River Riddle 0ddba0bd59 [mlir][SideEffects] Replace HasNoSideEffect with the memory effect interfaces.
HasNoSideEffect can now be implemented using the MemoryEffectInterface, removing the need to check multiple things for the same information. This also removes an easy foot-gun for users as 'Operation::hasNoSideEffect' would ignore operations that dynamically, or recursively, have no side effects. This also leads to an immediate improvement in some of the existing users, such as DCE, now that they have access to more information.

Differential Revision: https://reviews.llvm.org/D76036
2020-03-12 14:26:15 -07:00

382 lines
14 KiB
C++

//===- RegionUtils.cpp - Region-related transformation utilities ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/RegionUtils.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/RegionGraphTraits.h"
#include "mlir/IR/Value.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Interfaces/SideEffects.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallSet.h"
using namespace mlir;
void mlir::replaceAllUsesInRegionWith(Value orig, Value replacement,
Region &region) {
for (auto &use : llvm::make_early_inc_range(orig.getUses())) {
if (region.isAncestor(use.getOwner()->getParentRegion()))
use.set(replacement);
}
}
void mlir::visitUsedValuesDefinedAbove(
Region &region, Region &limit, function_ref<void(OpOperand *)> callback) {
assert(limit.isAncestor(&region) &&
"expected isolation limit to be an ancestor of the given region");
// Collect proper ancestors of `limit` upfront to avoid traversing the region
// tree for every value.
SmallPtrSet<Region *, 4> properAncestors;
for (auto *reg = limit.getParentRegion(); reg != nullptr;
reg = reg->getParentRegion()) {
properAncestors.insert(reg);
}
region.walk([callback, &properAncestors](Operation *op) {
for (OpOperand &operand : op->getOpOperands())
// Callback on values defined in a proper ancestor of region.
if (properAncestors.count(operand.get().getParentRegion()))
callback(&operand);
});
}
void mlir::visitUsedValuesDefinedAbove(
MutableArrayRef<Region> regions, function_ref<void(OpOperand *)> callback) {
for (Region &region : regions)
visitUsedValuesDefinedAbove(region, region, callback);
}
void mlir::getUsedValuesDefinedAbove(Region &region, Region &limit,
llvm::SetVector<Value> &values) {
visitUsedValuesDefinedAbove(region, limit, [&](OpOperand *operand) {
values.insert(operand->get());
});
}
void mlir::getUsedValuesDefinedAbove(MutableArrayRef<Region> regions,
llvm::SetVector<Value> &values) {
for (Region &region : regions)
getUsedValuesDefinedAbove(region, region, values);
}
//===----------------------------------------------------------------------===//
// Unreachable Block Elimination
//===----------------------------------------------------------------------===//
/// Erase the unreachable blocks within the provided regions. Returns success
/// if any blocks were erased, failure otherwise.
// TODO: We could likely merge this with the DCE algorithm below.
static LogicalResult eraseUnreachableBlocks(MutableArrayRef<Region> regions) {
// Set of blocks found to be reachable within a given region.
llvm::df_iterator_default_set<Block *, 16> reachable;
// If any blocks were found to be dead.
bool erasedDeadBlocks = false;
SmallVector<Region *, 1> worklist;
worklist.reserve(regions.size());
for (Region &region : regions)
worklist.push_back(&region);
while (!worklist.empty()) {
Region *region = worklist.pop_back_val();
if (region->empty())
continue;
// If this is a single block region, just collect the nested regions.
if (std::next(region->begin()) == region->end()) {
for (Operation &op : region->front())
for (Region &region : op.getRegions())
worklist.push_back(&region);
continue;
}
// Mark all reachable blocks.
reachable.clear();
for (Block *block : depth_first_ext(&region->front(), reachable))
(void)block /* Mark all reachable blocks */;
// Collect all of the dead blocks and push the live regions onto the
// worklist.
for (Block &block : llvm::make_early_inc_range(*region)) {
if (!reachable.count(&block)) {
block.dropAllDefinedValueUses();
block.erase();
erasedDeadBlocks = true;
continue;
}
// Walk any regions within this block.
for (Operation &op : block)
for (Region &region : op.getRegions())
worklist.push_back(&region);
}
}
return success(erasedDeadBlocks);
}
//===----------------------------------------------------------------------===//
// Dead Code Elimination
//===----------------------------------------------------------------------===//
namespace {
/// Data structure used to track which values have already been proved live.
///
/// Because Operation's can have multiple results, this data structure tracks
/// liveness for both Value's and Operation's to avoid having to look through
/// all Operation results when analyzing a use.
///
/// This data structure essentially tracks the dataflow lattice.
/// The set of values/ops proved live increases monotonically to a fixed-point.
class LiveMap {
public:
/// Value methods.
bool wasProvenLive(Value value) { return liveValues.count(value); }
void setProvedLive(Value value) {
changed |= liveValues.insert(value).second;
}
/// Operation methods.
bool wasProvenLive(Operation *op) { return liveOps.count(op); }
void setProvedLive(Operation *op) { changed |= liveOps.insert(op).second; }
/// Methods for tracking if we have reached a fixed-point.
void resetChanged() { changed = false; }
bool hasChanged() { return changed; }
private:
bool changed = false;
DenseSet<Value> liveValues;
DenseSet<Operation *> liveOps;
};
} // namespace
static bool isUseSpeciallyKnownDead(OpOperand &use, LiveMap &liveMap) {
Operation *owner = use.getOwner();
unsigned operandIndex = use.getOperandNumber();
// This pass generally treats all uses of an op as live if the op itself is
// considered live. However, for successor operands to terminators we need a
// finer-grained notion where we deduce liveness for operands individually.
// The reason for this is easiest to think about in terms of a classical phi
// node based SSA IR, where each successor operand is really an operand to a
// *separate* phi node, rather than all operands to the branch itself as with
// the block argument representation that MLIR uses.
//
// And similarly, because each successor operand is really an operand to a phi
// node, rather than to the terminator op itself, a terminator op can't e.g.
// "print" the value of a successor operand.
if (owner->isKnownTerminator()) {
if (BranchOpInterface branchInterface = dyn_cast<BranchOpInterface>(owner))
if (auto arg = branchInterface.getSuccessorBlockArgument(operandIndex))
return !liveMap.wasProvenLive(*arg);
return false;
}
return false;
}
static void processValue(Value value, LiveMap &liveMap) {
bool provedLive = llvm::any_of(value.getUses(), [&](OpOperand &use) {
if (isUseSpeciallyKnownDead(use, liveMap))
return false;
return liveMap.wasProvenLive(use.getOwner());
});
if (provedLive)
liveMap.setProvedLive(value);
}
static bool isOpIntrinsicallyLive(Operation *op) {
// This pass doesn't modify the CFG, so terminators are never deleted.
if (!op->isKnownNonTerminator())
return true;
// If the op has a side effect, we treat it as live.
// TODO: Properly handle region side effects.
return !MemoryEffectOpInterface::hasNoEffect(op) || op->getNumRegions() != 0;
}
static void propagateLiveness(Region &region, LiveMap &liveMap);
static void propagateTerminatorLiveness(Operation *op, LiveMap &liveMap) {
// Terminators are always live.
liveMap.setProvedLive(op);
// Check to see if we can reason about the successor operands and mutate them.
BranchOpInterface branchInterface = dyn_cast<BranchOpInterface>(op);
if (!branchInterface || !branchInterface.canEraseSuccessorOperand()) {
for (Block *successor : op->getSuccessors())
for (BlockArgument arg : successor->getArguments())
liveMap.setProvedLive(arg);
return;
}
// If we can't reason about the operands to a successor, conservatively mark
// all arguments as live.
for (unsigned i = 0, e = op->getNumSuccessors(); i != e; ++i) {
if (!branchInterface.getSuccessorOperands(i))
for (BlockArgument arg : op->getSuccessor(i)->getArguments())
liveMap.setProvedLive(arg);
}
}
static void propagateLiveness(Operation *op, LiveMap &liveMap) {
// All Value's are either a block argument or an op result.
// We call processValue on those cases.
// Recurse on any regions the op has.
for (Region &region : op->getRegions())
propagateLiveness(region, liveMap);
// Process terminator operations.
if (op->isKnownTerminator())
return propagateTerminatorLiveness(op, liveMap);
// Process the op itself.
if (isOpIntrinsicallyLive(op)) {
liveMap.setProvedLive(op);
return;
}
for (Value value : op->getResults())
processValue(value, liveMap);
bool provedLive = llvm::any_of(op->getResults(), [&](Value value) {
return liveMap.wasProvenLive(value);
});
if (provedLive)
liveMap.setProvedLive(op);
}
static void propagateLiveness(Region &region, LiveMap &liveMap) {
if (region.empty())
return;
for (Block *block : llvm::post_order(&region.front())) {
// We process block arguments after the ops in the block, to promote
// faster convergence to a fixed point (we try to visit uses before defs).
for (Operation &op : llvm::reverse(block->getOperations()))
propagateLiveness(&op, liveMap);
for (Value value : block->getArguments())
processValue(value, liveMap);
}
}
static void eraseTerminatorSuccessorOperands(Operation *terminator,
LiveMap &liveMap) {
BranchOpInterface branchOp = dyn_cast<BranchOpInterface>(terminator);
if (!branchOp)
return;
for (unsigned succI = 0, succE = terminator->getNumSuccessors();
succI < succE; succI++) {
// Iterating successors in reverse is not strictly needed, since we
// aren't erasing any successors. But it is slightly more efficient
// since it will promote later operands of the terminator being erased
// first, reducing the quadratic-ness.
unsigned succ = succE - succI - 1;
Optional<OperandRange> succOperands = branchOp.getSuccessorOperands(succ);
if (!succOperands)
continue;
Block *successor = terminator->getSuccessor(succ);
for (unsigned argI = 0, argE = succOperands->size(); argI < argE; ++argI) {
// Iterating args in reverse is needed for correctness, to avoid
// shifting later args when earlier args are erased.
unsigned arg = argE - argI - 1;
if (!liveMap.wasProvenLive(successor->getArgument(arg)))
branchOp.eraseSuccessorOperand(succ, arg);
}
}
}
static LogicalResult deleteDeadness(MutableArrayRef<Region> regions,
LiveMap &liveMap) {
bool erasedAnything = false;
for (Region &region : regions) {
if (region.empty())
continue;
// We do the deletion in an order that deletes all uses before deleting
// defs.
// MLIR's SSA structural invariants guarantee that except for block
// arguments, the use-def graph is acyclic, so this is possible with a
// single walk of ops and then a final pass to clean up block arguments.
//
// To do this, we visit ops in an order that visits domtree children
// before domtree parents. A CFG post-order (with reverse iteration with a
// block) satisfies that without needing an explicit domtree calculation.
for (Block *block : llvm::post_order(&region.front())) {
eraseTerminatorSuccessorOperands(block->getTerminator(), liveMap);
for (Operation &childOp :
llvm::make_early_inc_range(llvm::reverse(block->getOperations()))) {
erasedAnything |=
succeeded(deleteDeadness(childOp.getRegions(), liveMap));
if (!liveMap.wasProvenLive(&childOp)) {
erasedAnything = true;
childOp.erase();
}
}
}
// Delete block arguments.
// The entry block has an unknown contract with their enclosing block, so
// skip it.
for (Block &block : llvm::drop_begin(region.getBlocks(), 1)) {
// Iterate in reverse to avoid shifting later arguments when deleting
// earlier arguments.
for (unsigned i = 0, e = block.getNumArguments(); i < e; i++)
if (!liveMap.wasProvenLive(block.getArgument(e - i - 1))) {
block.eraseArgument(e - i - 1);
erasedAnything = true;
}
}
}
return success(erasedAnything);
}
// This function performs a simple dead code elimination algorithm over the
// given regions.
//
// The overall goal is to prove that Values are dead, which allows deleting ops
// and block arguments.
//
// This uses an optimistic algorithm that assumes everything is dead until
// proved otherwise, allowing it to delete recursively dead cycles.
//
// This is a simple fixed-point dataflow analysis algorithm on a lattice
// {Dead,Alive}. Because liveness flows backward, we generally try to
// iterate everything backward to speed up convergence to the fixed-point. This
// allows for being able to delete recursively dead cycles of the use-def graph,
// including block arguments.
//
// This function returns success if any operations or arguments were deleted,
// failure otherwise.
static LogicalResult runRegionDCE(MutableArrayRef<Region> regions) {
LiveMap liveMap;
do {
liveMap.resetChanged();
for (Region &region : regions)
propagateLiveness(region, liveMap);
} while (liveMap.hasChanged());
return deleteDeadness(regions, liveMap);
}
//===----------------------------------------------------------------------===//
// Region Simplification
//===----------------------------------------------------------------------===//
/// Run a set of structural simplifications over the given regions. This
/// includes transformations like unreachable block elimination, dead argument
/// elimination, as well as some other DCE. This function returns success if any
/// of the regions were simplified, failure otherwise.
LogicalResult mlir::simplifyRegions(MutableArrayRef<Region> regions) {
LogicalResult eliminatedBlocks = eraseUnreachableBlocks(regions);
LogicalResult eliminatedOpsOrArgs = runRegionDCE(regions);
return success(succeeded(eliminatedBlocks) || succeeded(eliminatedOpsOrArgs));
}