
HasNoSideEffect can now be implemented using the MemoryEffectInterface, removing the need to check multiple things for the same information. This also removes an easy foot-gun for users as 'Operation::hasNoSideEffect' would ignore operations that dynamically, or recursively, have no side effects. This also leads to an immediate improvement in some of the existing users, such as DCE, now that they have access to more information. Differential Revision: https://reviews.llvm.org/D76036
542 lines
22 KiB
C++
542 lines
22 KiB
C++
//===- Tiling.cpp - Implementation of linalg Tiling -----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the linalg dialect Tiling pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/AffineOps/EDSC/Intrinsics.h"
|
|
#include "mlir/Dialect/Linalg/EDSC/Intrinsics.h"
|
|
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
|
|
#include "mlir/Dialect/Linalg/Passes.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/LoopOps/EDSC/Builders.h"
|
|
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineExprVisitor.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Support/Functional.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "mlir/Support/STLExtras.h"
|
|
#include "mlir/Transforms/FoldUtils.h"
|
|
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::edsc;
|
|
using namespace mlir::edsc::intrinsics;
|
|
using namespace mlir::linalg;
|
|
using namespace mlir::loop;
|
|
|
|
using folded_affine_min = folded::ValueBuilder<AffineMinOp>;
|
|
|
|
#define DEBUG_TYPE "linalg-tiling"
|
|
|
|
static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options");
|
|
static llvm::cl::list<unsigned>
|
|
clTileSizes("linalg-tile-sizes",
|
|
llvm::cl::desc("Tile sizes by which to tile linalg operations"),
|
|
llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated,
|
|
llvm::cl::cat(clOptionsCategory));
|
|
|
|
static bool isZero(Value v) {
|
|
return isa_and_nonnull<ConstantIndexOp>(v.getDefiningOp()) &&
|
|
cast<ConstantIndexOp>(v.getDefiningOp()).getValue() == 0;
|
|
}
|
|
|
|
using LoopIndexToRangeIndexMap = DenseMap<int, int>;
|
|
|
|
// Creates a number of ranges equal to the number of non-zero in `tileSizes`.
|
|
// One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has
|
|
// one entry per surrounding loop. It uses zero as the convention that a
|
|
// particular loop is not tiled. This convention simplifies implementations by
|
|
// avoiding affine map manipulations.
|
|
// The returned ranges correspond to the loop ranges, in the proper order, that
|
|
// are tiled and for which new loops will be created. Also the function returns
|
|
// a map from loop indices of the LinalgOp to the corresponding non-empty range
|
|
// indices of newly created loops.
|
|
static std::tuple<SmallVector<SubViewOp::Range, 4>, LoopIndexToRangeIndexMap>
|
|
makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map,
|
|
ArrayRef<Value> allViewSizes, ArrayRef<Value> allTileSizes,
|
|
OperationFolder *folder) {
|
|
assert(allTileSizes.size() == map.getNumResults());
|
|
// Apply `map` to get view sizes in loop order.
|
|
auto viewSizes = applyMapToValues(b, loc, map, allViewSizes, folder);
|
|
SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end());
|
|
|
|
// Traverse the tile sizes, which are in loop order, erase zeros everywhere.
|
|
LoopIndexToRangeIndexMap loopIndexToRangeIndex;
|
|
for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) {
|
|
if (isZero(tileSizes[idx - zerosCount])) {
|
|
viewSizes.erase(viewSizes.begin() + idx - zerosCount);
|
|
tileSizes.erase(tileSizes.begin() + idx - zerosCount);
|
|
++zerosCount;
|
|
continue;
|
|
}
|
|
loopIndexToRangeIndex[idx] = idx - zerosCount;
|
|
}
|
|
|
|
// Create a new range with the applied tile sizes.
|
|
SmallVector<SubViewOp::Range, 4> res;
|
|
for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) {
|
|
res.push_back(SubViewOp::Range{folded_std_constant_index(folder, 0),
|
|
viewSizes[idx], tileSizes[idx]});
|
|
}
|
|
return std::make_tuple(res, loopIndexToRangeIndex);
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Helper visitor to determine whether an AffineExpr is tiled.
|
|
// This is achieved by traversing every AffineDimExpr with position `pos` and
|
|
// checking whether the corresponding `tileSizes[pos]` is non-zero.
|
|
// This also enforces only positive coefficients occur in multiplications.
|
|
//
|
|
// Example:
|
|
// `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0]
|
|
//
|
|
struct TileCheck : public AffineExprVisitor<TileCheck> {
|
|
TileCheck(ArrayRef<Value> tileSizes) : isTiled(false), tileSizes(tileSizes) {}
|
|
|
|
void visitDimExpr(AffineDimExpr expr) {
|
|
isTiled |= !isZero(tileSizes[expr.getPosition()]);
|
|
}
|
|
void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) {
|
|
visit(expr.getLHS());
|
|
visit(expr.getRHS());
|
|
if (expr.getKind() == mlir::AffineExprKind::Mul)
|
|
assert(expr.getRHS().cast<AffineConstantExpr>().getValue() > 0 &&
|
|
"nonpositive multiplying coefficient");
|
|
}
|
|
bool isTiled;
|
|
ArrayRef<Value> tileSizes;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
// IndexedGenericOp explicitly uses induction variables in the loop body. The
|
|
// values of the indices that are used in the loop body for any given access of
|
|
// input/output memref before `subview` op was applied should be invariant with
|
|
// respect to tiling.
|
|
//
|
|
// Therefore, if the operation is tiled, we have to transform the indices
|
|
// accordingly, i.e. offset them by the values of the corresponding induction
|
|
// variables that are captured implicitly in the body of the op.
|
|
//
|
|
// Example. `linalg.indexed_generic` before tiling:
|
|
//
|
|
// #id_2d = (i, j) -> (i, j)
|
|
// #pointwise_2d_trait = {
|
|
// indexing_maps = [#id_2d, #id_2d],
|
|
// iterator_types = ["parallel", "parallel"],
|
|
// n_views = [1, 1]
|
|
// }
|
|
// linalg.indexed_generic #pointwise_2d_trait %operand, %result {
|
|
// ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32):
|
|
// <some operations that use %i, %j>
|
|
// }: memref<50x100xf32>, memref<50x100xf32>
|
|
//
|
|
// After tiling pass with tiles sizes 10 and 25:
|
|
//
|
|
// #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2)
|
|
//
|
|
// %c1 = constant 1 : index
|
|
// %c0 = constant 0 : index
|
|
// %c25 = constant 25 : index
|
|
// %c10 = constant 10 : index
|
|
// operand_dim_0 = dim %operand, 0 : memref<50x100xf32>
|
|
// operand_dim_1 = dim %operand, 1 : memref<50x100xf32>
|
|
// loop.for %k = %c0 to operand_dim_0 step %c10 {
|
|
// loop.for %l = %c0 to operand_dim_1 step %c25 {
|
|
// %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1]
|
|
// : memref<50x100xf32> to memref<?x?xf32, #strided>
|
|
// %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1]
|
|
// : memref<50x100xf32> to memref<?x?xf32, #strided>
|
|
// linalg.indexed_generic pointwise_2d_trait %4, %5 {
|
|
// ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32):
|
|
// // Indices `k` and `l` are implicitly captured in the body.
|
|
// %transformed_i = addi %i, %k : index // index `i` is offset by %k
|
|
// %transformed_j = addi %j, %l : index // index `j` is offset by %l
|
|
// // Every use of %i, %j is replaced with %transformed_i, %transformed_j
|
|
// <some operations that use %transformed_i, %transformed_j>
|
|
// }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided>
|
|
// }
|
|
// }
|
|
//
|
|
// TODO(pifon, ntv): Investigate whether mixing implicit and explicit indices
|
|
// does not lead to losing information.
|
|
static void transformIndexedGenericOpIndices(
|
|
OpBuilder &b, LinalgOp op, ArrayRef<ValueHandle *> pivs,
|
|
const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) {
|
|
assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
|
|
auto indexedGenericOp = dyn_cast<IndexedGenericOp>(op.getOperation());
|
|
if (!indexedGenericOp)
|
|
return;
|
|
|
|
// `linalg.indexed_generic` comes in two flavours. One has a region with a
|
|
// single block that defines the loop body. The other has a `fun` attribute
|
|
// that refers to an existing function symbol. The `fun` function call will be
|
|
// inserted in the loop body in that case.
|
|
//
|
|
// TODO(pifon): Add support for `linalg.indexed_generic` with `fun` attribute.
|
|
auto ®ion = indexedGenericOp.region();
|
|
if (region.empty()) {
|
|
indexedGenericOp.emitOpError("expected a region");
|
|
return;
|
|
}
|
|
auto &block = region.getBlocks().front();
|
|
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPointToStart(&block);
|
|
for (unsigned i = 0; i < indexedGenericOp.getNumLoops(); ++i) {
|
|
auto rangeIndex = loopIndexToRangeIndex.find(i);
|
|
if (rangeIndex == loopIndexToRangeIndex.end())
|
|
continue;
|
|
Value oldIndex = block.getArgument(i);
|
|
// Offset the index argument `i` by the value of the corresponding induction
|
|
// variable and replace all uses of the previous value.
|
|
Value newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex,
|
|
pivs[rangeIndex->second]->getValue());
|
|
for (auto &use : oldIndex.getUses()) {
|
|
if (use.getOwner() == newIndex.getDefiningOp())
|
|
continue;
|
|
use.set(newIndex);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool isTiled(AffineExpr expr, ArrayRef<Value> tileSizes) {
|
|
if (!expr)
|
|
return false;
|
|
TileCheck t(tileSizes);
|
|
t.visit(expr);
|
|
return t.isTiled;
|
|
}
|
|
|
|
// Checks whether the view with index `viewIndex` within `linalgOp` varies with
|
|
// respect to a non-zero `tileSize`.
|
|
static bool isTiled(AffineMap map, ArrayRef<Value> tileSizes) {
|
|
if (!map)
|
|
return false;
|
|
for (unsigned r = 0; r < map.getNumResults(); ++r)
|
|
if (isTiled(map.getResult(r), tileSizes))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static SmallVector<Value, 4>
|
|
makeTiledViews(OpBuilder &b, Location loc, LinalgOp linalgOp,
|
|
ArrayRef<Value> ivs, ArrayRef<Value> tileSizes,
|
|
ArrayRef<Value> viewSizes, OperationFolder *folder) {
|
|
assert(linalgOp.hasBufferSemantics() &&
|
|
"expected linalg op with buffer semantics");
|
|
assert(ivs.size() == static_cast<size_t>(llvm::count_if(
|
|
llvm::make_range(tileSizes.begin(), tileSizes.end()),
|
|
[](Value v) { return !isZero(v); })) &&
|
|
"expected as many ivs as non-zero sizes");
|
|
|
|
using namespace edsc::op;
|
|
|
|
// Construct (potentially temporary) mins and maxes on which to apply maps
|
|
// that define tile subviews.
|
|
SmallVector<Value, 8> lbs, subViewSizes;
|
|
for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) {
|
|
bool isTiled = !isZero(tileSizes[idx]);
|
|
lbs.push_back(isTiled ? ivs[idxIvs++]
|
|
: (Value)folded_std_constant_index(folder, 0));
|
|
subViewSizes.push_back(isTiled ? tileSizes[idx] : viewSizes[idx]);
|
|
}
|
|
|
|
auto *op = linalgOp.getOperation();
|
|
|
|
SmallVector<Value, 4> res;
|
|
res.reserve(op->getNumOperands());
|
|
auto viewIteratorBegin = linalgOp.getInputsAndOutputBuffers().begin();
|
|
for (unsigned viewIndex = 0; viewIndex < linalgOp.getNumInputsAndOutputs();
|
|
++viewIndex) {
|
|
Value view = *(viewIteratorBegin + viewIndex);
|
|
auto viewType = view.getType().cast<MemRefType>();
|
|
unsigned rank = viewType.getRank();
|
|
auto mapAttr = linalgOp.indexing_maps()[viewIndex];
|
|
auto map = mapAttr.cast<AffineMapAttr>().getValue();
|
|
// If the view is not tiled, we can use it as is.
|
|
if (!isTiled(map, tileSizes)) {
|
|
res.push_back(view);
|
|
continue;
|
|
}
|
|
|
|
// Construct a new subview for the tile.
|
|
SmallVector<Value, 4> offsets, sizes, strides;
|
|
offsets.reserve(rank);
|
|
sizes.reserve(rank);
|
|
strides.reserve(rank);
|
|
for (unsigned r = 0; r < rank; ++r) {
|
|
if (!isTiled(map.getSubMap({r}), tileSizes)) {
|
|
offsets.push_back(folded_std_constant_index(folder, 0));
|
|
sizes.push_back(std_dim(view, r));
|
|
strides.push_back(folded_std_constant_index(folder, 1));
|
|
continue;
|
|
}
|
|
|
|
// Tiling creates a new slice at the proper index, the slice step is 1
|
|
// (i.e. the slice view does not subsample, stepping occurs in the loop).
|
|
auto m = map.getSubMap({r});
|
|
auto offset = applyMapToValues(b, loc, m, lbs, folder).front();
|
|
offsets.push_back(offset);
|
|
auto size = applyMapToValues(b, loc, m, subViewSizes, folder).front();
|
|
|
|
// The size of the subview should be trimmed to avoid out-of-bounds
|
|
// accesses, unless we statically know the subview size divides the view
|
|
// size evenly.
|
|
int64_t viewSize = viewType.getDimSize(r);
|
|
auto sizeCst = dyn_cast_or_null<ConstantIndexOp>(size.getDefiningOp());
|
|
if (ShapedType::isDynamic(viewSize) || !sizeCst ||
|
|
(viewSize % sizeCst.getValue()) != 0) {
|
|
// Compute min(size, dim - offset) to avoid out-of-bounds accesses.
|
|
auto minMap = AffineMap::get(
|
|
/*dimCount=*/3, /*symbolCount=*/0,
|
|
{getAffineDimExpr(/*position=*/0, b.getContext()),
|
|
getAffineDimExpr(/*position=*/1, b.getContext()) -
|
|
getAffineDimExpr(/*position=*/2, b.getContext())});
|
|
auto d = folded_std_dim(folder, view, r);
|
|
size = folded_affine_min(folder, b.getIndexType(), minMap,
|
|
ValueRange{size, d, offset});
|
|
}
|
|
|
|
sizes.push_back(size);
|
|
strides.push_back(folded_std_constant_index(folder, 1));
|
|
}
|
|
|
|
res.push_back(b.create<SubViewOp>(loc, view, offsets, sizes, strides));
|
|
}
|
|
|
|
// Traverse the mins/maxes and erase those that don't have uses left.
|
|
// This is a special type of folding that we only apply when `folder` is
|
|
// defined.
|
|
if (folder)
|
|
for (auto v : llvm::concat<Value>(lbs, subViewSizes))
|
|
if (v.use_empty())
|
|
v.getDefiningOp()->erase();
|
|
|
|
return res;
|
|
}
|
|
|
|
template <typename LoopTy>
|
|
Optional<TiledLinalgOp> static tileLinalgOpImpl(OpBuilder &b, LinalgOp op,
|
|
ArrayRef<Value> tileSizes,
|
|
ArrayRef<unsigned> permutation,
|
|
OperationFolder *folder) {
|
|
assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
|
|
// 1. Enforce the convention that "tiling by zero" skips tiling a particular
|
|
// dimension. This convention is significantly simpler to handle instead of
|
|
// adjusting affine maps to account for missing dimensions.
|
|
assert(op.getNumParallelLoops() + op.getNumReductionLoops() +
|
|
op.getNumWindowLoops() ==
|
|
tileSizes.size() &&
|
|
"expected matching number of tile sizes and loops");
|
|
|
|
// If permutation is empty, use the identity. Build the permutation map
|
|
// otherwise.
|
|
auto invPermutationMap = AffineMap::getMultiDimIdentityMap(
|
|
tileSizes.size(), ScopedContext::getContext());
|
|
if (!permutation.empty())
|
|
invPermutationMap = inversePermutation(
|
|
AffineMap::getPermutationMap(permutation, ScopedContext::getContext()));
|
|
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(op);
|
|
ScopedContext scope(b, op.getLoc());
|
|
// 2. Build the tiled loop ranges.
|
|
auto viewSizes = getViewSizes(b, op);
|
|
// The flattened loopToOperandRangesMaps is expected to be an invertible
|
|
// permutation map (asserted in the inverse calculation).
|
|
auto mapsRange = op.indexing_maps().getAsRange<AffineMapAttr>();
|
|
auto maps =
|
|
functional::map([](AffineMapAttr a) { return a.getValue(); }, mapsRange);
|
|
auto viewSizesToLoopsMap = inversePermutation(concatAffineMaps(maps));
|
|
assert(viewSizesToLoopsMap && "expected invertible map");
|
|
|
|
SmallVector<SubViewOp::Range, 4> loopRanges;
|
|
LoopIndexToRangeIndexMap loopIndexToRangeIndex;
|
|
std::tie(loopRanges, loopIndexToRangeIndex) =
|
|
makeTiledLoopRanges(b, scope.getLocation(), viewSizesToLoopsMap,
|
|
viewSizes, tileSizes, folder);
|
|
if (!permutation.empty())
|
|
applyPermutationToVector(loopRanges, permutation);
|
|
|
|
// 3. Create the tiled loops.
|
|
LinalgOp res = op;
|
|
auto ivs = ValueHandle::makeIndexHandles(loopRanges.size());
|
|
auto pivs = makeHandlePointers(MutableArrayRef<ValueHandle>(ivs));
|
|
// Convert SubViewOp::Range to linalg_range.
|
|
SmallVector<Value, 4> linalgRanges;
|
|
for (auto &range : loopRanges) {
|
|
linalgRanges.push_back(
|
|
linalg_range(range.offset, range.size, range.stride));
|
|
}
|
|
GenericLoopNestRangeBuilder<LoopTy>(pivs, linalgRanges)([&] {
|
|
auto b = ScopedContext::getBuilder();
|
|
auto loc = ScopedContext::getLocation();
|
|
SmallVector<Value, 4> ivValues(ivs.begin(), ivs.end());
|
|
|
|
// If we have to apply a permutation to the tiled loop nest, we have to
|
|
// reorder the induction variables This permutation is the right one
|
|
// assuming that loopRanges have previously been permuted by
|
|
// (i,j,k)->(k,i,j) So this permutation should be the inversePermutation of
|
|
// that one: (d0,d1,d2)->(d2,d0,d1)
|
|
if (!permutation.empty())
|
|
ivValues = applyMapToValues(b, loc, invPermutationMap, ivValues, folder);
|
|
|
|
auto views =
|
|
makeTiledViews(b, loc, op, ivValues, tileSizes, viewSizes, folder);
|
|
auto operands = getAssumedNonViewOperands(op);
|
|
views.append(operands.begin(), operands.end());
|
|
res = op.clone(b, loc, views);
|
|
});
|
|
|
|
// 4. Transforms index arguments of `linalg.generic` w.r.t. to the tiling.
|
|
transformIndexedGenericOpIndices(b, res, pivs, loopIndexToRangeIndex);
|
|
|
|
// 5. Gather the newly created loops and return them with the new op.
|
|
SmallVector<Operation *, 8> loops;
|
|
loops.reserve(ivs.size());
|
|
for (auto iv : ivs)
|
|
loops.push_back(loop::getForInductionVarOwner(iv));
|
|
|
|
return TiledLinalgOp{res, loops};
|
|
}
|
|
|
|
template <typename LoopTy>
|
|
static Optional<TiledLinalgOp>
|
|
tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ArrayRef<int64_t> tileSizes,
|
|
ArrayRef<unsigned> permutation, OperationFolder *folder) {
|
|
assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
|
|
if (tileSizes.empty())
|
|
return llvm::None;
|
|
|
|
// The following uses the convention that "tiling by zero" skips tiling a
|
|
// particular dimension. This convention is significantly simpler to handle
|
|
// instead of adjusting affine maps to account for missing dimensions.
|
|
auto nLoops = op.getNumParallelLoops() + op.getNumReductionLoops() +
|
|
op.getNumWindowLoops();
|
|
tileSizes = tileSizes.take_front(nLoops);
|
|
// If only 0 tilings are left, then return.
|
|
if (llvm::all_of(tileSizes, [](int64_t v) { return v == 0; }))
|
|
return llvm::None;
|
|
|
|
// Create a builder for tile size constants.
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(op);
|
|
ScopedContext scope(b, op.getLoc());
|
|
|
|
// Materialize concrete tile size values to pass the generic tiling function.
|
|
SmallVector<Value, 8> tileSizeValues;
|
|
tileSizeValues.reserve(tileSizes.size());
|
|
for (auto ts : tileSizes)
|
|
tileSizeValues.push_back(folded_std_constant_index(folder, ts));
|
|
// Pad tile sizes with zero values to enforce our convention.
|
|
if (tileSizeValues.size() < nLoops) {
|
|
for (unsigned i = tileSizeValues.size(); i < nLoops; ++i)
|
|
tileSizeValues.push_back(folded_std_constant_index(folder, 0));
|
|
}
|
|
|
|
return tileLinalgOpImpl<LoopTy>(b, op, tileSizeValues, permutation, folder);
|
|
}
|
|
|
|
Optional<TiledLinalgOp>
|
|
mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizes,
|
|
ArrayRef<unsigned> permutation,
|
|
OperationFolder *folder) {
|
|
return tileLinalgOpImpl<loop::ForOp>(b, op, tileSizes, permutation, folder);
|
|
}
|
|
|
|
Optional<TiledLinalgOp> mlir::linalg::tileLinalgOpToParallelLoops(
|
|
OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizes,
|
|
ArrayRef<unsigned> permutation, OperationFolder *folder) {
|
|
return tileLinalgOpImpl<loop::ParallelOp>(b, op, tileSizes, permutation,
|
|
folder);
|
|
}
|
|
|
|
Optional<TiledLinalgOp> mlir::linalg::tileLinalgOp(
|
|
OpBuilder &b, LinalgOp op, ArrayRef<int64_t> tileSizes,
|
|
ArrayRef<unsigned> permutation, OperationFolder *folder) {
|
|
return tileLinalgOpImpl<loop::ForOp>(b, op, tileSizes, permutation, folder);
|
|
}
|
|
|
|
Optional<TiledLinalgOp> mlir::linalg::tileLinalgOpToParallelLoops(
|
|
OpBuilder &b, LinalgOp op, ArrayRef<int64_t> tileSizes,
|
|
ArrayRef<unsigned> permutation, OperationFolder *folder) {
|
|
return tileLinalgOpImpl<loop::ParallelOp>(b, op, tileSizes, permutation,
|
|
folder);
|
|
}
|
|
|
|
template <typename LoopTy>
|
|
static void tileLinalgOps(FuncOp f, ArrayRef<int64_t> tileSizes) {
|
|
OpBuilder b(f);
|
|
OperationFolder folder(f.getContext());
|
|
f.walk([tileSizes, &b, &folder](LinalgOp op) {
|
|
if (!op.hasBufferSemantics())
|
|
return;
|
|
auto opLoopsPair =
|
|
tileLinalgOpImpl<LoopTy>(b, op, tileSizes, /*permutation=*/{}, &folder);
|
|
// If tiling occurred successfully, erase old op.
|
|
if (opLoopsPair)
|
|
op.erase();
|
|
});
|
|
f.walk([](LinalgOp op) {
|
|
if (isOpTriviallyDead(op))
|
|
op.erase();
|
|
});
|
|
}
|
|
|
|
namespace {
|
|
|
|
template <typename LoopTy>
|
|
struct LinalgTilingPass : public FunctionPass<LinalgTilingPass<LoopTy>> {
|
|
LinalgTilingPass() = default;
|
|
LinalgTilingPass(ArrayRef<int64_t> sizes) {
|
|
this->tileSizes.assign(sizes.begin(), sizes.end());
|
|
}
|
|
|
|
void runOnFunction() override {
|
|
tileLinalgOps<LoopTy>(this->getFunction(), tileSizes);
|
|
}
|
|
|
|
SmallVector<int64_t, 8> tileSizes;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
std::unique_ptr<OpPassBase<FuncOp>>
|
|
mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes) {
|
|
return std::make_unique<LinalgTilingPass<loop::ForOp>>(tileSizes);
|
|
}
|
|
|
|
std::unique_ptr<OpPassBase<FuncOp>>
|
|
mlir::createLinalgTilingToParallelLoopsPass(ArrayRef<int64_t> tileSizes) {
|
|
return std::make_unique<LinalgTilingPass<loop::ParallelOp>>(tileSizes);
|
|
}
|
|
|
|
static PassRegistration<LinalgTilingPass<loop::ForOp>>
|
|
tiling_pass("linalg-tile", "Tile operations in the linalg dialect", [] {
|
|
auto pass = std::make_unique<LinalgTilingPass<loop::ForOp>>();
|
|
pass->tileSizes.assign(clTileSizes.begin(), clTileSizes.end());
|
|
return pass;
|
|
});
|
|
|
|
static PassRegistration<LinalgTilingPass<loop::ParallelOp>>
|
|
tiling_to_parallel_loops(
|
|
"linalg-tile-to-parallel-loops",
|
|
"Tile operations in the linalg dialect to parallel loops", [] {
|
|
auto pass = std::make_unique<LinalgTilingPass<loop::ParallelOp>>();
|
|
pass->tileSizes.assign(clTileSizes.begin(), clTileSizes.end());
|
|
return pass;
|
|
});
|