parent[Target] != nullptr && "a path does not exist");
// Extract the constructed path
std::vector<FlowJump *> Result;
uint64_t Now = Target;
while (Now != Source) {
assert(Now == Parent[Now]->Target && "incorrect parent jump");
Result.push_back(Parent[Now]);
Now = Parent[Now]->Source;
}
// Reverse the path, since it is extracted from Target to Source
std::reverse(Result.begin(), Result.end());
return Result;
}
/// A distance of a path for a given jump.
/// In order to incite the path to use blocks/jumps with large positive flow,
/// and avoid changing branch probability of outgoing edges drastically,
/// set the jump distance so as:
/// - to minimize the number of unlikely jumps used and subject to that,
/// - to minimize the number of Flow == 0 jumps used and subject to that,
/// - minimizes total multiplicative Flow increase for the remaining edges.
/// To capture this objective with integer distances, we round off fractional
/// parts to a multiple of 1 / BaseDistance.
int64_t jumpDistance(FlowJump *Jump) const {
if (Jump->IsUnlikely)
return Params.CostUnlikely;
uint64_t BaseDistance =
std::max(FlowAdjuster::MinBaseDistance,
std::min(Func.Blocks[Func.Entry].Flow,
Params.CostUnlikely / (2 * (NumBlocks() + 1))));
if (Jump->Flow > 0)
return BaseDistance + BaseDistance / Jump->Flow;
return 2 * BaseDistance * (NumBlocks() + 1);
};
uint64_t NumBlocks() const { return Func.Blocks.size(); }
/// Rebalance unknown subgraphs so that the flow is split evenly across the
/// outgoing branches of every block of the subgraph. The method iterates over
/// blocks with known weight and identifies unknown subgraphs rooted at the
/// blocks. Then it verifies if flow rebalancing is feasible and applies it.
void rebalanceUnknownSubgraphs() {
// Try to find unknown subgraphs from each block
for (const FlowBlock &SrcBlock : Func.Blocks) {
// Verify if rebalancing rooted at SrcBlock is feasible
if (!canRebalanceAtRoot(&SrcBlock))
continue;
// Find an unknown subgraphs starting at SrcBlock. Along the way,
// fill in known destinations and intermediate unknown blocks.
std::vector<FlowBlock *> UnknownBlocks;
std::vector<FlowBlock *> KnownDstBlocks;
findUnknownSubgraph(&SrcBlock, KnownDstBlocks, UnknownBlocks);
// Verify if rebalancing of the subgraph is feasible. If the search is
// successful, find the unique destination block (which can be null)
FlowBlock *DstBlock = nullptr;
if (!canRebalanceSubgraph(&SrcBlock, KnownDstBlocks, UnknownBlocks,
DstBlock))
continue;
// We cannot rebalance subgraphs containing cycles among unknown blocks
if (!isAcyclicSubgraph(&SrcBlock, DstBlock, UnknownBlocks))
continue;
// Rebalance the flow
rebalanceUnknownSubgraph(&SrcBlock, DstBlock, UnknownBlocks);
}
}
/// Verify if rebalancing rooted at a given block is possible.
bool canRebalanceAtRoot(const FlowBlock *SrcBlock) {
// Do not attempt to find unknown subgraphs from an unknown or a
// zero-flow block
if (SrcBlock->HasUnknownWeight || SrcBlock->Flow == 0)
return false;
// Do not attempt to process subgraphs from a block w/o unknown sucessors
bool HasUnknownSuccs = false;
for (auto *Jump : SrcBlock->SuccJumps) {
if (Func.Blocks[Jump->Target].HasUnknownWeight) {
HasUnknownSuccs = true;
break;
}
}
if (!HasUnknownSuccs)
return false;
return true;
}
/// Find an unknown subgraph starting at block SrcBlock. The method sets
/// identified destinations, KnownDstBlocks, and intermediate UnknownBlocks.
void findUnknownSubgraph(const FlowBlock *SrcBlock,
std::vector<FlowBlock *> &KnownDstBlocks,
std::vector<FlowBlock *> &UnknownBlocks) {
// Run BFS from SrcBlock and make sure all paths are going through unknown
// blocks and end at a known DstBlock
auto Visited = BitVector(NumBlocks(), false);
std::queue<uint64_t> Queue;
Queue.push(SrcBlock->Index);
Visited[SrcBlock->Index] = true;
while (!Queue.empty()) {
auto &Block = Func.Blocks[Queue.front()];
Queue.pop();
// Process blocks reachable from Block
for (auto *Jump : Block.SuccJumps) {
// If Jump can be ignored, skip it
if (ignoreJump(SrcBlock, nullptr, Jump))
continue;
uint64_t Dst = Jump->Target;
// If Dst has been visited, skip Jump
if (Visited[Dst])
continue;
// Process block Dst
Visited[Dst] = true;
if (!Func.Blocks[Dst].HasUnknownWeight) {
KnownDstBlocks.push_back(&Func.Blocks[Dst]);
} else {
Queue.push(Dst);
UnknownBlocks.push_back(&Func.Blocks[Dst]);
}
}
}
}
/// Verify if rebalancing of the subgraph is feasible. If the checks are
/// successful, set the unique destination block, DstBlock (can be null).
bool canRebalanceSubgraph(const FlowBlock *SrcBlock,
const std::vector<FlowBlock *> &KnownDstBlocks,
const std::vector<FlowBlock *> &UnknownBlocks,
FlowBlock *&DstBlock) {
// If the list of unknown blocks is empty, we don't need rebalancing
if (UnknownBlocks.empty())
return false;
// If there are multiple known sinks, we can't rebalance
if (KnownDstBlocks.size() > 1)
return false;
DstBlock = KnownDstBlocks.empty() ? nullptr : KnownDstBlocks.front();
// Verify sinks of the subgraph
for (auto *Block : UnknownBlocks) {
if (Block->SuccJumps.empty()) {
// If there are multiple (known and unknown) sinks, we can't rebalance
if (DstBlock != nullptr)
return false;
continue;
}
size_t NumIgnoredJumps = 0;
for (auto *Jump : Block->SuccJumps) {
if (ignoreJump(SrcBlock, DstBlock, Jump))
NumIgnoredJumps++;
}
// If there is a non-sink block in UnknownBlocks with all jumps ignored,
// then we can't rebalance
if (NumIgnoredJumps == Block->SuccJumps.size())
return false;
}
return true;
}
/// Decide whether the Jump is ignored while processing an unknown subgraphs
/// rooted at basic block SrcBlock with the destination block, DstBlock.
bool ignoreJump(const FlowBlock *SrcBlock, const FlowBlock *DstBlock,
const FlowJump *Jump) {
// Ignore unlikely jumps with zero flow
if (Jump->IsUnlikely && Jump->Flow == 0)
return true;
auto JumpSource = &Func.Blocks[Jump->Source];
auto JumpTarget = &Func.Blocks[Jump->Target];
// Do not ignore jumps coming into DstBlock
if (DstBlock != nullptr && JumpTarget == DstBlock)
return false;
// Ignore jumps out of SrcBlock to known blocks
if (!JumpTarget->HasUnknownWeight && JumpSource == SrcBlock)
return true;
// Ignore jumps to known blocks with zero flow
if (!JumpTarget->HasUnknownWeight && JumpTarget->Flow == 0)
return true;
return false;
}
/// Verify if the given unknown subgraph is acyclic, and if yes, reorder
/// UnknownBlocks in the topological order (so that all jumps are "forward").
bool isAcyclicSubgraph(const FlowBlock *SrcBlock, const FlowBlock *DstBlock,
std::vector<FlowBlock *> &UnknownBlocks) {
// Extract local in-degrees in the considered subgraph
auto LocalInDegree = std::vector<uint64_t>(NumBlocks(), 0);
auto fillInDegree = [&](const FlowBlock *Block) {
for (auto *Jump : Block->SuccJumps) {
if (ignoreJump(SrcBlock, DstBlock, Jump))
continue;
LocalInDegree[Jump->Target]++;
}
};
fillInDegree(SrcBlock);
for (auto *Block : UnknownBlocks) {
fillInDegree(Block);
}
// A loop containing SrcBlock
if (LocalInDegree[SrcBlock->Index] > 0)
return false;
std::vector<FlowBlock *> AcyclicOrder;
std::queue<uint64_t> Queue;
Queue.push(SrcBlock->Index);
while (!Queue.empty()) {
FlowBlock *Block = &Func.Blocks[Queue.front()];
Queue.pop();
// Stop propagation once we reach DstBlock, if any
if (DstBlock != nullptr && Block == DstBlock)
break;
// Keep an acyclic order of unknown blocks
if (Block->HasUnknownWeight && Block != SrcBlock)
AcyclicOrder.push_back(Block);
// Add to the queue all successors with zero local in-degree
for (auto *Jump : Block->SuccJumps) {
if (ignoreJump(SrcBlock, DstBlock, Jump))
continue;
uint64_t Dst = Jump->Target;
LocalInDegree[Dst]--;
if (LocalInDegree[Dst] == 0) {
Queue.push(Dst);
}
}
}
// If there is a cycle in the subgraph, AcyclicOrder contains only a subset
// of all blocks
if (UnknownBlocks.size() != AcyclicOrder.size())
return false;
UnknownBlocks = AcyclicOrder;
return true;
}
/// Rebalance a given subgraph rooted at SrcBlock, ending at DstBlock and
/// having UnknownBlocks intermediate blocks.
void rebalanceUnknownSubgraph(const FlowBlock *SrcBlock,
const FlowBlock *DstBlock,
const std::vector<FlowBlock *> &UnknownBlocks) {
assert(SrcBlock->Flow > 0 && "zero-flow block in unknown subgraph");
// Ditribute flow from the source block
uint64_t BlockFlow = 0;
// SrcBlock's flow is the sum of outgoing flows along non-ignored jumps
for (auto *Jump : SrcBlock->SuccJumps) {
if (ignoreJump(SrcBlock, DstBlock, Jump))
continue;
BlockFlow += Jump->Flow;
}
rebalanceBlock(SrcBlock, DstBlock, SrcBlock, BlockFlow);
// Ditribute flow from the remaining blocks
for (auto *Block : UnknownBlocks) {
assert(Block->HasUnknownWeight && "incorrect unknown subgraph");
uint64_t BlockFlow = 0;
// Block's flow is the sum of incoming flows
for (auto *Jump : Block->PredJumps) {
BlockFlow += Jump->Flow;
}
Block->Flow = BlockFlow;
rebalanceBlock(SrcBlock, DstBlock, Block, BlockFlow);
}
}
/// Redistribute flow for a block in a subgraph rooted at SrcBlock,
/// and ending at DstBlock.
void rebalanceBlock(const FlowBlock *SrcBlock, const FlowBlock *DstBlock,
const FlowBlock *Block, uint64_t BlockFlow) {
// Process all successor jumps and update corresponding flow values
size_t BlockDegree = 0;
for (auto *Jump : Block->SuccJumps) {
if (ignoreJump(SrcBlock, DstBlock, Jump))
continue;
BlockDegree++;
}
// If all successor jumps of the block are ignored, skip it
if (DstBlock == nullptr && BlockDegree == 0)
return;
assert(BlockDegree > 0 && "all outgoing jumps are ignored");
// Each of the Block's successors gets the following amount of flow.
// Rounding the value up so that all flow is propagated
uint64_t SuccFlow = (BlockFlow + BlockDegree - 1) / BlockDegree;
for (auto *Jump : Block->SuccJumps) {
if (ignoreJump(SrcBlock, DstBlock, Jump))
continue;
uint64_t Flow = std::min(SuccFlow, BlockFlow);
Jump->Flow = Flow;
BlockFlow -= Flow;
}
assert(BlockFlow == 0 && "not all flow is propagated");
}
/// A constant indicating an arbitrary exit block of a function.
static constexpr uint64_t AnyExitBlock = uint64_t(-1);
/// Minimum BaseDistance for the jump distance values in island joining.
static constexpr uint64_t MinBaseDistance = 10000;
/// Params for flow computation.
const ProfiParams &Params;
/// The function.
FlowFunction &Func;
};
std::pair<int64_t, int64_t> assignBlockCosts(const ProfiParams &Params,
const FlowBlock &Block);
std::pair<int64_t, int64_t> assignJumpCosts(const ProfiParams &Params,
const FlowJump &Jump);
/// Initializing flow network for a given function.
///
/// Every block is split into two nodes that are responsible for (i) an
/// incoming flow, (ii) an outgoing flow; they penalize an increase or a
/// reduction of the block weight.
void initializeNetwork(const ProfiParams &Params, MinCostMaxFlow &Network,
FlowFunction &Func) {
uint64_t NumBlocks = Func.Blocks.size();
assert(NumBlocks > 1 && "Too few blocks in a function");
uint64_t NumJumps = Func.Jumps.size();
assert(NumJumps > 0 && "Too few jumps in a function");
// Introducing dummy source/sink pairs to allow flow circulation.
// The nodes corresponding to blocks of the function have indicies in
// the range [0 .. 2 * NumBlocks); the dummy sources/sinks are indexed by the
// next four values.
uint64_t S = 2 * NumBlocks;
uint64_t T = S + 1;
uint64_t S1 = S + 2;
uint64_t T1 = S + 3;
Network.initialize(2 * NumBlocks + 4, S1, T1);
// Initialize nodes of the flow network
for (uint64_t B = 0; B < NumBlocks; B++) {
auto &Block = Func.Blocks[B];
// Split every block into two auxiliary nodes to allow
// increase/reduction of the block count.
uint64_t Bin = 2 * B;
uint64_t Bout = 2 * B + 1;
// Edges from S and to T
if (Block.isEntry()) {
Network.addEdge(S, Bin, 0);
} else if (Block.isExit()) {
Network.addEdge(Bout, T, 0);
}
// Assign costs for increasing/decreasing the block counts
auto [AuxCostInc, AuxCostDec] = assignBlockCosts(Params, Block);
// Add the corresponding edges to the network
Network.addEdge(Bin, Bout, AuxCostInc);
if (Block.Weight > 0) {
Network.addEdge(Bout, Bin, Block.Weight, AuxCostDec);
Network.addEdge(S1, Bout, Block.Weight, 0);
Network.addEdge(Bin, T1, Block.Weight, 0);
}
}
// Initialize edges of the flow network
for (uint64_t J = 0; J < NumJumps; J++) {
auto &Jump = Func.Jumps[J];
// Get the endpoints corresponding to the jump
uint64_t Jin = 2 * Jump.Source + 1;
uint64_t Jout = 2 * Jump.Target;
// Assign costs for increasing/decreasing the jump counts
auto [AuxCostInc, AuxCostDec] = assignJumpCosts(Params, Jump);
// Add the corresponding edges to the network
Network.addEdge(Jin, Jout, AuxCostInc);
if (Jump.Weight > 0) {
Network.addEdge(Jout, Jin, Jump.Weight, AuxCostDec);
Network.addEdge(S1, Jout, Jump.Weight, 0);
Network.addEdge(Jin, T1, Jump.Weight, 0);
}
}
// Make sure we have a valid flow circulation
Network.addEdge(T, S, 0);
}
/// Assign costs for increasing/decreasing the block counts.
std::pair<int64_t, int64_t> assignBlockCosts(const ProfiParams &Params,
const FlowBlock &Block) {
// Modifying the weight of an unlikely block is expensive
if (Block.IsUnlikely)
return std::make_pair(Params.CostUnlikely, Params.CostUnlikely);
// Assign default values for the costs
int64_t CostInc = Params.CostBlockInc;
int64_t CostDec = Params.CostBlockDec;
// Update the costs depending on the block metadata
if (Block.HasUnknownWeight) {
CostInc = Params.CostBlockUnknownInc;
CostDec = 0;
} else {
// Increasing the count for "cold" blocks with zero initial count is more
// expensive than for "hot" ones
if (Block.Weight == 0)
CostInc = Params.CostBlockZeroInc;
// Modifying the count of the entry block is expensive
if (Block.isEntry()) {
CostInc = Params.CostBlockEntryInc;
CostDec = Params.CostBlockEntryDec;
}
}
return std::make_pair(CostInc, CostDec);
}
/// Assign costs for increasing/decreasing the jump counts.
std::pair<int64_t, int64_t> assignJumpCosts(const ProfiParams &Params,
const FlowJump &Jump) {
// Modifying the weight of an unlikely jump is expensive
if (Jump.IsUnlikely)
return std::make_pair(Params.CostUnlikely, Params.CostUnlikely);
// Assign default values for the costs
int64_t CostInc = Params.CostJumpInc;
int64_t CostDec = Params.CostJumpDec;
// Update the costs depending on the block metadata
if (Jump.Source + 1 == Jump.Target) {
// Adjusting the fall-through branch
CostInc = Params.CostJumpFTInc;
CostDec = Params.CostJumpFTDec;
}
if (Jump.HasUnknownWeight) {
// The cost is different for fall-through and non-fall-through branches
if (Jump.Source + 1 == Jump.Target)
CostInc = Params.CostJumpUnknownFTInc;
else
CostInc = Params.CostJumpUnknownInc;
CostDec = 0;
} else {
assert(Jump.Weight > 0 && "found zero-weight jump with a positive weight");
}
return std::make_pair(CostInc, CostDec);
}
/// Extract resulting block and edge counts from the flow network.
void extractWeights(const ProfiParams &Params, MinCostMaxFlow &Network,
FlowFunction &Func) {
uint64_t NumBlocks = Func.Blocks.size();
uint64_t NumJumps = Func.Jumps.size();
// Extract resulting jump counts
for (uint64_t J = 0; J < NumJumps; J++) {
auto &Jump = Func.Jumps[J];
uint64_t SrcOut = 2 * Jump.Source + 1;
uint64_t DstIn = 2 * Jump.Target;
int64_t Flow = 0;
int64_t AuxFlow = Network.getFlow(SrcOut, DstIn);
if (Jump.Source != Jump.Target)
Flow = int64_t(Jump.Weight) + AuxFlow;
else
Flow = int64_t(Jump.Weight) + (AuxFlow > 0 ? AuxFlow : 0);
Jump.Flow = Flow;
assert(Flow >= 0 && "negative jump flow");
}
// Extract resulting block counts
auto InFlow = std::vector<uint64_t>(NumBlocks, 0);
auto OutFlow = std::vector<uint64_t>(NumBlocks, 0);
for (auto &Jump : Func.Jumps) {
InFlow[Jump.Target] += Jump.Flow;
OutFlow[Jump.Source] += Jump.Flow;
}
for (uint64_t B = 0; B < NumBlocks; B++) {
auto &Block = Func.Blocks[B];
Block.Flow = std::max(OutFlow[B], InFlow[B]);
}
}
#ifndef NDEBUG
/// Verify that the provided block/jump weights are as expected.
void verifyInput(const FlowFunction &Func) {
// Verify the entry block
assert(Func.Entry == 0 && Func.Blocks[0].isEntry());
for (size_t I = 1; I < Func.Blocks.size(); I++) {
assert(!Func.Blocks[I].isEntry() && "multiple entry blocks");
}
// Verify CFG jumps
for (auto &Block : Func.Blocks) {
assert((!Block.isEntry() || !Block.isExit()) &&
"a block cannot be an entry and an exit");
}
// Verify input block weights
for (auto &Block : Func.Blocks) {
assert((!Block.HasUnknownWeight || Block.Weight == 0 || Block.isEntry()) &&
"non-zero weight of a block w/o weight except for an entry");
}
// Verify input jump weights
for (auto &Jump : Func.Jumps) {
assert((!Jump.HasUnknownWeight || Jump.Weight == 0) &&
"non-zero weight of a jump w/o weight");
}
}
/// Verify that the computed flow values satisfy flow conservation rules.
void verifyOutput(const FlowFunction &Func) {
const uint64_t NumBlocks = Func.Blocks.size();
auto InFlow = std::vector<uint64_t>(NumBlocks, 0);
auto OutFlow = std::vector<uint64_t>(NumBlocks, 0);
for (const auto &Jump : Func.Jumps) {
InFlow[Jump.Target] += Jump.Flow;
OutFlow[Jump.Source] += Jump.Flow;
}
uint64_t TotalInFlow = 0;
uint64_t TotalOutFlow = 0;
for (uint64_t I = 0; I < NumBlocks; I++) {
auto &Block = Func.Blocks[I];
if (Block.isEntry()) {
TotalInFlow += Block.Flow;
assert(Block.Flow == OutFlow[I] && "incorrectly computed control flow");
} else if (Block.isExit()) {
TotalOutFlow += Block.Flow;
assert(Block.Flow == InFlow[I] && "incorrectly computed control flow");
} else {
assert(Block.Flow == OutFlow[I] && "incorrectly computed control flow");
assert(Block.Flow == InFlow[I] && "incorrectly computed control flow");
}
}
assert(TotalInFlow == TotalOutFlow && "incorrectly computed control flow");
// Verify that there are no isolated flow components
// One could modify FlowFunction to hold edges indexed by the sources, which
// will avoid a creation of the object
auto PositiveFlowEdges = std::vector<std::vector<uint64_t>>(NumBlocks);
for (const auto &Jump : Func.Jumps) {
if (Jump.Flow > 0) {
PositiveFlowEdges[Jump.Source].push_back(Jump.Target);
}
}
// Run BFS from the source along edges with positive flow
std::queue<uint64_t> Queue;
auto Visited = BitVector(NumBlocks, false);
Queue.push(Func.Entry);
Visited[Func.Entry] = true;
while (!Queue.empty()) {
uint64_t Src = Queue.front();
Queue.pop();
for (uint64_t Dst : PositiveFlowEdges[Src]) {
if (!Visited[Dst]) {
Queue.push(Dst);
Visited[Dst] = true;
}
}
}
// Verify that every block that has a positive flow is reached from the source
// along edges with a positive flow
for (uint64_t I = 0; I < NumBlocks; I++) {
auto &Block = Func.Blocks[I];
assert((Visited[I] || Block.Flow == 0) && "an isolated flow component");
}
}
#endif
} // end of anonymous namespace
/// Apply the profile inference algorithm for a given function
void llvm::applyFlowInference(const ProfiParams &Params, FlowFunction &Func) {
#ifndef NDEBUG
// Verify the input data
verifyInput(Func);
#endif
// Create and apply an inference network model
auto InferenceNetwork = MinCostMaxFlow(Params);
initializeNetwork(Params, InferenceNetwork, Func);
InferenceNetwork.run();
// Extract flow values for every block and every edge
extractWeights(Params, InferenceNetwork, Func);
// Post-processing adjustments to the flow
auto Adjuster = FlowAdjuster(Params, Func);
Adjuster.run();
#ifndef NDEBUG
// Verify the result
verifyOutput(Func);
#endif
}
/// Apply the profile inference algorithm for a given flow function
void llvm::applyFlowInference(FlowFunction &Func) {
ProfiParams Params;
// Set the params from the command-line flags.
Params.EvenFlowDistribution = SampleProfileEvenFlowDistribution;
Params.RebalanceUnknown = SampleProfileRebalanceUnknown;
Params.JoinIslands = SampleProfileJoinIslands;
Params.CostBlockInc = SampleProfileProfiCostBlockInc;
Params.CostBlockDec = SampleProfileProfiCostBlockDec;
Params.CostBlockEntryInc = SampleProfileProfiCostBlockEntryInc;
Params.CostBlockEntryDec = SampleProfileProfiCostBlockEntryDec;
Params.CostBlockZeroInc = SampleProfileProfiCostBlockZeroInc;
Params.CostBlockUnknownInc = SampleProfileProfiCostBlockUnknownInc;
applyFlowInference(Params, Func);
}