
HasNoSideEffect can now be implemented using the MemoryEffectInterface, removing the need to check multiple things for the same information. This also removes an easy foot-gun for users as 'Operation::hasNoSideEffect' would ignore operations that dynamically, or recursively, have no side effects. This also leads to an immediate improvement in some of the existing users, such as DCE, now that they have access to more information. Differential Revision: https://reviews.llvm.org/D76036
1010 lines
39 KiB
C++
1010 lines
39 KiB
C++
//===- Utils.cpp ---- Misc utilities for analysis -------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements miscellaneous analysis routines for non-loop IR
|
|
// structures.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Analysis/Utils.h"
|
|
|
|
#include "mlir/Analysis/AffineAnalysis.h"
|
|
#include "mlir/Dialect/AffineOps/AffineOps.h"
|
|
#include "mlir/Dialect/AffineOps/AffineValueMap.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#define DEBUG_TYPE "analysis-utils"
|
|
|
|
using namespace mlir;
|
|
|
|
using llvm::SmallDenseMap;
|
|
|
|
/// Populates 'loops' with IVs of the loops surrounding 'op' ordered from
|
|
/// the outermost 'affine.for' operation to the innermost one.
|
|
void mlir::getLoopIVs(Operation &op, SmallVectorImpl<AffineForOp> *loops) {
|
|
auto *currOp = op.getParentOp();
|
|
AffineForOp currAffineForOp;
|
|
// Traverse up the hierarchy collecting all 'affine.for' operation while
|
|
// skipping over 'affine.if' operations.
|
|
while (currOp && ((currAffineForOp = dyn_cast<AffineForOp>(currOp)) ||
|
|
isa<AffineIfOp>(currOp))) {
|
|
if (currAffineForOp)
|
|
loops->push_back(currAffineForOp);
|
|
currOp = currOp->getParentOp();
|
|
}
|
|
std::reverse(loops->begin(), loops->end());
|
|
}
|
|
|
|
// Populates 'cst' with FlatAffineConstraints which represent slice bounds.
|
|
LogicalResult
|
|
ComputationSliceState::getAsConstraints(FlatAffineConstraints *cst) {
|
|
assert(!lbOperands.empty());
|
|
// Adds src 'ivs' as dimension identifiers in 'cst'.
|
|
unsigned numDims = ivs.size();
|
|
// Adds operands (dst ivs and symbols) as symbols in 'cst'.
|
|
unsigned numSymbols = lbOperands[0].size();
|
|
|
|
SmallVector<Value, 4> values(ivs);
|
|
// Append 'ivs' then 'operands' to 'values'.
|
|
values.append(lbOperands[0].begin(), lbOperands[0].end());
|
|
cst->reset(numDims, numSymbols, 0, values);
|
|
|
|
// Add loop bound constraints for values which are loop IVs and equality
|
|
// constraints for symbols which are constants.
|
|
for (const auto &value : values) {
|
|
assert(cst->containsId(value) && "value expected to be present");
|
|
if (isValidSymbol(value)) {
|
|
// Check if the symbol is a constant.
|
|
|
|
if (auto cOp = dyn_cast_or_null<ConstantIndexOp>(value.getDefiningOp()))
|
|
cst->setIdToConstant(value, cOp.getValue());
|
|
} else if (auto loop = getForInductionVarOwner(value)) {
|
|
if (failed(cst->addAffineForOpDomain(loop)))
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
// Add slices bounds on 'ivs' using maps 'lbs'/'ubs' with 'lbOperands[0]'
|
|
LogicalResult ret = cst->addSliceBounds(ivs, lbs, ubs, lbOperands[0]);
|
|
assert(succeeded(ret) &&
|
|
"should not fail as we never have semi-affine slice maps");
|
|
(void)ret;
|
|
return success();
|
|
}
|
|
|
|
// Clears state bounds and operand state.
|
|
void ComputationSliceState::clearBounds() {
|
|
lbs.clear();
|
|
ubs.clear();
|
|
lbOperands.clear();
|
|
ubOperands.clear();
|
|
}
|
|
|
|
unsigned MemRefRegion::getRank() const {
|
|
return memref.getType().cast<MemRefType>().getRank();
|
|
}
|
|
|
|
Optional<int64_t> MemRefRegion::getConstantBoundingSizeAndShape(
|
|
SmallVectorImpl<int64_t> *shape, std::vector<SmallVector<int64_t, 4>> *lbs,
|
|
SmallVectorImpl<int64_t> *lbDivisors) const {
|
|
auto memRefType = memref.getType().cast<MemRefType>();
|
|
unsigned rank = memRefType.getRank();
|
|
if (shape)
|
|
shape->reserve(rank);
|
|
|
|
assert(rank == cst.getNumDimIds() && "inconsistent memref region");
|
|
|
|
// Find a constant upper bound on the extent of this memref region along each
|
|
// dimension.
|
|
int64_t numElements = 1;
|
|
int64_t diffConstant;
|
|
int64_t lbDivisor;
|
|
for (unsigned d = 0; d < rank; d++) {
|
|
SmallVector<int64_t, 4> lb;
|
|
Optional<int64_t> diff = cst.getConstantBoundOnDimSize(d, &lb, &lbDivisor);
|
|
if (diff.hasValue()) {
|
|
diffConstant = diff.getValue();
|
|
assert(lbDivisor > 0);
|
|
} else {
|
|
// If no constant bound is found, then it can always be bound by the
|
|
// memref's dim size if the latter has a constant size along this dim.
|
|
auto dimSize = memRefType.getDimSize(d);
|
|
if (dimSize == -1)
|
|
return None;
|
|
diffConstant = dimSize;
|
|
// Lower bound becomes 0.
|
|
lb.resize(cst.getNumSymbolIds() + 1, 0);
|
|
lbDivisor = 1;
|
|
}
|
|
numElements *= diffConstant;
|
|
if (lbs) {
|
|
lbs->push_back(lb);
|
|
assert(lbDivisors && "both lbs and lbDivisor or none");
|
|
lbDivisors->push_back(lbDivisor);
|
|
}
|
|
if (shape) {
|
|
shape->push_back(diffConstant);
|
|
}
|
|
}
|
|
return numElements;
|
|
}
|
|
|
|
LogicalResult MemRefRegion::unionBoundingBox(const MemRefRegion &other) {
|
|
assert(memref == other.memref);
|
|
return cst.unionBoundingBox(*other.getConstraints());
|
|
}
|
|
|
|
/// Computes the memory region accessed by this memref with the region
|
|
/// represented as constraints symbolic/parametric in 'loopDepth' loops
|
|
/// surrounding opInst and any additional Function symbols.
|
|
// For example, the memref region for this load operation at loopDepth = 1 will
|
|
// be as below:
|
|
//
|
|
// affine.for %i = 0 to 32 {
|
|
// affine.for %ii = %i to (d0) -> (d0 + 8) (%i) {
|
|
// load %A[%ii]
|
|
// }
|
|
// }
|
|
//
|
|
// region: {memref = %A, write = false, {%i <= m0 <= %i + 7} }
|
|
// The last field is a 2-d FlatAffineConstraints symbolic in %i.
|
|
//
|
|
// TODO(bondhugula): extend this to any other memref dereferencing ops
|
|
// (dma_start, dma_wait).
|
|
LogicalResult MemRefRegion::compute(Operation *op, unsigned loopDepth,
|
|
ComputationSliceState *sliceState,
|
|
bool addMemRefDimBounds) {
|
|
assert((isa<AffineLoadOp>(op) || isa<AffineStoreOp>(op)) &&
|
|
"affine load/store op expected");
|
|
|
|
MemRefAccess access(op);
|
|
memref = access.memref;
|
|
write = access.isStore();
|
|
|
|
unsigned rank = access.getRank();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "MemRefRegion::compute: " << *op
|
|
<< "depth: " << loopDepth << "\n";);
|
|
|
|
if (rank == 0) {
|
|
SmallVector<AffineForOp, 4> ivs;
|
|
getLoopIVs(*op, &ivs);
|
|
SmallVector<Value, 8> regionSymbols;
|
|
extractForInductionVars(ivs, ®ionSymbols);
|
|
// A rank 0 memref has a 0-d region.
|
|
cst.reset(rank, loopDepth, 0, regionSymbols);
|
|
return success();
|
|
}
|
|
|
|
// Build the constraints for this region.
|
|
AffineValueMap accessValueMap;
|
|
access.getAccessMap(&accessValueMap);
|
|
AffineMap accessMap = accessValueMap.getAffineMap();
|
|
|
|
unsigned numDims = accessMap.getNumDims();
|
|
unsigned numSymbols = accessMap.getNumSymbols();
|
|
unsigned numOperands = accessValueMap.getNumOperands();
|
|
// Merge operands with slice operands.
|
|
SmallVector<Value, 4> operands;
|
|
operands.resize(numOperands);
|
|
for (unsigned i = 0; i < numOperands; ++i)
|
|
operands[i] = accessValueMap.getOperand(i);
|
|
|
|
if (sliceState != nullptr) {
|
|
operands.reserve(operands.size() + sliceState->lbOperands[0].size());
|
|
// Append slice operands to 'operands' as symbols.
|
|
for (auto extraOperand : sliceState->lbOperands[0]) {
|
|
if (!llvm::is_contained(operands, extraOperand)) {
|
|
operands.push_back(extraOperand);
|
|
numSymbols++;
|
|
}
|
|
}
|
|
}
|
|
// We'll first associate the dims and symbols of the access map to the dims
|
|
// and symbols resp. of cst. This will change below once cst is
|
|
// fully constructed out.
|
|
cst.reset(numDims, numSymbols, 0, operands);
|
|
|
|
// Add equality constraints.
|
|
// Add inequalities for loop lower/upper bounds.
|
|
for (unsigned i = 0; i < numDims + numSymbols; ++i) {
|
|
auto operand = operands[i];
|
|
if (auto loop = getForInductionVarOwner(operand)) {
|
|
// Note that cst can now have more dimensions than accessMap if the
|
|
// bounds expressions involve outer loops or other symbols.
|
|
// TODO(bondhugula): rewrite this to use getInstIndexSet; this way
|
|
// conditionals will be handled when the latter supports it.
|
|
if (failed(cst.addAffineForOpDomain(loop)))
|
|
return failure();
|
|
} else {
|
|
// Has to be a valid symbol.
|
|
auto symbol = operand;
|
|
assert(isValidSymbol(symbol));
|
|
// Check if the symbol is a constant.
|
|
if (auto *op = symbol.getDefiningOp()) {
|
|
if (auto constOp = dyn_cast<ConstantIndexOp>(op)) {
|
|
cst.setIdToConstant(symbol, constOp.getValue());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add lower/upper bounds on loop IVs using bounds from 'sliceState'.
|
|
if (sliceState != nullptr) {
|
|
// Add dim and symbol slice operands.
|
|
for (auto operand : sliceState->lbOperands[0]) {
|
|
cst.addInductionVarOrTerminalSymbol(operand);
|
|
}
|
|
// Add upper/lower bounds from 'sliceState' to 'cst'.
|
|
LogicalResult ret =
|
|
cst.addSliceBounds(sliceState->ivs, sliceState->lbs, sliceState->ubs,
|
|
sliceState->lbOperands[0]);
|
|
assert(succeeded(ret) &&
|
|
"should not fail as we never have semi-affine slice maps");
|
|
(void)ret;
|
|
}
|
|
|
|
// Add access function equalities to connect loop IVs to data dimensions.
|
|
if (failed(cst.composeMap(&accessValueMap))) {
|
|
op->emitError("getMemRefRegion: compose affine map failed");
|
|
LLVM_DEBUG(accessValueMap.getAffineMap().dump());
|
|
return failure();
|
|
}
|
|
|
|
// Set all identifiers appearing after the first 'rank' identifiers as
|
|
// symbolic identifiers - so that the ones corresponding to the memref
|
|
// dimensions are the dimensional identifiers for the memref region.
|
|
cst.setDimSymbolSeparation(cst.getNumDimAndSymbolIds() - rank);
|
|
|
|
// Eliminate any loop IVs other than the outermost 'loopDepth' IVs, on which
|
|
// this memref region is symbolic.
|
|
SmallVector<AffineForOp, 4> enclosingIVs;
|
|
getLoopIVs(*op, &enclosingIVs);
|
|
assert(loopDepth <= enclosingIVs.size() && "invalid loop depth");
|
|
enclosingIVs.resize(loopDepth);
|
|
SmallVector<Value, 4> ids;
|
|
cst.getIdValues(cst.getNumDimIds(), cst.getNumDimAndSymbolIds(), &ids);
|
|
for (auto id : ids) {
|
|
AffineForOp iv;
|
|
if ((iv = getForInductionVarOwner(id)) &&
|
|
llvm::is_contained(enclosingIVs, iv) == false) {
|
|
cst.projectOut(id);
|
|
}
|
|
}
|
|
|
|
// Project out any local variables (these would have been added for any
|
|
// mod/divs).
|
|
cst.projectOut(cst.getNumDimAndSymbolIds(), cst.getNumLocalIds());
|
|
|
|
// Constant fold any symbolic identifiers.
|
|
cst.constantFoldIdRange(/*pos=*/cst.getNumDimIds(),
|
|
/*num=*/cst.getNumSymbolIds());
|
|
|
|
assert(cst.getNumDimIds() == rank && "unexpected MemRefRegion format");
|
|
|
|
// Add upper/lower bounds for each memref dimension with static size
|
|
// to guard against potential over-approximation from projection.
|
|
// TODO(andydavis) Support dynamic memref dimensions.
|
|
if (addMemRefDimBounds) {
|
|
auto memRefType = memref.getType().cast<MemRefType>();
|
|
for (unsigned r = 0; r < rank; r++) {
|
|
cst.addConstantLowerBound(r, 0);
|
|
int64_t dimSize = memRefType.getDimSize(r);
|
|
if (ShapedType::isDynamic(dimSize))
|
|
continue;
|
|
cst.addConstantUpperBound(r, dimSize - 1);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Memory region:\n");
|
|
LLVM_DEBUG(cst.dump());
|
|
return success();
|
|
}
|
|
|
|
// TODO(mlir-team): improve/complete this when we have target data.
|
|
static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
|
|
auto elementType = memRefType.getElementType();
|
|
|
|
unsigned sizeInBits;
|
|
if (elementType.isIntOrFloat()) {
|
|
sizeInBits = elementType.getIntOrFloatBitWidth();
|
|
} else {
|
|
auto vectorType = elementType.cast<VectorType>();
|
|
sizeInBits =
|
|
vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
|
|
}
|
|
return llvm::divideCeil(sizeInBits, 8);
|
|
}
|
|
|
|
// Returns the size of the region.
|
|
Optional<int64_t> MemRefRegion::getRegionSize() {
|
|
auto memRefType = memref.getType().cast<MemRefType>();
|
|
|
|
auto layoutMaps = memRefType.getAffineMaps();
|
|
if (layoutMaps.size() > 1 ||
|
|
(layoutMaps.size() == 1 && !layoutMaps[0].isIdentity())) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Non-identity layout map not yet supported\n");
|
|
return false;
|
|
}
|
|
|
|
// Indices to use for the DmaStart op.
|
|
// Indices for the original memref being DMAed from/to.
|
|
SmallVector<Value, 4> memIndices;
|
|
// Indices for the faster buffer being DMAed into/from.
|
|
SmallVector<Value, 4> bufIndices;
|
|
|
|
// Compute the extents of the buffer.
|
|
Optional<int64_t> numElements = getConstantBoundingSizeAndShape();
|
|
if (!numElements.hasValue()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Dynamic shapes not yet supported\n");
|
|
return None;
|
|
}
|
|
return getMemRefEltSizeInBytes(memRefType) * numElements.getValue();
|
|
}
|
|
|
|
/// Returns the size of memref data in bytes if it's statically shaped, None
|
|
/// otherwise. If the element of the memref has vector type, takes into account
|
|
/// size of the vector as well.
|
|
// TODO(mlir-team): improve/complete this when we have target data.
|
|
Optional<uint64_t> mlir::getMemRefSizeInBytes(MemRefType memRefType) {
|
|
if (!memRefType.hasStaticShape())
|
|
return None;
|
|
auto elementType = memRefType.getElementType();
|
|
if (!elementType.isIntOrFloat() && !elementType.isa<VectorType>())
|
|
return None;
|
|
|
|
uint64_t sizeInBytes = getMemRefEltSizeInBytes(memRefType);
|
|
for (unsigned i = 0, e = memRefType.getRank(); i < e; i++) {
|
|
sizeInBytes = sizeInBytes * memRefType.getDimSize(i);
|
|
}
|
|
return sizeInBytes;
|
|
}
|
|
|
|
template <typename LoadOrStoreOpPointer>
|
|
LogicalResult mlir::boundCheckLoadOrStoreOp(LoadOrStoreOpPointer loadOrStoreOp,
|
|
bool emitError) {
|
|
static_assert(std::is_same<LoadOrStoreOpPointer, AffineLoadOp>::value ||
|
|
std::is_same<LoadOrStoreOpPointer, AffineStoreOp>::value,
|
|
"argument should be either a AffineLoadOp or a AffineStoreOp");
|
|
|
|
Operation *opInst = loadOrStoreOp.getOperation();
|
|
MemRefRegion region(opInst->getLoc());
|
|
if (failed(region.compute(opInst, /*loopDepth=*/0, /*sliceState=*/nullptr,
|
|
/*addMemRefDimBounds=*/false)))
|
|
return success();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Memory region");
|
|
LLVM_DEBUG(region.getConstraints()->dump());
|
|
|
|
bool outOfBounds = false;
|
|
unsigned rank = loadOrStoreOp.getMemRefType().getRank();
|
|
|
|
// For each dimension, check for out of bounds.
|
|
for (unsigned r = 0; r < rank; r++) {
|
|
FlatAffineConstraints ucst(*region.getConstraints());
|
|
|
|
// Intersect memory region with constraint capturing out of bounds (both out
|
|
// of upper and out of lower), and check if the constraint system is
|
|
// feasible. If it is, there is at least one point out of bounds.
|
|
SmallVector<int64_t, 4> ineq(rank + 1, 0);
|
|
int64_t dimSize = loadOrStoreOp.getMemRefType().getDimSize(r);
|
|
// TODO(bondhugula): handle dynamic dim sizes.
|
|
if (dimSize == -1)
|
|
continue;
|
|
|
|
// Check for overflow: d_i >= memref dim size.
|
|
ucst.addConstantLowerBound(r, dimSize);
|
|
outOfBounds = !ucst.isEmpty();
|
|
if (outOfBounds && emitError) {
|
|
loadOrStoreOp.emitOpError()
|
|
<< "memref out of upper bound access along dimension #" << (r + 1);
|
|
}
|
|
|
|
// Check for a negative index.
|
|
FlatAffineConstraints lcst(*region.getConstraints());
|
|
std::fill(ineq.begin(), ineq.end(), 0);
|
|
// d_i <= -1;
|
|
lcst.addConstantUpperBound(r, -1);
|
|
outOfBounds = !lcst.isEmpty();
|
|
if (outOfBounds && emitError) {
|
|
loadOrStoreOp.emitOpError()
|
|
<< "memref out of lower bound access along dimension #" << (r + 1);
|
|
}
|
|
}
|
|
return failure(outOfBounds);
|
|
}
|
|
|
|
// Explicitly instantiate the template so that the compiler knows we need them!
|
|
template LogicalResult mlir::boundCheckLoadOrStoreOp(AffineLoadOp loadOp,
|
|
bool emitError);
|
|
template LogicalResult mlir::boundCheckLoadOrStoreOp(AffineStoreOp storeOp,
|
|
bool emitError);
|
|
|
|
// Returns in 'positions' the Block positions of 'op' in each ancestor
|
|
// Block from the Block containing operation, stopping at 'limitBlock'.
|
|
static void findInstPosition(Operation *op, Block *limitBlock,
|
|
SmallVectorImpl<unsigned> *positions) {
|
|
Block *block = op->getBlock();
|
|
while (block != limitBlock) {
|
|
// FIXME: This algorithm is unnecessarily O(n) and should be improved to not
|
|
// rely on linear scans.
|
|
int instPosInBlock = std::distance(block->begin(), op->getIterator());
|
|
positions->push_back(instPosInBlock);
|
|
op = block->getParentOp();
|
|
block = op->getBlock();
|
|
}
|
|
std::reverse(positions->begin(), positions->end());
|
|
}
|
|
|
|
// Returns the Operation in a possibly nested set of Blocks, where the
|
|
// position of the operation is represented by 'positions', which has a
|
|
// Block position for each level of nesting.
|
|
static Operation *getInstAtPosition(ArrayRef<unsigned> positions,
|
|
unsigned level, Block *block) {
|
|
unsigned i = 0;
|
|
for (auto &op : *block) {
|
|
if (i != positions[level]) {
|
|
++i;
|
|
continue;
|
|
}
|
|
if (level == positions.size() - 1)
|
|
return &op;
|
|
if (auto childAffineForOp = dyn_cast<AffineForOp>(op))
|
|
return getInstAtPosition(positions, level + 1,
|
|
childAffineForOp.getBody());
|
|
|
|
for (auto ®ion : op.getRegions()) {
|
|
for (auto &b : region)
|
|
if (auto *ret = getInstAtPosition(positions, level + 1, &b))
|
|
return ret;
|
|
}
|
|
return nullptr;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Adds loop IV bounds to 'cst' for loop IVs not found in 'ivs'.
|
|
static LogicalResult addMissingLoopIVBounds(SmallPtrSet<Value, 8> &ivs,
|
|
FlatAffineConstraints *cst) {
|
|
for (unsigned i = 0, e = cst->getNumDimIds(); i < e; ++i) {
|
|
auto value = cst->getIdValue(i);
|
|
if (ivs.count(value) == 0) {
|
|
assert(isForInductionVar(value));
|
|
auto loop = getForInductionVarOwner(value);
|
|
if (failed(cst->addAffineForOpDomain(loop)))
|
|
return failure();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
// Returns the innermost common loop depth for the set of operations in 'ops'.
|
|
// TODO(andydavis) Move this to LoopUtils.
|
|
static unsigned
|
|
getInnermostCommonLoopDepth(ArrayRef<Operation *> ops,
|
|
SmallVectorImpl<AffineForOp> &surroundingLoops) {
|
|
unsigned numOps = ops.size();
|
|
assert(numOps > 0);
|
|
|
|
std::vector<SmallVector<AffineForOp, 4>> loops(numOps);
|
|
unsigned loopDepthLimit = std::numeric_limits<unsigned>::max();
|
|
for (unsigned i = 0; i < numOps; ++i) {
|
|
getLoopIVs(*ops[i], &loops[i]);
|
|
loopDepthLimit =
|
|
std::min(loopDepthLimit, static_cast<unsigned>(loops[i].size()));
|
|
}
|
|
|
|
unsigned loopDepth = 0;
|
|
for (unsigned d = 0; d < loopDepthLimit; ++d) {
|
|
unsigned i;
|
|
for (i = 1; i < numOps; ++i) {
|
|
if (loops[i - 1][d] != loops[i][d])
|
|
return loopDepth;
|
|
}
|
|
surroundingLoops.push_back(loops[i - 1][d]);
|
|
++loopDepth;
|
|
}
|
|
return loopDepth;
|
|
}
|
|
|
|
/// Computes in 'sliceUnion' the union of all slice bounds computed at
|
|
/// 'loopDepth' between all dependent pairs of ops in 'opsA' and 'opsB'.
|
|
/// Returns 'Success' if union was computed, 'failure' otherwise.
|
|
LogicalResult mlir::computeSliceUnion(ArrayRef<Operation *> opsA,
|
|
ArrayRef<Operation *> opsB,
|
|
unsigned loopDepth,
|
|
unsigned numCommonLoops,
|
|
bool isBackwardSlice,
|
|
ComputationSliceState *sliceUnion) {
|
|
// Compute the union of slice bounds between all pairs in 'opsA' and
|
|
// 'opsB' in 'sliceUnionCst'.
|
|
FlatAffineConstraints sliceUnionCst;
|
|
assert(sliceUnionCst.getNumDimAndSymbolIds() == 0);
|
|
std::vector<std::pair<Operation *, Operation *>> dependentOpPairs;
|
|
for (unsigned i = 0, numOpsA = opsA.size(); i < numOpsA; ++i) {
|
|
MemRefAccess srcAccess(opsA[i]);
|
|
for (unsigned j = 0, numOpsB = opsB.size(); j < numOpsB; ++j) {
|
|
MemRefAccess dstAccess(opsB[j]);
|
|
if (srcAccess.memref != dstAccess.memref)
|
|
continue;
|
|
// Check if 'loopDepth' exceeds nesting depth of src/dst ops.
|
|
if ((!isBackwardSlice && loopDepth > getNestingDepth(*opsA[i])) ||
|
|
(isBackwardSlice && loopDepth > getNestingDepth(*opsB[j]))) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Invalid loop depth\n.");
|
|
return failure();
|
|
}
|
|
|
|
bool readReadAccesses = isa<AffineLoadOp>(srcAccess.opInst) &&
|
|
isa<AffineLoadOp>(dstAccess.opInst);
|
|
FlatAffineConstraints dependenceConstraints;
|
|
// Check dependence between 'srcAccess' and 'dstAccess'.
|
|
DependenceResult result = checkMemrefAccessDependence(
|
|
srcAccess, dstAccess, /*loopDepth=*/numCommonLoops + 1,
|
|
&dependenceConstraints, /*dependenceComponents=*/nullptr,
|
|
/*allowRAR=*/readReadAccesses);
|
|
if (result.value == DependenceResult::Failure) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Dependence check failed\n.");
|
|
return failure();
|
|
}
|
|
if (result.value == DependenceResult::NoDependence)
|
|
continue;
|
|
dependentOpPairs.push_back({opsA[i], opsB[j]});
|
|
|
|
// Compute slice bounds for 'srcAccess' and 'dstAccess'.
|
|
ComputationSliceState tmpSliceState;
|
|
mlir::getComputationSliceState(opsA[i], opsB[j], &dependenceConstraints,
|
|
loopDepth, isBackwardSlice,
|
|
&tmpSliceState);
|
|
|
|
if (sliceUnionCst.getNumDimAndSymbolIds() == 0) {
|
|
// Initialize 'sliceUnionCst' with the bounds computed in previous step.
|
|
if (failed(tmpSliceState.getAsConstraints(&sliceUnionCst))) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Unable to compute slice bound constraints\n.");
|
|
return failure();
|
|
}
|
|
assert(sliceUnionCst.getNumDimAndSymbolIds() > 0);
|
|
continue;
|
|
}
|
|
|
|
// Compute constraints for 'tmpSliceState' in 'tmpSliceCst'.
|
|
FlatAffineConstraints tmpSliceCst;
|
|
if (failed(tmpSliceState.getAsConstraints(&tmpSliceCst))) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Unable to compute slice bound constraints\n.");
|
|
return failure();
|
|
}
|
|
|
|
// Align coordinate spaces of 'sliceUnionCst' and 'tmpSliceCst' if needed.
|
|
if (!sliceUnionCst.areIdsAlignedWithOther(tmpSliceCst)) {
|
|
|
|
// Pre-constraint id alignment: record loop IVs used in each constraint
|
|
// system.
|
|
SmallPtrSet<Value, 8> sliceUnionIVs;
|
|
for (unsigned k = 0, l = sliceUnionCst.getNumDimIds(); k < l; ++k)
|
|
sliceUnionIVs.insert(sliceUnionCst.getIdValue(k));
|
|
SmallPtrSet<Value, 8> tmpSliceIVs;
|
|
for (unsigned k = 0, l = tmpSliceCst.getNumDimIds(); k < l; ++k)
|
|
tmpSliceIVs.insert(tmpSliceCst.getIdValue(k));
|
|
|
|
sliceUnionCst.mergeAndAlignIdsWithOther(/*offset=*/0, &tmpSliceCst);
|
|
|
|
// Post-constraint id alignment: add loop IV bounds missing after
|
|
// id alignment to constraint systems. This can occur if one constraint
|
|
// system uses an loop IV that is not used by the other. The call
|
|
// to unionBoundingBox below expects constraints for each Loop IV, even
|
|
// if they are the unsliced full loop bounds added here.
|
|
if (failed(addMissingLoopIVBounds(sliceUnionIVs, &sliceUnionCst)))
|
|
return failure();
|
|
if (failed(addMissingLoopIVBounds(tmpSliceIVs, &tmpSliceCst)))
|
|
return failure();
|
|
}
|
|
// Compute union bounding box of 'sliceUnionCst' and 'tmpSliceCst'.
|
|
if (sliceUnionCst.getNumLocalIds() > 0 ||
|
|
tmpSliceCst.getNumLocalIds() > 0 ||
|
|
failed(sliceUnionCst.unionBoundingBox(tmpSliceCst))) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Unable to compute union bounding box of slice bounds."
|
|
"\n.");
|
|
return failure();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Empty union.
|
|
if (sliceUnionCst.getNumDimAndSymbolIds() == 0)
|
|
return failure();
|
|
|
|
// Gather loops surrounding ops from loop nest where slice will be inserted.
|
|
SmallVector<Operation *, 4> ops;
|
|
for (auto &dep : dependentOpPairs) {
|
|
ops.push_back(isBackwardSlice ? dep.second : dep.first);
|
|
}
|
|
SmallVector<AffineForOp, 4> surroundingLoops;
|
|
unsigned innermostCommonLoopDepth =
|
|
getInnermostCommonLoopDepth(ops, surroundingLoops);
|
|
if (loopDepth > innermostCommonLoopDepth) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Exceeds max loop depth\n.");
|
|
return failure();
|
|
}
|
|
|
|
// Store 'numSliceLoopIVs' before converting dst loop IVs to dims.
|
|
unsigned numSliceLoopIVs = sliceUnionCst.getNumDimIds();
|
|
|
|
// Convert any dst loop IVs which are symbol identifiers to dim identifiers.
|
|
sliceUnionCst.convertLoopIVSymbolsToDims();
|
|
sliceUnion->clearBounds();
|
|
sliceUnion->lbs.resize(numSliceLoopIVs, AffineMap());
|
|
sliceUnion->ubs.resize(numSliceLoopIVs, AffineMap());
|
|
|
|
// Get slice bounds from slice union constraints 'sliceUnionCst'.
|
|
sliceUnionCst.getSliceBounds(/*offset=*/0, numSliceLoopIVs,
|
|
opsA[0]->getContext(), &sliceUnion->lbs,
|
|
&sliceUnion->ubs);
|
|
|
|
// Add slice bound operands of union.
|
|
SmallVector<Value, 4> sliceBoundOperands;
|
|
sliceUnionCst.getIdValues(numSliceLoopIVs,
|
|
sliceUnionCst.getNumDimAndSymbolIds(),
|
|
&sliceBoundOperands);
|
|
|
|
// Copy src loop IVs from 'sliceUnionCst' to 'sliceUnion'.
|
|
sliceUnion->ivs.clear();
|
|
sliceUnionCst.getIdValues(0, numSliceLoopIVs, &sliceUnion->ivs);
|
|
|
|
// Set loop nest insertion point to block start at 'loopDepth'.
|
|
sliceUnion->insertPoint =
|
|
isBackwardSlice
|
|
? surroundingLoops[loopDepth - 1].getBody()->begin()
|
|
: std::prev(surroundingLoops[loopDepth - 1].getBody()->end());
|
|
|
|
// Give each bound its own copy of 'sliceBoundOperands' for subsequent
|
|
// canonicalization.
|
|
sliceUnion->lbOperands.resize(numSliceLoopIVs, sliceBoundOperands);
|
|
sliceUnion->ubOperands.resize(numSliceLoopIVs, sliceBoundOperands);
|
|
return success();
|
|
}
|
|
|
|
const char *const kSliceFusionBarrierAttrName = "slice_fusion_barrier";
|
|
// Computes slice bounds by projecting out any loop IVs from
|
|
// 'dependenceConstraints' at depth greater than 'loopDepth', and computes slice
|
|
// bounds in 'sliceState' which represent the one loop nest's IVs in terms of
|
|
// the other loop nest's IVs, symbols and constants (using 'isBackwardsSlice').
|
|
void mlir::getComputationSliceState(
|
|
Operation *depSourceOp, Operation *depSinkOp,
|
|
FlatAffineConstraints *dependenceConstraints, unsigned loopDepth,
|
|
bool isBackwardSlice, ComputationSliceState *sliceState) {
|
|
// Get loop nest surrounding src operation.
|
|
SmallVector<AffineForOp, 4> srcLoopIVs;
|
|
getLoopIVs(*depSourceOp, &srcLoopIVs);
|
|
unsigned numSrcLoopIVs = srcLoopIVs.size();
|
|
|
|
// Get loop nest surrounding dst operation.
|
|
SmallVector<AffineForOp, 4> dstLoopIVs;
|
|
getLoopIVs(*depSinkOp, &dstLoopIVs);
|
|
unsigned numDstLoopIVs = dstLoopIVs.size();
|
|
|
|
assert((!isBackwardSlice && loopDepth <= numSrcLoopIVs) ||
|
|
(isBackwardSlice && loopDepth <= numDstLoopIVs));
|
|
|
|
// Project out dimensions other than those up to 'loopDepth'.
|
|
unsigned pos = isBackwardSlice ? numSrcLoopIVs + loopDepth : loopDepth;
|
|
unsigned num =
|
|
isBackwardSlice ? numDstLoopIVs - loopDepth : numSrcLoopIVs - loopDepth;
|
|
dependenceConstraints->projectOut(pos, num);
|
|
|
|
// Add slice loop IV values to 'sliceState'.
|
|
unsigned offset = isBackwardSlice ? 0 : loopDepth;
|
|
unsigned numSliceLoopIVs = isBackwardSlice ? numSrcLoopIVs : numDstLoopIVs;
|
|
dependenceConstraints->getIdValues(offset, offset + numSliceLoopIVs,
|
|
&sliceState->ivs);
|
|
|
|
// Set up lower/upper bound affine maps for the slice.
|
|
sliceState->lbs.resize(numSliceLoopIVs, AffineMap());
|
|
sliceState->ubs.resize(numSliceLoopIVs, AffineMap());
|
|
|
|
// Get bounds for slice IVs in terms of other IVs, symbols, and constants.
|
|
dependenceConstraints->getSliceBounds(offset, numSliceLoopIVs,
|
|
depSourceOp->getContext(),
|
|
&sliceState->lbs, &sliceState->ubs);
|
|
|
|
// Set up bound operands for the slice's lower and upper bounds.
|
|
SmallVector<Value, 4> sliceBoundOperands;
|
|
unsigned numDimsAndSymbols = dependenceConstraints->getNumDimAndSymbolIds();
|
|
for (unsigned i = 0; i < numDimsAndSymbols; ++i) {
|
|
if (i < offset || i >= offset + numSliceLoopIVs) {
|
|
sliceBoundOperands.push_back(dependenceConstraints->getIdValue(i));
|
|
}
|
|
}
|
|
|
|
// Give each bound its own copy of 'sliceBoundOperands' for subsequent
|
|
// canonicalization.
|
|
sliceState->lbOperands.resize(numSliceLoopIVs, sliceBoundOperands);
|
|
sliceState->ubOperands.resize(numSliceLoopIVs, sliceBoundOperands);
|
|
|
|
// Set destination loop nest insertion point to block start at 'dstLoopDepth'.
|
|
sliceState->insertPoint =
|
|
isBackwardSlice ? dstLoopIVs[loopDepth - 1].getBody()->begin()
|
|
: std::prev(srcLoopIVs[loopDepth - 1].getBody()->end());
|
|
|
|
llvm::SmallDenseSet<Value, 8> sequentialLoops;
|
|
if (isa<AffineLoadOp>(depSourceOp) && isa<AffineLoadOp>(depSinkOp)) {
|
|
// For read-read access pairs, clear any slice bounds on sequential loops.
|
|
// Get sequential loops in loop nest rooted at 'srcLoopIVs[0]'.
|
|
getSequentialLoops(isBackwardSlice ? srcLoopIVs[0] : dstLoopIVs[0],
|
|
&sequentialLoops);
|
|
}
|
|
// Clear all sliced loop bounds beginning at the first sequential loop, or
|
|
// first loop with a slice fusion barrier attribute..
|
|
// TODO(andydavis, bondhugula) Use MemRef read/write regions instead of
|
|
// using 'kSliceFusionBarrierAttrName'.
|
|
auto getSliceLoop = [&](unsigned i) {
|
|
return isBackwardSlice ? srcLoopIVs[i] : dstLoopIVs[i];
|
|
};
|
|
for (unsigned i = 0; i < numSliceLoopIVs; ++i) {
|
|
Value iv = getSliceLoop(i).getInductionVar();
|
|
if (sequentialLoops.count(iv) == 0 &&
|
|
getSliceLoop(i).getAttr(kSliceFusionBarrierAttrName) == nullptr)
|
|
continue;
|
|
for (unsigned j = i; j < numSliceLoopIVs; ++j) {
|
|
sliceState->lbs[j] = AffineMap();
|
|
sliceState->ubs[j] = AffineMap();
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Creates a computation slice of the loop nest surrounding 'srcOpInst',
|
|
/// updates the slice loop bounds with any non-null bound maps specified in
|
|
/// 'sliceState', and inserts this slice into the loop nest surrounding
|
|
/// 'dstOpInst' at loop depth 'dstLoopDepth'.
|
|
// TODO(andydavis,bondhugula): extend the slicing utility to compute slices that
|
|
// aren't necessarily a one-to-one relation b/w the source and destination. The
|
|
// relation between the source and destination could be many-to-many in general.
|
|
// TODO(andydavis,bondhugula): the slice computation is incorrect in the cases
|
|
// where the dependence from the source to the destination does not cover the
|
|
// entire destination index set. Subtract out the dependent destination
|
|
// iterations from destination index set and check for emptiness --- this is one
|
|
// solution.
|
|
AffineForOp
|
|
mlir::insertBackwardComputationSlice(Operation *srcOpInst, Operation *dstOpInst,
|
|
unsigned dstLoopDepth,
|
|
ComputationSliceState *sliceState) {
|
|
// Get loop nest surrounding src operation.
|
|
SmallVector<AffineForOp, 4> srcLoopIVs;
|
|
getLoopIVs(*srcOpInst, &srcLoopIVs);
|
|
unsigned numSrcLoopIVs = srcLoopIVs.size();
|
|
|
|
// Get loop nest surrounding dst operation.
|
|
SmallVector<AffineForOp, 4> dstLoopIVs;
|
|
getLoopIVs(*dstOpInst, &dstLoopIVs);
|
|
unsigned dstLoopIVsSize = dstLoopIVs.size();
|
|
if (dstLoopDepth > dstLoopIVsSize) {
|
|
dstOpInst->emitError("invalid destination loop depth");
|
|
return AffineForOp();
|
|
}
|
|
|
|
// Find the op block positions of 'srcOpInst' within 'srcLoopIVs'.
|
|
SmallVector<unsigned, 4> positions;
|
|
// TODO(andydavis): This code is incorrect since srcLoopIVs can be 0-d.
|
|
findInstPosition(srcOpInst, srcLoopIVs[0].getOperation()->getBlock(),
|
|
&positions);
|
|
|
|
// Clone src loop nest and insert it a the beginning of the operation block
|
|
// of the loop at 'dstLoopDepth' in 'dstLoopIVs'.
|
|
auto dstAffineForOp = dstLoopIVs[dstLoopDepth - 1];
|
|
OpBuilder b(dstAffineForOp.getBody(), dstAffineForOp.getBody()->begin());
|
|
auto sliceLoopNest =
|
|
cast<AffineForOp>(b.clone(*srcLoopIVs[0].getOperation()));
|
|
|
|
Operation *sliceInst =
|
|
getInstAtPosition(positions, /*level=*/0, sliceLoopNest.getBody());
|
|
// Get loop nest surrounding 'sliceInst'.
|
|
SmallVector<AffineForOp, 4> sliceSurroundingLoops;
|
|
getLoopIVs(*sliceInst, &sliceSurroundingLoops);
|
|
|
|
// Sanity check.
|
|
unsigned sliceSurroundingLoopsSize = sliceSurroundingLoops.size();
|
|
(void)sliceSurroundingLoopsSize;
|
|
assert(dstLoopDepth + numSrcLoopIVs >= sliceSurroundingLoopsSize);
|
|
unsigned sliceLoopLimit = dstLoopDepth + numSrcLoopIVs;
|
|
(void)sliceLoopLimit;
|
|
assert(sliceLoopLimit >= sliceSurroundingLoopsSize);
|
|
|
|
// Update loop bounds for loops in 'sliceLoopNest'.
|
|
for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
|
|
auto forOp = sliceSurroundingLoops[dstLoopDepth + i];
|
|
if (AffineMap lbMap = sliceState->lbs[i])
|
|
forOp.setLowerBound(sliceState->lbOperands[i], lbMap);
|
|
if (AffineMap ubMap = sliceState->ubs[i])
|
|
forOp.setUpperBound(sliceState->ubOperands[i], ubMap);
|
|
}
|
|
return sliceLoopNest;
|
|
}
|
|
|
|
// Constructs MemRefAccess populating it with the memref, its indices and
|
|
// opinst from 'loadOrStoreOpInst'.
|
|
MemRefAccess::MemRefAccess(Operation *loadOrStoreOpInst) {
|
|
if (auto loadOp = dyn_cast<AffineLoadOp>(loadOrStoreOpInst)) {
|
|
memref = loadOp.getMemRef();
|
|
opInst = loadOrStoreOpInst;
|
|
auto loadMemrefType = loadOp.getMemRefType();
|
|
indices.reserve(loadMemrefType.getRank());
|
|
for (auto index : loadOp.getMapOperands()) {
|
|
indices.push_back(index);
|
|
}
|
|
} else {
|
|
assert(isa<AffineStoreOp>(loadOrStoreOpInst) && "load/store op expected");
|
|
auto storeOp = dyn_cast<AffineStoreOp>(loadOrStoreOpInst);
|
|
opInst = loadOrStoreOpInst;
|
|
memref = storeOp.getMemRef();
|
|
auto storeMemrefType = storeOp.getMemRefType();
|
|
indices.reserve(storeMemrefType.getRank());
|
|
for (auto index : storeOp.getMapOperands()) {
|
|
indices.push_back(index);
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned MemRefAccess::getRank() const {
|
|
return memref.getType().cast<MemRefType>().getRank();
|
|
}
|
|
|
|
bool MemRefAccess::isStore() const { return isa<AffineStoreOp>(opInst); }
|
|
|
|
/// Returns the nesting depth of this statement, i.e., the number of loops
|
|
/// surrounding this statement.
|
|
unsigned mlir::getNestingDepth(Operation &op) {
|
|
Operation *currOp = &op;
|
|
unsigned depth = 0;
|
|
while ((currOp = currOp->getParentOp())) {
|
|
if (isa<AffineForOp>(currOp))
|
|
depth++;
|
|
}
|
|
return depth;
|
|
}
|
|
|
|
/// Equal if both affine accesses are provably equivalent (at compile
|
|
/// time) when considering the memref, the affine maps and their respective
|
|
/// operands. The equality of access functions + operands is checked by
|
|
/// subtracting fully composed value maps, and then simplifying the difference
|
|
/// using the expression flattener.
|
|
/// TODO: this does not account for aliasing of memrefs.
|
|
bool MemRefAccess::operator==(const MemRefAccess &rhs) const {
|
|
if (memref != rhs.memref)
|
|
return false;
|
|
|
|
AffineValueMap diff, thisMap, rhsMap;
|
|
getAccessMap(&thisMap);
|
|
rhs.getAccessMap(&rhsMap);
|
|
AffineValueMap::difference(thisMap, rhsMap, &diff);
|
|
return llvm::all_of(diff.getAffineMap().getResults(),
|
|
[](AffineExpr e) { return e == 0; });
|
|
}
|
|
|
|
/// Returns the number of surrounding loops common to 'loopsA' and 'loopsB',
|
|
/// where each lists loops from outer-most to inner-most in loop nest.
|
|
unsigned mlir::getNumCommonSurroundingLoops(Operation &A, Operation &B) {
|
|
SmallVector<AffineForOp, 4> loopsA, loopsB;
|
|
getLoopIVs(A, &loopsA);
|
|
getLoopIVs(B, &loopsB);
|
|
|
|
unsigned minNumLoops = std::min(loopsA.size(), loopsB.size());
|
|
unsigned numCommonLoops = 0;
|
|
for (unsigned i = 0; i < minNumLoops; ++i) {
|
|
if (loopsA[i].getOperation() != loopsB[i].getOperation())
|
|
break;
|
|
++numCommonLoops;
|
|
}
|
|
return numCommonLoops;
|
|
}
|
|
|
|
static Optional<int64_t> getMemoryFootprintBytes(Block &block,
|
|
Block::iterator start,
|
|
Block::iterator end,
|
|
int memorySpace) {
|
|
SmallDenseMap<Value, std::unique_ptr<MemRefRegion>, 4> regions;
|
|
|
|
// Walk this 'affine.for' operation to gather all memory regions.
|
|
auto result = block.walk(start, end, [&](Operation *opInst) -> WalkResult {
|
|
if (!isa<AffineLoadOp>(opInst) && !isa<AffineStoreOp>(opInst)) {
|
|
// Neither load nor a store op.
|
|
return WalkResult::advance();
|
|
}
|
|
|
|
// Compute the memref region symbolic in any IVs enclosing this block.
|
|
auto region = std::make_unique<MemRefRegion>(opInst->getLoc());
|
|
if (failed(
|
|
region->compute(opInst,
|
|
/*loopDepth=*/getNestingDepth(*block.begin())))) {
|
|
return opInst->emitError("error obtaining memory region\n");
|
|
}
|
|
|
|
auto it = regions.find(region->memref);
|
|
if (it == regions.end()) {
|
|
regions[region->memref] = std::move(region);
|
|
} else if (failed(it->second->unionBoundingBox(*region))) {
|
|
return opInst->emitWarning(
|
|
"getMemoryFootprintBytes: unable to perform a union on a memory "
|
|
"region");
|
|
}
|
|
return WalkResult::advance();
|
|
});
|
|
if (result.wasInterrupted())
|
|
return None;
|
|
|
|
int64_t totalSizeInBytes = 0;
|
|
for (const auto ®ion : regions) {
|
|
Optional<int64_t> size = region.second->getRegionSize();
|
|
if (!size.hasValue())
|
|
return None;
|
|
totalSizeInBytes += size.getValue();
|
|
}
|
|
return totalSizeInBytes;
|
|
}
|
|
|
|
Optional<int64_t> mlir::getMemoryFootprintBytes(AffineForOp forOp,
|
|
int memorySpace) {
|
|
auto *forInst = forOp.getOperation();
|
|
return ::getMemoryFootprintBytes(
|
|
*forInst->getBlock(), Block::iterator(forInst),
|
|
std::next(Block::iterator(forInst)), memorySpace);
|
|
}
|
|
|
|
/// Returns in 'sequentialLoops' all sequential loops in loop nest rooted
|
|
/// at 'forOp'.
|
|
void mlir::getSequentialLoops(AffineForOp forOp,
|
|
llvm::SmallDenseSet<Value, 8> *sequentialLoops) {
|
|
forOp.getOperation()->walk([&](Operation *op) {
|
|
if (auto innerFor = dyn_cast<AffineForOp>(op))
|
|
if (!isLoopParallel(innerFor))
|
|
sequentialLoops->insert(innerFor.getInductionVar());
|
|
});
|
|
}
|
|
|
|
/// Returns true if 'forOp' is parallel.
|
|
bool mlir::isLoopParallel(AffineForOp forOp) {
|
|
// Collect all load and store ops in loop nest rooted at 'forOp'.
|
|
SmallVector<Operation *, 8> loadAndStoreOpInsts;
|
|
auto walkResult = forOp.walk([&](Operation *opInst) -> WalkResult {
|
|
if (isa<AffineLoadOp>(opInst) || isa<AffineStoreOp>(opInst))
|
|
loadAndStoreOpInsts.push_back(opInst);
|
|
else if (!isa<AffineForOp>(opInst) && !isa<AffineTerminatorOp>(opInst) &&
|
|
!isa<AffineIfOp>(opInst) &&
|
|
!MemoryEffectOpInterface::hasNoEffect(opInst))
|
|
return WalkResult::interrupt();
|
|
|
|
return WalkResult::advance();
|
|
});
|
|
|
|
// Stop early if the loop has unknown ops with side effects.
|
|
if (walkResult.wasInterrupted())
|
|
return false;
|
|
|
|
// Dep check depth would be number of enclosing loops + 1.
|
|
unsigned depth = getNestingDepth(*forOp.getOperation()) + 1;
|
|
|
|
// Check dependences between all pairs of ops in 'loadAndStoreOpInsts'.
|
|
for (auto *srcOpInst : loadAndStoreOpInsts) {
|
|
MemRefAccess srcAccess(srcOpInst);
|
|
for (auto *dstOpInst : loadAndStoreOpInsts) {
|
|
MemRefAccess dstAccess(dstOpInst);
|
|
FlatAffineConstraints dependenceConstraints;
|
|
DependenceResult result = checkMemrefAccessDependence(
|
|
srcAccess, dstAccess, depth, &dependenceConstraints,
|
|
/*dependenceComponents=*/nullptr);
|
|
if (result.value != DependenceResult::NoDependence)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|