
Summary: Paying off some technical debt in VectorOps, where I introduced a special op for a fused accumulator into reduction to avoid some issues around printing and parsing an optional accumulator. This CL merges the two into one op again and does things the right way (still would be nice to have "assemblyFormat" for optional operands though....). Reviewers: nicolasvasilache, andydavis1, ftynse, rriddle Reviewed By: nicolasvasilache Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D75699
1182 lines
50 KiB
C++
1182 lines
50 KiB
C++
//===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
|
|
|
|
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
|
|
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/Dialect/VectorOps/VectorOps.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/MLIRContext.h"
|
|
#include "mlir/IR/Module.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/IR/StandardTypes.h"
|
|
#include "mlir/IR/Types.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Pass/PassManager.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::vector;
|
|
|
|
template <typename T>
|
|
static LLVM::LLVMType getPtrToElementType(T containerType,
|
|
LLVMTypeConverter &typeConverter) {
|
|
return typeConverter.convertType(containerType.getElementType())
|
|
.template cast<LLVM::LLVMType>()
|
|
.getPointerTo();
|
|
}
|
|
|
|
// Helper to reduce vector type by one rank at front.
|
|
static VectorType reducedVectorTypeFront(VectorType tp) {
|
|
assert((tp.getRank() > 1) && "unlowerable vector type");
|
|
return VectorType::get(tp.getShape().drop_front(), tp.getElementType());
|
|
}
|
|
|
|
// Helper to reduce vector type by *all* but one rank at back.
|
|
static VectorType reducedVectorTypeBack(VectorType tp) {
|
|
assert((tp.getRank() > 1) && "unlowerable vector type");
|
|
return VectorType::get(tp.getShape().take_back(), tp.getElementType());
|
|
}
|
|
|
|
// Helper that picks the proper sequence for inserting.
|
|
static Value insertOne(ConversionPatternRewriter &rewriter,
|
|
LLVMTypeConverter &typeConverter, Location loc,
|
|
Value val1, Value val2, Type llvmType, int64_t rank,
|
|
int64_t pos) {
|
|
if (rank == 1) {
|
|
auto idxType = rewriter.getIndexType();
|
|
auto constant = rewriter.create<LLVM::ConstantOp>(
|
|
loc, typeConverter.convertType(idxType),
|
|
rewriter.getIntegerAttr(idxType, pos));
|
|
return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2,
|
|
constant);
|
|
}
|
|
return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2,
|
|
rewriter.getI64ArrayAttr(pos));
|
|
}
|
|
|
|
// Helper that picks the proper sequence for inserting.
|
|
static Value insertOne(PatternRewriter &rewriter, Location loc, Value from,
|
|
Value into, int64_t offset) {
|
|
auto vectorType = into.getType().cast<VectorType>();
|
|
if (vectorType.getRank() > 1)
|
|
return rewriter.create<InsertOp>(loc, from, into, offset);
|
|
return rewriter.create<vector::InsertElementOp>(
|
|
loc, vectorType, from, into,
|
|
rewriter.create<ConstantIndexOp>(loc, offset));
|
|
}
|
|
|
|
// Helper that picks the proper sequence for extracting.
|
|
static Value extractOne(ConversionPatternRewriter &rewriter,
|
|
LLVMTypeConverter &typeConverter, Location loc,
|
|
Value val, Type llvmType, int64_t rank, int64_t pos) {
|
|
if (rank == 1) {
|
|
auto idxType = rewriter.getIndexType();
|
|
auto constant = rewriter.create<LLVM::ConstantOp>(
|
|
loc, typeConverter.convertType(idxType),
|
|
rewriter.getIntegerAttr(idxType, pos));
|
|
return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val,
|
|
constant);
|
|
}
|
|
return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val,
|
|
rewriter.getI64ArrayAttr(pos));
|
|
}
|
|
|
|
// Helper that picks the proper sequence for extracting.
|
|
static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector,
|
|
int64_t offset) {
|
|
auto vectorType = vector.getType().cast<VectorType>();
|
|
if (vectorType.getRank() > 1)
|
|
return rewriter.create<ExtractOp>(loc, vector, offset);
|
|
return rewriter.create<vector::ExtractElementOp>(
|
|
loc, vectorType.getElementType(), vector,
|
|
rewriter.create<ConstantIndexOp>(loc, offset));
|
|
}
|
|
|
|
// Helper that returns a subset of `arrayAttr` as a vector of int64_t.
|
|
// TODO(rriddle): Better support for attribute subtype forwarding + slicing.
|
|
static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr,
|
|
unsigned dropFront = 0,
|
|
unsigned dropBack = 0) {
|
|
assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds");
|
|
auto range = arrayAttr.getAsRange<IntegerAttr>();
|
|
SmallVector<int64_t, 4> res;
|
|
res.reserve(arrayAttr.size() - dropFront - dropBack);
|
|
for (auto it = range.begin() + dropFront, eit = range.end() - dropBack;
|
|
it != eit; ++it)
|
|
res.push_back((*it).getValue().getSExtValue());
|
|
return res;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class VectorBroadcastOpConversion : public ConvertToLLVMPattern {
|
|
public:
|
|
explicit VectorBroadcastOpConversion(MLIRContext *context,
|
|
LLVMTypeConverter &typeConverter)
|
|
: ConvertToLLVMPattern(vector::BroadcastOp::getOperationName(), context,
|
|
typeConverter) {}
|
|
|
|
PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto broadcastOp = cast<vector::BroadcastOp>(op);
|
|
VectorType dstVectorType = broadcastOp.getVectorType();
|
|
if (typeConverter.convertType(dstVectorType) == nullptr)
|
|
return matchFailure();
|
|
// Rewrite when the full vector type can be lowered (which
|
|
// implies all 'reduced' types can be lowered too).
|
|
auto adaptor = vector::BroadcastOpOperandAdaptor(operands);
|
|
VectorType srcVectorType =
|
|
broadcastOp.getSourceType().dyn_cast<VectorType>();
|
|
rewriter.replaceOp(
|
|
op, expandRanks(adaptor.source(), // source value to be expanded
|
|
op->getLoc(), // location of original broadcast
|
|
srcVectorType, dstVectorType, rewriter));
|
|
return matchSuccess();
|
|
}
|
|
|
|
private:
|
|
// Expands the given source value over all the ranks, as defined
|
|
// by the source and destination type (a null source type denotes
|
|
// expansion from a scalar value into a vector).
|
|
//
|
|
// TODO(ajcbik): consider replacing this one-pattern lowering
|
|
// with a two-pattern lowering using other vector
|
|
// ops once all insert/extract/shuffle operations
|
|
// are available with lowering implementation.
|
|
//
|
|
Value expandRanks(Value value, Location loc, VectorType srcVectorType,
|
|
VectorType dstVectorType,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
assert((dstVectorType != nullptr) && "invalid result type in broadcast");
|
|
// Determine rank of source and destination.
|
|
int64_t srcRank = srcVectorType ? srcVectorType.getRank() : 0;
|
|
int64_t dstRank = dstVectorType.getRank();
|
|
int64_t curDim = dstVectorType.getDimSize(0);
|
|
if (srcRank < dstRank)
|
|
// Duplicate this rank.
|
|
return duplicateOneRank(value, loc, srcVectorType, dstVectorType, dstRank,
|
|
curDim, rewriter);
|
|
// If all trailing dimensions are the same, the broadcast consists of
|
|
// simply passing through the source value and we are done. Otherwise,
|
|
// any non-matching dimension forces a stretch along this rank.
|
|
assert((srcVectorType != nullptr) && (srcRank > 0) &&
|
|
(srcRank == dstRank) && "invalid rank in broadcast");
|
|
for (int64_t r = 0; r < dstRank; r++) {
|
|
if (srcVectorType.getDimSize(r) != dstVectorType.getDimSize(r)) {
|
|
return stretchOneRank(value, loc, srcVectorType, dstVectorType, dstRank,
|
|
curDim, rewriter);
|
|
}
|
|
}
|
|
return value;
|
|
}
|
|
|
|
// Picks the best way to duplicate a single rank. For the 1-D case, a
|
|
// single insert-elt/shuffle is the most efficient expansion. For higher
|
|
// dimensions, however, we need dim x insert-values on a new broadcast
|
|
// with one less leading dimension, which will be lowered "recursively"
|
|
// to matching LLVM IR.
|
|
// For example:
|
|
// v = broadcast s : f32 to vector<4x2xf32>
|
|
// becomes:
|
|
// x = broadcast s : f32 to vector<2xf32>
|
|
// v = [x,x,x,x]
|
|
// becomes:
|
|
// x = [s,s]
|
|
// v = [x,x,x,x]
|
|
Value duplicateOneRank(Value value, Location loc, VectorType srcVectorType,
|
|
VectorType dstVectorType, int64_t rank, int64_t dim,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Type llvmType = typeConverter.convertType(dstVectorType);
|
|
assert((llvmType != nullptr) && "unlowerable vector type");
|
|
if (rank == 1) {
|
|
Value undef = rewriter.create<LLVM::UndefOp>(loc, llvmType);
|
|
Value expand = insertOne(rewriter, typeConverter, loc, undef, value,
|
|
llvmType, rank, 0);
|
|
SmallVector<int32_t, 4> zeroValues(dim, 0);
|
|
return rewriter.create<LLVM::ShuffleVectorOp>(
|
|
loc, expand, undef, rewriter.getI32ArrayAttr(zeroValues));
|
|
}
|
|
Value expand = expandRanks(value, loc, srcVectorType,
|
|
reducedVectorTypeFront(dstVectorType), rewriter);
|
|
Value result = rewriter.create<LLVM::UndefOp>(loc, llvmType);
|
|
for (int64_t d = 0; d < dim; ++d) {
|
|
result = insertOne(rewriter, typeConverter, loc, result, expand, llvmType,
|
|
rank, d);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Picks the best way to stretch a single rank. For the 1-D case, a
|
|
// single insert-elt/shuffle is the most efficient expansion when at
|
|
// a stretch. Otherwise, every dimension needs to be expanded
|
|
// individually and individually inserted in the resulting vector.
|
|
// For example:
|
|
// v = broadcast w : vector<4x1x2xf32> to vector<4x2x2xf32>
|
|
// becomes:
|
|
// a = broadcast w[0] : vector<1x2xf32> to vector<2x2xf32>
|
|
// b = broadcast w[1] : vector<1x2xf32> to vector<2x2xf32>
|
|
// c = broadcast w[2] : vector<1x2xf32> to vector<2x2xf32>
|
|
// d = broadcast w[3] : vector<1x2xf32> to vector<2x2xf32>
|
|
// v = [a,b,c,d]
|
|
// becomes:
|
|
// x = broadcast w[0][0] : vector<2xf32> to vector <2x2xf32>
|
|
// y = broadcast w[1][0] : vector<2xf32> to vector <2x2xf32>
|
|
// a = [x, y]
|
|
// etc.
|
|
Value stretchOneRank(Value value, Location loc, VectorType srcVectorType,
|
|
VectorType dstVectorType, int64_t rank, int64_t dim,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Type llvmType = typeConverter.convertType(dstVectorType);
|
|
assert((llvmType != nullptr) && "unlowerable vector type");
|
|
Value result = rewriter.create<LLVM::UndefOp>(loc, llvmType);
|
|
bool atStretch = dim != srcVectorType.getDimSize(0);
|
|
if (rank == 1) {
|
|
assert(atStretch);
|
|
Type redLlvmType =
|
|
typeConverter.convertType(dstVectorType.getElementType());
|
|
Value one =
|
|
extractOne(rewriter, typeConverter, loc, value, redLlvmType, rank, 0);
|
|
Value expand = insertOne(rewriter, typeConverter, loc, result, one,
|
|
llvmType, rank, 0);
|
|
SmallVector<int32_t, 4> zeroValues(dim, 0);
|
|
return rewriter.create<LLVM::ShuffleVectorOp>(
|
|
loc, expand, result, rewriter.getI32ArrayAttr(zeroValues));
|
|
}
|
|
VectorType redSrcType = reducedVectorTypeFront(srcVectorType);
|
|
VectorType redDstType = reducedVectorTypeFront(dstVectorType);
|
|
Type redLlvmType = typeConverter.convertType(redSrcType);
|
|
for (int64_t d = 0; d < dim; ++d) {
|
|
int64_t pos = atStretch ? 0 : d;
|
|
Value one = extractOne(rewriter, typeConverter, loc, value, redLlvmType,
|
|
rank, pos);
|
|
Value expand = expandRanks(one, loc, redSrcType, redDstType, rewriter);
|
|
result = insertOne(rewriter, typeConverter, loc, result, expand, llvmType,
|
|
rank, d);
|
|
}
|
|
return result;
|
|
}
|
|
};
|
|
|
|
class VectorReductionOpConversion : public ConvertToLLVMPattern {
|
|
public:
|
|
explicit VectorReductionOpConversion(MLIRContext *context,
|
|
LLVMTypeConverter &typeConverter)
|
|
: ConvertToLLVMPattern(vector::ReductionOp::getOperationName(), context,
|
|
typeConverter) {}
|
|
|
|
PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto reductionOp = cast<vector::ReductionOp>(op);
|
|
auto kind = reductionOp.kind();
|
|
Type eltType = reductionOp.dest().getType();
|
|
Type llvmType = typeConverter.convertType(eltType);
|
|
if (eltType.isSignlessInteger(32) || eltType.isSignlessInteger(64)) {
|
|
// Integer reductions: add/mul/min/max/and/or/xor.
|
|
if (kind == "add")
|
|
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_add>(
|
|
op, llvmType, operands[0]);
|
|
else if (kind == "mul")
|
|
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_mul>(
|
|
op, llvmType, operands[0]);
|
|
else if (kind == "min")
|
|
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_smin>(
|
|
op, llvmType, operands[0]);
|
|
else if (kind == "max")
|
|
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_smax>(
|
|
op, llvmType, operands[0]);
|
|
else if (kind == "and")
|
|
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_and>(
|
|
op, llvmType, operands[0]);
|
|
else if (kind == "or")
|
|
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_or>(
|
|
op, llvmType, operands[0]);
|
|
else if (kind == "xor")
|
|
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_xor>(
|
|
op, llvmType, operands[0]);
|
|
else
|
|
return matchFailure();
|
|
return matchSuccess();
|
|
|
|
} else if (eltType.isF32() || eltType.isF64()) {
|
|
// Floating-point reductions: add/mul/min/max
|
|
if (kind == "add") {
|
|
// Optional accumulator (or zero).
|
|
Value acc = operands.size() > 1 ? operands[1]
|
|
: rewriter.create<LLVM::ConstantOp>(
|
|
op->getLoc(), llvmType,
|
|
rewriter.getZeroAttr(eltType));
|
|
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fadd>(
|
|
op, llvmType, acc, operands[0]);
|
|
} else if (kind == "mul") {
|
|
// Optional accumulator (or one).
|
|
Value acc = operands.size() > 1
|
|
? operands[1]
|
|
: rewriter.create<LLVM::ConstantOp>(
|
|
op->getLoc(), llvmType,
|
|
rewriter.getFloatAttr(eltType, 1.0));
|
|
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fmul>(
|
|
op, llvmType, acc, operands[0]);
|
|
} else if (kind == "min")
|
|
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_fmin>(
|
|
op, llvmType, operands[0]);
|
|
else if (kind == "max")
|
|
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_fmax>(
|
|
op, llvmType, operands[0]);
|
|
else
|
|
return matchFailure();
|
|
return matchSuccess();
|
|
}
|
|
return matchFailure();
|
|
}
|
|
};
|
|
|
|
class VectorShuffleOpConversion : public ConvertToLLVMPattern {
|
|
public:
|
|
explicit VectorShuffleOpConversion(MLIRContext *context,
|
|
LLVMTypeConverter &typeConverter)
|
|
: ConvertToLLVMPattern(vector::ShuffleOp::getOperationName(), context,
|
|
typeConverter) {}
|
|
|
|
PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto loc = op->getLoc();
|
|
auto adaptor = vector::ShuffleOpOperandAdaptor(operands);
|
|
auto shuffleOp = cast<vector::ShuffleOp>(op);
|
|
auto v1Type = shuffleOp.getV1VectorType();
|
|
auto v2Type = shuffleOp.getV2VectorType();
|
|
auto vectorType = shuffleOp.getVectorType();
|
|
Type llvmType = typeConverter.convertType(vectorType);
|
|
auto maskArrayAttr = shuffleOp.mask();
|
|
|
|
// Bail if result type cannot be lowered.
|
|
if (!llvmType)
|
|
return matchFailure();
|
|
|
|
// Get rank and dimension sizes.
|
|
int64_t rank = vectorType.getRank();
|
|
assert(v1Type.getRank() == rank);
|
|
assert(v2Type.getRank() == rank);
|
|
int64_t v1Dim = v1Type.getDimSize(0);
|
|
|
|
// For rank 1, where both operands have *exactly* the same vector type,
|
|
// there is direct shuffle support in LLVM. Use it!
|
|
if (rank == 1 && v1Type == v2Type) {
|
|
Value shuffle = rewriter.create<LLVM::ShuffleVectorOp>(
|
|
loc, adaptor.v1(), adaptor.v2(), maskArrayAttr);
|
|
rewriter.replaceOp(op, shuffle);
|
|
return matchSuccess();
|
|
}
|
|
|
|
// For all other cases, insert the individual values individually.
|
|
Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType);
|
|
int64_t insPos = 0;
|
|
for (auto en : llvm::enumerate(maskArrayAttr)) {
|
|
int64_t extPos = en.value().cast<IntegerAttr>().getInt();
|
|
Value value = adaptor.v1();
|
|
if (extPos >= v1Dim) {
|
|
extPos -= v1Dim;
|
|
value = adaptor.v2();
|
|
}
|
|
Value extract = extractOne(rewriter, typeConverter, loc, value, llvmType,
|
|
rank, extPos);
|
|
insert = insertOne(rewriter, typeConverter, loc, insert, extract,
|
|
llvmType, rank, insPos++);
|
|
}
|
|
rewriter.replaceOp(op, insert);
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
class VectorExtractElementOpConversion : public ConvertToLLVMPattern {
|
|
public:
|
|
explicit VectorExtractElementOpConversion(MLIRContext *context,
|
|
LLVMTypeConverter &typeConverter)
|
|
: ConvertToLLVMPattern(vector::ExtractElementOp::getOperationName(),
|
|
context, typeConverter) {}
|
|
|
|
PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto adaptor = vector::ExtractElementOpOperandAdaptor(operands);
|
|
auto extractEltOp = cast<vector::ExtractElementOp>(op);
|
|
auto vectorType = extractEltOp.getVectorType();
|
|
auto llvmType = typeConverter.convertType(vectorType.getElementType());
|
|
|
|
// Bail if result type cannot be lowered.
|
|
if (!llvmType)
|
|
return matchFailure();
|
|
|
|
rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
|
|
op, llvmType, adaptor.vector(), adaptor.position());
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
class VectorExtractOpConversion : public ConvertToLLVMPattern {
|
|
public:
|
|
explicit VectorExtractOpConversion(MLIRContext *context,
|
|
LLVMTypeConverter &typeConverter)
|
|
: ConvertToLLVMPattern(vector::ExtractOp::getOperationName(), context,
|
|
typeConverter) {}
|
|
|
|
PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto loc = op->getLoc();
|
|
auto adaptor = vector::ExtractOpOperandAdaptor(operands);
|
|
auto extractOp = cast<vector::ExtractOp>(op);
|
|
auto vectorType = extractOp.getVectorType();
|
|
auto resultType = extractOp.getResult().getType();
|
|
auto llvmResultType = typeConverter.convertType(resultType);
|
|
auto positionArrayAttr = extractOp.position();
|
|
|
|
// Bail if result type cannot be lowered.
|
|
if (!llvmResultType)
|
|
return matchFailure();
|
|
|
|
// One-shot extraction of vector from array (only requires extractvalue).
|
|
if (resultType.isa<VectorType>()) {
|
|
Value extracted = rewriter.create<LLVM::ExtractValueOp>(
|
|
loc, llvmResultType, adaptor.vector(), positionArrayAttr);
|
|
rewriter.replaceOp(op, extracted);
|
|
return matchSuccess();
|
|
}
|
|
|
|
// Potential extraction of 1-D vector from array.
|
|
auto *context = op->getContext();
|
|
Value extracted = adaptor.vector();
|
|
auto positionAttrs = positionArrayAttr.getValue();
|
|
if (positionAttrs.size() > 1) {
|
|
auto oneDVectorType = reducedVectorTypeBack(vectorType);
|
|
auto nMinusOnePositionAttrs =
|
|
ArrayAttr::get(positionAttrs.drop_back(), context);
|
|
extracted = rewriter.create<LLVM::ExtractValueOp>(
|
|
loc, typeConverter.convertType(oneDVectorType), extracted,
|
|
nMinusOnePositionAttrs);
|
|
}
|
|
|
|
// Remaining extraction of element from 1-D LLVM vector
|
|
auto position = positionAttrs.back().cast<IntegerAttr>();
|
|
auto i64Type = LLVM::LLVMType::getInt64Ty(typeConverter.getDialect());
|
|
auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
|
|
extracted =
|
|
rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
|
|
rewriter.replaceOp(op, extracted);
|
|
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
/// Conversion pattern that turns a vector.fma on a 1-D vector
|
|
/// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion.
|
|
/// This does not match vectors of n >= 2 rank.
|
|
///
|
|
/// Example:
|
|
/// ```
|
|
/// vector.fma %a, %a, %a : vector<8xf32>
|
|
/// ```
|
|
/// is converted to:
|
|
/// ```
|
|
/// llvm.intr.fma %va, %va, %va:
|
|
/// (!llvm<"<8 x float>">, !llvm<"<8 x float>">, !llvm<"<8 x float>">)
|
|
/// -> !llvm<"<8 x float>">
|
|
/// ```
|
|
class VectorFMAOp1DConversion : public ConvertToLLVMPattern {
|
|
public:
|
|
explicit VectorFMAOp1DConversion(MLIRContext *context,
|
|
LLVMTypeConverter &typeConverter)
|
|
: ConvertToLLVMPattern(vector::FMAOp::getOperationName(), context,
|
|
typeConverter) {}
|
|
|
|
PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto adaptor = vector::FMAOpOperandAdaptor(operands);
|
|
vector::FMAOp fmaOp = cast<vector::FMAOp>(op);
|
|
VectorType vType = fmaOp.getVectorType();
|
|
if (vType.getRank() != 1)
|
|
return matchFailure();
|
|
rewriter.replaceOpWithNewOp<LLVM::FMAOp>(op, adaptor.lhs(), adaptor.rhs(),
|
|
adaptor.acc());
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
class VectorInsertElementOpConversion : public ConvertToLLVMPattern {
|
|
public:
|
|
explicit VectorInsertElementOpConversion(MLIRContext *context,
|
|
LLVMTypeConverter &typeConverter)
|
|
: ConvertToLLVMPattern(vector::InsertElementOp::getOperationName(),
|
|
context, typeConverter) {}
|
|
|
|
PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto adaptor = vector::InsertElementOpOperandAdaptor(operands);
|
|
auto insertEltOp = cast<vector::InsertElementOp>(op);
|
|
auto vectorType = insertEltOp.getDestVectorType();
|
|
auto llvmType = typeConverter.convertType(vectorType);
|
|
|
|
// Bail if result type cannot be lowered.
|
|
if (!llvmType)
|
|
return matchFailure();
|
|
|
|
rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
|
|
op, llvmType, adaptor.dest(), adaptor.source(), adaptor.position());
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
class VectorInsertOpConversion : public ConvertToLLVMPattern {
|
|
public:
|
|
explicit VectorInsertOpConversion(MLIRContext *context,
|
|
LLVMTypeConverter &typeConverter)
|
|
: ConvertToLLVMPattern(vector::InsertOp::getOperationName(), context,
|
|
typeConverter) {}
|
|
|
|
PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto loc = op->getLoc();
|
|
auto adaptor = vector::InsertOpOperandAdaptor(operands);
|
|
auto insertOp = cast<vector::InsertOp>(op);
|
|
auto sourceType = insertOp.getSourceType();
|
|
auto destVectorType = insertOp.getDestVectorType();
|
|
auto llvmResultType = typeConverter.convertType(destVectorType);
|
|
auto positionArrayAttr = insertOp.position();
|
|
|
|
// Bail if result type cannot be lowered.
|
|
if (!llvmResultType)
|
|
return matchFailure();
|
|
|
|
// One-shot insertion of a vector into an array (only requires insertvalue).
|
|
if (sourceType.isa<VectorType>()) {
|
|
Value inserted = rewriter.create<LLVM::InsertValueOp>(
|
|
loc, llvmResultType, adaptor.dest(), adaptor.source(),
|
|
positionArrayAttr);
|
|
rewriter.replaceOp(op, inserted);
|
|
return matchSuccess();
|
|
}
|
|
|
|
// Potential extraction of 1-D vector from array.
|
|
auto *context = op->getContext();
|
|
Value extracted = adaptor.dest();
|
|
auto positionAttrs = positionArrayAttr.getValue();
|
|
auto position = positionAttrs.back().cast<IntegerAttr>();
|
|
auto oneDVectorType = destVectorType;
|
|
if (positionAttrs.size() > 1) {
|
|
oneDVectorType = reducedVectorTypeBack(destVectorType);
|
|
auto nMinusOnePositionAttrs =
|
|
ArrayAttr::get(positionAttrs.drop_back(), context);
|
|
extracted = rewriter.create<LLVM::ExtractValueOp>(
|
|
loc, typeConverter.convertType(oneDVectorType), extracted,
|
|
nMinusOnePositionAttrs);
|
|
}
|
|
|
|
// Insertion of an element into a 1-D LLVM vector.
|
|
auto i64Type = LLVM::LLVMType::getInt64Ty(typeConverter.getDialect());
|
|
auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
|
|
Value inserted = rewriter.create<LLVM::InsertElementOp>(
|
|
loc, typeConverter.convertType(oneDVectorType), extracted,
|
|
adaptor.source(), constant);
|
|
|
|
// Potential insertion of resulting 1-D vector into array.
|
|
if (positionAttrs.size() > 1) {
|
|
auto nMinusOnePositionAttrs =
|
|
ArrayAttr::get(positionAttrs.drop_back(), context);
|
|
inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType,
|
|
adaptor.dest(), inserted,
|
|
nMinusOnePositionAttrs);
|
|
}
|
|
|
|
rewriter.replaceOp(op, inserted);
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
/// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1.
|
|
///
|
|
/// Example:
|
|
/// ```
|
|
/// %d = vector.fma %a, %b, %c : vector<2x4xf32>
|
|
/// ```
|
|
/// is rewritten into:
|
|
/// ```
|
|
/// %r = splat %f0: vector<2x4xf32>
|
|
/// %va = vector.extractvalue %a[0] : vector<2x4xf32>
|
|
/// %vb = vector.extractvalue %b[0] : vector<2x4xf32>
|
|
/// %vc = vector.extractvalue %c[0] : vector<2x4xf32>
|
|
/// %vd = vector.fma %va, %vb, %vc : vector<4xf32>
|
|
/// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32>
|
|
/// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32>
|
|
/// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32>
|
|
/// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32>
|
|
/// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32>
|
|
/// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32>
|
|
/// // %r3 holds the final value.
|
|
/// ```
|
|
class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> {
|
|
public:
|
|
using OpRewritePattern<FMAOp>::OpRewritePattern;
|
|
|
|
PatternMatchResult matchAndRewrite(FMAOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto vType = op.getVectorType();
|
|
if (vType.getRank() < 2)
|
|
return matchFailure();
|
|
|
|
auto loc = op.getLoc();
|
|
auto elemType = vType.getElementType();
|
|
Value zero = rewriter.create<ConstantOp>(loc, elemType,
|
|
rewriter.getZeroAttr(elemType));
|
|
Value desc = rewriter.create<SplatOp>(loc, vType, zero);
|
|
for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) {
|
|
Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i);
|
|
Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i);
|
|
Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i);
|
|
Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC);
|
|
desc = rewriter.create<InsertOp>(loc, fma, desc, i);
|
|
}
|
|
rewriter.replaceOp(op, desc);
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
// When ranks are different, InsertStridedSlice needs to extract a properly
|
|
// ranked vector from the destination vector into which to insert. This pattern
|
|
// only takes care of this part and forwards the rest of the conversion to
|
|
// another pattern that converts InsertStridedSlice for operands of the same
|
|
// rank.
|
|
//
|
|
// RewritePattern for InsertStridedSliceOp where source and destination vectors
|
|
// have different ranks. In this case:
|
|
// 1. the proper subvector is extracted from the destination vector
|
|
// 2. a new InsertStridedSlice op is created to insert the source in the
|
|
// destination subvector
|
|
// 3. the destination subvector is inserted back in the proper place
|
|
// 4. the op is replaced by the result of step 3.
|
|
// The new InsertStridedSlice from step 2. will be picked up by a
|
|
// `VectorInsertStridedSliceOpSameRankRewritePattern`.
|
|
class VectorInsertStridedSliceOpDifferentRankRewritePattern
|
|
: public OpRewritePattern<InsertStridedSliceOp> {
|
|
public:
|
|
using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
|
|
|
|
PatternMatchResult matchAndRewrite(InsertStridedSliceOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto srcType = op.getSourceVectorType();
|
|
auto dstType = op.getDestVectorType();
|
|
|
|
if (op.offsets().getValue().empty())
|
|
return matchFailure();
|
|
|
|
auto loc = op.getLoc();
|
|
int64_t rankDiff = dstType.getRank() - srcType.getRank();
|
|
assert(rankDiff >= 0);
|
|
if (rankDiff == 0)
|
|
return matchFailure();
|
|
|
|
int64_t rankRest = dstType.getRank() - rankDiff;
|
|
// Extract / insert the subvector of matching rank and InsertStridedSlice
|
|
// on it.
|
|
Value extracted =
|
|
rewriter.create<ExtractOp>(loc, op.dest(),
|
|
getI64SubArray(op.offsets(), /*dropFront=*/0,
|
|
/*dropFront=*/rankRest));
|
|
// A different pattern will kick in for InsertStridedSlice with matching
|
|
// ranks.
|
|
auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>(
|
|
loc, op.source(), extracted,
|
|
getI64SubArray(op.offsets(), /*dropFront=*/rankDiff),
|
|
getI64SubArray(op.strides(), /*dropFront=*/0));
|
|
rewriter.replaceOpWithNewOp<InsertOp>(
|
|
op, stridedSliceInnerOp.getResult(), op.dest(),
|
|
getI64SubArray(op.offsets(), /*dropFront=*/0,
|
|
/*dropFront=*/rankRest));
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
// RewritePattern for InsertStridedSliceOp where source and destination vectors
|
|
// have the same rank. In this case, we reduce
|
|
// 1. the proper subvector is extracted from the destination vector
|
|
// 2. a new InsertStridedSlice op is created to insert the source in the
|
|
// destination subvector
|
|
// 3. the destination subvector is inserted back in the proper place
|
|
// 4. the op is replaced by the result of step 3.
|
|
// The new InsertStridedSlice from step 2. will be picked up by a
|
|
// `VectorInsertStridedSliceOpSameRankRewritePattern`.
|
|
class VectorInsertStridedSliceOpSameRankRewritePattern
|
|
: public OpRewritePattern<InsertStridedSliceOp> {
|
|
public:
|
|
using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
|
|
|
|
PatternMatchResult matchAndRewrite(InsertStridedSliceOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto srcType = op.getSourceVectorType();
|
|
auto dstType = op.getDestVectorType();
|
|
|
|
if (op.offsets().getValue().empty())
|
|
return matchFailure();
|
|
|
|
int64_t rankDiff = dstType.getRank() - srcType.getRank();
|
|
assert(rankDiff >= 0);
|
|
if (rankDiff != 0)
|
|
return matchFailure();
|
|
|
|
if (srcType == dstType) {
|
|
rewriter.replaceOp(op, op.source());
|
|
return matchSuccess();
|
|
}
|
|
|
|
int64_t offset =
|
|
op.offsets().getValue().front().cast<IntegerAttr>().getInt();
|
|
int64_t size = srcType.getShape().front();
|
|
int64_t stride =
|
|
op.strides().getValue().front().cast<IntegerAttr>().getInt();
|
|
|
|
auto loc = op.getLoc();
|
|
Value res = op.dest();
|
|
// For each slice of the source vector along the most major dimension.
|
|
for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
|
|
off += stride, ++idx) {
|
|
// 1. extract the proper subvector (or element) from source
|
|
Value extractedSource = extractOne(rewriter, loc, op.source(), idx);
|
|
if (extractedSource.getType().isa<VectorType>()) {
|
|
// 2. If we have a vector, extract the proper subvector from destination
|
|
// Otherwise we are at the element level and no need to recurse.
|
|
Value extractedDest = extractOne(rewriter, loc, op.dest(), off);
|
|
// 3. Reduce the problem to lowering a new InsertStridedSlice op with
|
|
// smaller rank.
|
|
InsertStridedSliceOp insertStridedSliceOp =
|
|
rewriter.create<InsertStridedSliceOp>(
|
|
loc, extractedSource, extractedDest,
|
|
getI64SubArray(op.offsets(), /* dropFront=*/1),
|
|
getI64SubArray(op.strides(), /* dropFront=*/1));
|
|
// Call matchAndRewrite recursively from within the pattern. This
|
|
// circumvents the current limitation that a given pattern cannot
|
|
// be called multiple times by the PatternRewrite infrastructure (to
|
|
// avoid infinite recursion, but in this case, infinite recursion
|
|
// cannot happen because the rank is strictly decreasing).
|
|
// TODO(rriddle, nicolasvasilache) Implement something like a hook for
|
|
// a potential function that must decrease and allow the same pattern
|
|
// multiple times.
|
|
auto success = matchAndRewrite(insertStridedSliceOp, rewriter);
|
|
(void)success;
|
|
assert(success && "Unexpected failure");
|
|
extractedSource = insertStridedSliceOp;
|
|
}
|
|
// 4. Insert the extractedSource into the res vector.
|
|
res = insertOne(rewriter, loc, extractedSource, res, off);
|
|
}
|
|
|
|
rewriter.replaceOp(op, res);
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
class VectorOuterProductOpConversion : public ConvertToLLVMPattern {
|
|
public:
|
|
explicit VectorOuterProductOpConversion(MLIRContext *context,
|
|
LLVMTypeConverter &typeConverter)
|
|
: ConvertToLLVMPattern(vector::OuterProductOp::getOperationName(),
|
|
context, typeConverter) {}
|
|
|
|
PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto loc = op->getLoc();
|
|
auto adaptor = vector::OuterProductOpOperandAdaptor(operands);
|
|
auto *ctx = op->getContext();
|
|
auto vLHS = adaptor.lhs().getType().cast<LLVM::LLVMType>();
|
|
auto vRHS = adaptor.rhs().getType().cast<LLVM::LLVMType>();
|
|
auto rankLHS = vLHS.getUnderlyingType()->getVectorNumElements();
|
|
auto rankRHS = vRHS.getUnderlyingType()->getVectorNumElements();
|
|
auto llvmArrayOfVectType = typeConverter.convertType(
|
|
cast<vector::OuterProductOp>(op).getResult().getType());
|
|
Value desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayOfVectType);
|
|
Value a = adaptor.lhs(), b = adaptor.rhs();
|
|
Value acc = adaptor.acc().empty() ? nullptr : adaptor.acc().front();
|
|
SmallVector<Value, 8> lhs, accs;
|
|
lhs.reserve(rankLHS);
|
|
accs.reserve(rankLHS);
|
|
for (unsigned d = 0, e = rankLHS; d < e; ++d) {
|
|
// shufflevector explicitly requires i32.
|
|
auto attr = rewriter.getI32IntegerAttr(d);
|
|
SmallVector<Attribute, 4> bcastAttr(rankRHS, attr);
|
|
auto bcastArrayAttr = ArrayAttr::get(bcastAttr, ctx);
|
|
Value aD = nullptr, accD = nullptr;
|
|
// 1. Broadcast the element a[d] into vector aD.
|
|
aD = rewriter.create<LLVM::ShuffleVectorOp>(loc, a, a, bcastArrayAttr);
|
|
// 2. If acc is present, extract 1-d vector acc[d] into accD.
|
|
if (acc)
|
|
accD = rewriter.create<LLVM::ExtractValueOp>(
|
|
loc, vRHS, acc, rewriter.getI64ArrayAttr(d));
|
|
// 3. Compute aD outer b (plus accD, if relevant).
|
|
Value aOuterbD =
|
|
accD
|
|
? rewriter.create<LLVM::FMAOp>(loc, vRHS, aD, b, accD).getResult()
|
|
: rewriter.create<LLVM::FMulOp>(loc, aD, b).getResult();
|
|
// 4. Insert as value `d` in the descriptor.
|
|
desc = rewriter.create<LLVM::InsertValueOp>(loc, llvmArrayOfVectType,
|
|
desc, aOuterbD,
|
|
rewriter.getI64ArrayAttr(d));
|
|
}
|
|
rewriter.replaceOp(op, desc);
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
class VectorTypeCastOpConversion : public ConvertToLLVMPattern {
|
|
public:
|
|
explicit VectorTypeCastOpConversion(MLIRContext *context,
|
|
LLVMTypeConverter &typeConverter)
|
|
: ConvertToLLVMPattern(vector::TypeCastOp::getOperationName(), context,
|
|
typeConverter) {}
|
|
|
|
PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto loc = op->getLoc();
|
|
vector::TypeCastOp castOp = cast<vector::TypeCastOp>(op);
|
|
MemRefType sourceMemRefType =
|
|
castOp.getOperand().getType().cast<MemRefType>();
|
|
MemRefType targetMemRefType =
|
|
castOp.getResult().getType().cast<MemRefType>();
|
|
|
|
// Only static shape casts supported atm.
|
|
if (!sourceMemRefType.hasStaticShape() ||
|
|
!targetMemRefType.hasStaticShape())
|
|
return matchFailure();
|
|
|
|
auto llvmSourceDescriptorTy =
|
|
operands[0].getType().dyn_cast<LLVM::LLVMType>();
|
|
if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy())
|
|
return matchFailure();
|
|
MemRefDescriptor sourceMemRef(operands[0]);
|
|
|
|
auto llvmTargetDescriptorTy = typeConverter.convertType(targetMemRefType)
|
|
.dyn_cast_or_null<LLVM::LLVMType>();
|
|
if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy())
|
|
return matchFailure();
|
|
|
|
int64_t offset;
|
|
SmallVector<int64_t, 4> strides;
|
|
auto successStrides =
|
|
getStridesAndOffset(sourceMemRefType, strides, offset);
|
|
bool isContiguous = (strides.back() == 1);
|
|
if (isContiguous) {
|
|
auto sizes = sourceMemRefType.getShape();
|
|
for (int index = 0, e = strides.size() - 2; index < e; ++index) {
|
|
if (strides[index] != strides[index + 1] * sizes[index + 1]) {
|
|
isContiguous = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// Only contiguous source tensors supported atm.
|
|
if (failed(successStrides) || !isContiguous)
|
|
return matchFailure();
|
|
|
|
auto int64Ty = LLVM::LLVMType::getInt64Ty(typeConverter.getDialect());
|
|
|
|
// Create descriptor.
|
|
auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
|
|
Type llvmTargetElementTy = desc.getElementType();
|
|
// Set allocated ptr.
|
|
Value allocated = sourceMemRef.allocatedPtr(rewriter, loc);
|
|
allocated =
|
|
rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
|
|
desc.setAllocatedPtr(rewriter, loc, allocated);
|
|
// Set aligned ptr.
|
|
Value ptr = sourceMemRef.alignedPtr(rewriter, loc);
|
|
ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
|
|
desc.setAlignedPtr(rewriter, loc, ptr);
|
|
// Fill offset 0.
|
|
auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
|
|
auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
|
|
desc.setOffset(rewriter, loc, zero);
|
|
|
|
// Fill size and stride descriptors in memref.
|
|
for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
|
|
int64_t index = indexedSize.index();
|
|
auto sizeAttr =
|
|
rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
|
|
auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
|
|
desc.setSize(rewriter, loc, index, size);
|
|
auto strideAttr =
|
|
rewriter.getIntegerAttr(rewriter.getIndexType(), strides[index]);
|
|
auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
|
|
desc.setStride(rewriter, loc, index, stride);
|
|
}
|
|
|
|
rewriter.replaceOp(op, {desc});
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
class VectorPrintOpConversion : public ConvertToLLVMPattern {
|
|
public:
|
|
explicit VectorPrintOpConversion(MLIRContext *context,
|
|
LLVMTypeConverter &typeConverter)
|
|
: ConvertToLLVMPattern(vector::PrintOp::getOperationName(), context,
|
|
typeConverter) {}
|
|
|
|
// Proof-of-concept lowering implementation that relies on a small
|
|
// runtime support library, which only needs to provide a few
|
|
// printing methods (single value for all data types, opening/closing
|
|
// bracket, comma, newline). The lowering fully unrolls a vector
|
|
// in terms of these elementary printing operations. The advantage
|
|
// of this approach is that the library can remain unaware of all
|
|
// low-level implementation details of vectors while still supporting
|
|
// output of any shaped and dimensioned vector. Due to full unrolling,
|
|
// this approach is less suited for very large vectors though.
|
|
//
|
|
// TODO(ajcbik): rely solely on libc in future? something else?
|
|
//
|
|
PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto printOp = cast<vector::PrintOp>(op);
|
|
auto adaptor = vector::PrintOpOperandAdaptor(operands);
|
|
Type printType = printOp.getPrintType();
|
|
|
|
if (typeConverter.convertType(printType) == nullptr)
|
|
return matchFailure();
|
|
|
|
// Make sure element type has runtime support (currently just Float/Double).
|
|
VectorType vectorType = printType.dyn_cast<VectorType>();
|
|
Type eltType = vectorType ? vectorType.getElementType() : printType;
|
|
int64_t rank = vectorType ? vectorType.getRank() : 0;
|
|
Operation *printer;
|
|
if (eltType.isSignlessInteger(32))
|
|
printer = getPrintI32(op);
|
|
else if (eltType.isSignlessInteger(64))
|
|
printer = getPrintI64(op);
|
|
else if (eltType.isF32())
|
|
printer = getPrintFloat(op);
|
|
else if (eltType.isF64())
|
|
printer = getPrintDouble(op);
|
|
else
|
|
return matchFailure();
|
|
|
|
// Unroll vector into elementary print calls.
|
|
emitRanks(rewriter, op, adaptor.source(), vectorType, printer, rank);
|
|
emitCall(rewriter, op->getLoc(), getPrintNewline(op));
|
|
rewriter.eraseOp(op);
|
|
return matchSuccess();
|
|
}
|
|
|
|
private:
|
|
void emitRanks(ConversionPatternRewriter &rewriter, Operation *op,
|
|
Value value, VectorType vectorType, Operation *printer,
|
|
int64_t rank) const {
|
|
Location loc = op->getLoc();
|
|
if (rank == 0) {
|
|
emitCall(rewriter, loc, printer, value);
|
|
return;
|
|
}
|
|
|
|
emitCall(rewriter, loc, getPrintOpen(op));
|
|
Operation *printComma = getPrintComma(op);
|
|
int64_t dim = vectorType.getDimSize(0);
|
|
for (int64_t d = 0; d < dim; ++d) {
|
|
auto reducedType =
|
|
rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr;
|
|
auto llvmType = typeConverter.convertType(
|
|
rank > 1 ? reducedType : vectorType.getElementType());
|
|
Value nestedVal =
|
|
extractOne(rewriter, typeConverter, loc, value, llvmType, rank, d);
|
|
emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1);
|
|
if (d != dim - 1)
|
|
emitCall(rewriter, loc, printComma);
|
|
}
|
|
emitCall(rewriter, loc, getPrintClose(op));
|
|
}
|
|
|
|
// Helper to emit a call.
|
|
static void emitCall(ConversionPatternRewriter &rewriter, Location loc,
|
|
Operation *ref, ValueRange params = ValueRange()) {
|
|
rewriter.create<LLVM::CallOp>(loc, ArrayRef<Type>{},
|
|
rewriter.getSymbolRefAttr(ref), params);
|
|
}
|
|
|
|
// Helper for printer method declaration (first hit) and lookup.
|
|
static Operation *getPrint(Operation *op, LLVM::LLVMDialect *dialect,
|
|
StringRef name, ArrayRef<LLVM::LLVMType> params) {
|
|
auto module = op->getParentOfType<ModuleOp>();
|
|
auto func = module.lookupSymbol<LLVM::LLVMFuncOp>(name);
|
|
if (func)
|
|
return func;
|
|
OpBuilder moduleBuilder(module.getBodyRegion());
|
|
return moduleBuilder.create<LLVM::LLVMFuncOp>(
|
|
op->getLoc(), name,
|
|
LLVM::LLVMType::getFunctionTy(LLVM::LLVMType::getVoidTy(dialect),
|
|
params, /*isVarArg=*/false));
|
|
}
|
|
|
|
// Helpers for method names.
|
|
Operation *getPrintI32(Operation *op) const {
|
|
LLVM::LLVMDialect *dialect = typeConverter.getDialect();
|
|
return getPrint(op, dialect, "print_i32",
|
|
LLVM::LLVMType::getInt32Ty(dialect));
|
|
}
|
|
Operation *getPrintI64(Operation *op) const {
|
|
LLVM::LLVMDialect *dialect = typeConverter.getDialect();
|
|
return getPrint(op, dialect, "print_i64",
|
|
LLVM::LLVMType::getInt64Ty(dialect));
|
|
}
|
|
Operation *getPrintFloat(Operation *op) const {
|
|
LLVM::LLVMDialect *dialect = typeConverter.getDialect();
|
|
return getPrint(op, dialect, "print_f32",
|
|
LLVM::LLVMType::getFloatTy(dialect));
|
|
}
|
|
Operation *getPrintDouble(Operation *op) const {
|
|
LLVM::LLVMDialect *dialect = typeConverter.getDialect();
|
|
return getPrint(op, dialect, "print_f64",
|
|
LLVM::LLVMType::getDoubleTy(dialect));
|
|
}
|
|
Operation *getPrintOpen(Operation *op) const {
|
|
return getPrint(op, typeConverter.getDialect(), "print_open", {});
|
|
}
|
|
Operation *getPrintClose(Operation *op) const {
|
|
return getPrint(op, typeConverter.getDialect(), "print_close", {});
|
|
}
|
|
Operation *getPrintComma(Operation *op) const {
|
|
return getPrint(op, typeConverter.getDialect(), "print_comma", {});
|
|
}
|
|
Operation *getPrintNewline(Operation *op) const {
|
|
return getPrint(op, typeConverter.getDialect(), "print_newline", {});
|
|
}
|
|
};
|
|
|
|
/// Progressive lowering of StridedSliceOp to either:
|
|
/// 1. extractelement + insertelement for the 1-D case
|
|
/// 2. extract + optional strided_slice + insert for the n-D case.
|
|
class VectorStridedSliceOpConversion : public OpRewritePattern<StridedSliceOp> {
|
|
public:
|
|
using OpRewritePattern<StridedSliceOp>::OpRewritePattern;
|
|
|
|
PatternMatchResult matchAndRewrite(StridedSliceOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto dstType = op.getResult().getType().cast<VectorType>();
|
|
|
|
assert(!op.offsets().getValue().empty() && "Unexpected empty offsets");
|
|
|
|
int64_t offset =
|
|
op.offsets().getValue().front().cast<IntegerAttr>().getInt();
|
|
int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt();
|
|
int64_t stride =
|
|
op.strides().getValue().front().cast<IntegerAttr>().getInt();
|
|
|
|
auto loc = op.getLoc();
|
|
auto elemType = dstType.getElementType();
|
|
assert(elemType.isSignlessIntOrIndexOrFloat());
|
|
Value zero = rewriter.create<ConstantOp>(loc, elemType,
|
|
rewriter.getZeroAttr(elemType));
|
|
Value res = rewriter.create<SplatOp>(loc, dstType, zero);
|
|
for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
|
|
off += stride, ++idx) {
|
|
Value extracted = extractOne(rewriter, loc, op.vector(), off);
|
|
if (op.offsets().getValue().size() > 1) {
|
|
StridedSliceOp stridedSliceOp = rewriter.create<StridedSliceOp>(
|
|
loc, extracted, getI64SubArray(op.offsets(), /* dropFront=*/1),
|
|
getI64SubArray(op.sizes(), /* dropFront=*/1),
|
|
getI64SubArray(op.strides(), /* dropFront=*/1));
|
|
// Call matchAndRewrite recursively from within the pattern. This
|
|
// circumvents the current limitation that a given pattern cannot
|
|
// be called multiple times by the PatternRewrite infrastructure (to
|
|
// avoid infinite recursion, but in this case, infinite recursion
|
|
// cannot happen because the rank is strictly decreasing).
|
|
// TODO(rriddle, nicolasvasilache) Implement something like a hook for
|
|
// a potential function that must decrease and allow the same pattern
|
|
// multiple times.
|
|
auto success = matchAndRewrite(stridedSliceOp, rewriter);
|
|
(void)success;
|
|
assert(success && "Unexpected failure");
|
|
extracted = stridedSliceOp;
|
|
}
|
|
res = insertOne(rewriter, loc, extracted, res, idx);
|
|
}
|
|
rewriter.replaceOp(op, {res});
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
/// Populate the given list with patterns that convert from Vector to LLVM.
|
|
void mlir::populateVectorToLLVMConversionPatterns(
|
|
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
|
|
MLIRContext *ctx = converter.getDialect()->getContext();
|
|
patterns.insert<VectorFMAOpNDRewritePattern,
|
|
VectorInsertStridedSliceOpDifferentRankRewritePattern,
|
|
VectorInsertStridedSliceOpSameRankRewritePattern,
|
|
VectorStridedSliceOpConversion>(ctx);
|
|
patterns.insert<VectorBroadcastOpConversion, VectorReductionOpConversion,
|
|
VectorShuffleOpConversion, VectorExtractElementOpConversion,
|
|
VectorExtractOpConversion, VectorFMAOp1DConversion,
|
|
VectorInsertElementOpConversion, VectorInsertOpConversion,
|
|
VectorOuterProductOpConversion, VectorTypeCastOpConversion,
|
|
VectorPrintOpConversion>(ctx, converter);
|
|
}
|
|
|
|
namespace {
|
|
struct LowerVectorToLLVMPass : public ModulePass<LowerVectorToLLVMPass> {
|
|
void runOnModule() override;
|
|
};
|
|
} // namespace
|
|
|
|
void LowerVectorToLLVMPass::runOnModule() {
|
|
// Perform progressive lowering of operations on "slices" and
|
|
// all contraction operations. Also applies folding and DCE.
|
|
{
|
|
OwningRewritePatternList patterns;
|
|
populateVectorSlicesLoweringPatterns(patterns, &getContext());
|
|
populateVectorContractLoweringPatterns(patterns, &getContext());
|
|
applyPatternsGreedily(getModule(), patterns);
|
|
}
|
|
|
|
// Convert to the LLVM IR dialect.
|
|
LLVMTypeConverter converter(&getContext());
|
|
OwningRewritePatternList patterns;
|
|
populateVectorToLLVMConversionPatterns(converter, patterns);
|
|
populateStdToLLVMConversionPatterns(converter, patterns);
|
|
|
|
LLVMConversionTarget target(getContext());
|
|
target.addDynamicallyLegalOp<FuncOp>(
|
|
[&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
|
|
if (failed(
|
|
applyPartialConversion(getModule(), target, patterns, &converter))) {
|
|
signalPassFailure();
|
|
}
|
|
}
|
|
|
|
OpPassBase<ModuleOp> *mlir::createLowerVectorToLLVMPass() {
|
|
return new LowerVectorToLLVMPass();
|
|
}
|
|
|
|
static PassRegistration<LowerVectorToLLVMPass>
|
|
pass("convert-vector-to-llvm",
|
|
"Lower the operations from the vector dialect into the LLVM dialect");
|