llvm-project/bolt/lib/Passes/SplitFunctions.cpp
Maksim Panchenko 105ecd8bb2
[BOLT] Avoid EH trampolines for PIEs/DSOs (#117106)
We used to emit EH trampolines for PIE/DSO whenever a function fragment
contained a landing pad outside of it. However, it is common to have all
landing pads in a cold fragment even when their throwers are in a hot
one.

To reduce the number of trampolines, analyze landing pads for any given
function fragment, and if they all belong to the same (possibly
different) fragment, designate that fragment as a landing pad fragment
for the "thrower" fragment. Later, emit landing pad fragment symbol as
an LPStart for the thrower LSDA.
2024-11-21 18:18:30 -08:00

1075 lines
41 KiB
C++

//===- bolt/Passes/SplitFunctions.cpp - Pass for splitting function code --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SplitFunctions pass.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/SplitFunctions.h"
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Core/FunctionLayout.h"
#include "bolt/Core/ParallelUtilities.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormatVariadic.h"
#include <algorithm>
#include <iterator>
#include <memory>
#include <numeric>
#include <random>
#include <vector>
#define DEBUG_TYPE "bolt-opts"
using namespace llvm;
using namespace bolt;
namespace {
class DeprecatedSplitFunctionOptionParser : public cl::parser<bool> {
public:
explicit DeprecatedSplitFunctionOptionParser(cl::Option &O)
: cl::parser<bool>(O) {}
bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, bool &Value) {
if (Arg == "2" || Arg == "3") {
Value = true;
errs() << formatv("BOLT-WARNING: specifying non-boolean value \"{0}\" "
"for option -{1} is deprecated\n",
Arg, ArgName);
return false;
}
return cl::parser<bool>::parse(O, ArgName, Arg, Value);
}
};
} // namespace
namespace opts {
extern cl::OptionCategory BoltOptCategory;
extern cl::opt<bool> SplitEH;
extern cl::opt<unsigned> ExecutionCountThreshold;
extern cl::opt<uint32_t> RandomSeed;
static cl::opt<bool> AggressiveSplitting(
"split-all-cold", cl::desc("outline as many cold basic blocks as possible"),
cl::cat(BoltOptCategory));
static cl::opt<unsigned> SplitAlignThreshold(
"split-align-threshold",
cl::desc("when deciding to split a function, apply this alignment "
"while doing the size comparison (see -split-threshold). "
"Default value: 2."),
cl::init(2),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool, false, DeprecatedSplitFunctionOptionParser>
SplitFunctions("split-functions",
cl::desc("split functions into fragments"),
cl::cat(BoltOptCategory));
static cl::opt<unsigned> SplitThreshold(
"split-threshold",
cl::desc("split function only if its main size is reduced by more than "
"given amount of bytes. Default value: 0, i.e. split iff the "
"size is reduced. Note that on some architectures the size can "
"increase after splitting."),
cl::init(0), cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<SplitFunctionsStrategy> SplitStrategy(
"split-strategy", cl::init(SplitFunctionsStrategy::Profile2),
cl::values(clEnumValN(SplitFunctionsStrategy::Profile2, "profile2",
"split each function into a hot and cold fragment "
"using profiling information")),
cl::values(clEnumValN(SplitFunctionsStrategy::CDSplit, "cdsplit",
"split each function into a hot, warm, and cold "
"fragment using profiling information")),
cl::values(clEnumValN(
SplitFunctionsStrategy::Random2, "random2",
"split each function into a hot and cold fragment at a randomly chosen "
"split point (ignoring any available profiling information)")),
cl::values(clEnumValN(
SplitFunctionsStrategy::RandomN, "randomN",
"split each function into N fragments at a randomly chosen split "
"points (ignoring any available profiling information)")),
cl::values(clEnumValN(
SplitFunctionsStrategy::All, "all",
"split all basic blocks of each function into fragments such that each "
"fragment contains exactly a single basic block")),
cl::desc("strategy used to partition blocks into fragments"),
cl::cat(BoltOptCategory));
static cl::opt<double> CallScale(
"call-scale",
cl::desc("Call score scale coefficient (when --split-strategy=cdsplit)"),
cl::init(0.95), cl::ReallyHidden, cl::cat(BoltOptCategory));
static cl::opt<double>
CallPower("call-power",
cl::desc("Call score power (when --split-strategy=cdsplit)"),
cl::init(0.05), cl::ReallyHidden, cl::cat(BoltOptCategory));
static cl::opt<double>
JumpPower("jump-power",
cl::desc("Jump score power (when --split-strategy=cdsplit)"),
cl::init(0.15), cl::ReallyHidden, cl::cat(BoltOptCategory));
} // namespace opts
namespace {
bool hasFullProfile(const BinaryFunction &BF) {
return llvm::all_of(BF.blocks(), [](const BinaryBasicBlock &BB) {
return BB.getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE;
});
}
bool allBlocksCold(const BinaryFunction &BF) {
return llvm::all_of(BF.blocks(), [](const BinaryBasicBlock &BB) {
return BB.getExecutionCount() == 0;
});
}
struct SplitProfile2 final : public SplitStrategy {
bool canSplit(const BinaryFunction &BF) override {
return BF.hasValidProfile() && hasFullProfile(BF) && !allBlocksCold(BF);
}
bool compactFragments() override { return true; }
void fragment(const BlockIt Start, const BlockIt End) override {
for (BinaryBasicBlock *const BB : llvm::make_range(Start, End)) {
if (BB->getExecutionCount() == 0)
BB->setFragmentNum(FragmentNum::cold());
}
}
};
struct SplitCacheDirected final : public SplitStrategy {
BinaryContext &BC;
using BasicBlockOrder = BinaryFunction::BasicBlockOrderType;
bool canSplit(const BinaryFunction &BF) override {
return BF.hasValidProfile() && hasFullProfile(BF) && !allBlocksCold(BF);
}
explicit SplitCacheDirected(BinaryContext &BC) : BC(BC) {
initializeAuxiliaryVariables();
buildCallGraph();
}
// When some functions are hot-warm split and others are hot-warm-cold split,
// we do not want to change the fragment numbers of the blocks in the hot-warm
// split functions.
bool compactFragments() override { return false; }
void fragment(const BlockIt Start, const BlockIt End) override {
BasicBlockOrder BlockOrder(Start, End);
BinaryFunction &BF = *BlockOrder.front()->getFunction();
// No need to re-split small functions.
if (BlockOrder.size() <= 2)
return;
size_t BestSplitIndex = findSplitIndex(BF, BlockOrder);
assert(BestSplitIndex < BlockOrder.size());
// Assign fragments based on the computed best split index.
// All basic blocks with index up to the best split index become hot.
// All remaining blocks are warm / cold depending on if count is
// greater than zero or not.
for (size_t Index = 0; Index < BlockOrder.size(); Index++) {
BinaryBasicBlock *BB = BlockOrder[Index];
if (Index <= BestSplitIndex)
BB->setFragmentNum(FragmentNum::main());
else
BB->setFragmentNum(BB->getKnownExecutionCount() > 0
? FragmentNum::warm()
: FragmentNum::cold());
}
}
private:
struct CallInfo {
size_t Length;
size_t Count;
};
struct SplitScore {
size_t SplitIndex = size_t(-1);
size_t HotSizeReduction = 0;
double LocalScore = 0;
double CoverCallScore = 0;
double sum() const { return LocalScore + CoverCallScore; }
};
// Auxiliary variables used by the algorithm.
size_t TotalNumBlocks{0};
size_t OrigHotSectionSize{0};
DenseMap<const BinaryBasicBlock *, size_t> GlobalIndices;
DenseMap<const BinaryBasicBlock *, size_t> BBSizes;
DenseMap<const BinaryBasicBlock *, size_t> BBOffsets;
// Call graph.
std::vector<SmallVector<const BinaryBasicBlock *, 0>> Callers;
std::vector<SmallVector<const BinaryBasicBlock *, 0>> Callees;
bool shouldConsiderForCallGraph(const BinaryFunction &BF) {
// Only a subset of the functions in the binary will be considered
// for initializing auxiliary variables and building call graph.
return BF.hasValidIndex() && BF.hasValidProfile() && !BF.empty();
}
void initializeAuxiliaryVariables() {
for (BinaryFunction *BF : BC.getSortedFunctions()) {
if (!shouldConsiderForCallGraph(*BF))
continue;
// Calculate the size of each BB after hot-cold splitting.
// This populates BinaryBasicBlock::OutputAddressRange which
// can be used to compute the size of each BB.
BC.calculateEmittedSize(*BF, /*FixBranches=*/true);
for (BinaryBasicBlock *BB : BF->getLayout().blocks()) {
// Unique global index.
GlobalIndices[BB] = TotalNumBlocks;
TotalNumBlocks++;
// Block size after hot-cold splitting.
BBSizes[BB] = BB->getOutputSize();
// Hot block offset after hot-cold splitting.
BBOffsets[BB] = OrigHotSectionSize;
if (!BB->isSplit())
OrigHotSectionSize += BBSizes[BB];
}
}
}
void buildCallGraph() {
Callers.resize(TotalNumBlocks);
Callees.resize(TotalNumBlocks);
for (const BinaryFunction *SrcFunction : BC.getSortedFunctions()) {
if (!shouldConsiderForCallGraph(*SrcFunction))
continue;
for (BinaryBasicBlock &SrcBB : SrcFunction->blocks()) {
// Skip blocks that are not executed
if (SrcBB.getKnownExecutionCount() == 0)
continue;
// Find call instructions and extract target symbols from each one
for (const MCInst &Inst : SrcBB) {
if (!BC.MIB->isCall(Inst))
continue;
// Call info
const MCSymbol *DstSym = BC.MIB->getTargetSymbol(Inst);
// Ignore calls w/o information
if (!DstSym)
continue;
const BinaryFunction *DstFunction = BC.getFunctionForSymbol(DstSym);
// Ignore calls that do not have a valid target, but do not ignore
// recursive calls, because caller block could be moved to warm.
if (!DstFunction || DstFunction->getLayout().block_empty())
continue;
const BinaryBasicBlock *DstBB = &(DstFunction->front());
// Record the call only if DstBB is also in functions to consider for
// call graph.
if (GlobalIndices.contains(DstBB)) {
Callers[GlobalIndices[DstBB]].push_back(&SrcBB);
Callees[GlobalIndices[&SrcBB]].push_back(DstBB);
}
}
}
}
}
/// Populate BinaryBasicBlock::OutputAddressRange with estimated basic block
/// start and end addresses for hot and warm basic blocks, assuming hot-warm
/// splitting happens at \p SplitIndex. Also return estimated end addresses
/// of the hot fragment before and after splitting.
/// The estimations take into account the potential addition of branch
/// instructions due to split fall through branches as well as the need to
/// use longer branch instructions for split (un)conditional branches.
std::pair<size_t, size_t>
estimatePostSplitBBAddress(const BasicBlockOrder &BlockOrder,
const size_t SplitIndex) {
assert(SplitIndex < BlockOrder.size() && "Invalid split index");
// Update function layout assuming hot-warm splitting at SplitIndex.
for (size_t Index = 0; Index < BlockOrder.size(); Index++) {
BinaryBasicBlock *BB = BlockOrder[Index];
if (BB->getFragmentNum() == FragmentNum::cold())
break;
BB->setFragmentNum(Index <= SplitIndex ? FragmentNum::main()
: FragmentNum::warm());
}
BinaryFunction *BF = BlockOrder[0]->getFunction();
BF->getLayout().update(BlockOrder);
// Populate BB.OutputAddressRange under the updated layout.
BC.calculateEmittedSize(*BF);
// Populate BB.OutputAddressRange with estimated new start and end addresses
// and compute the old end address of the hot section and the new end
// address of the hot section.
size_t OldHotEndAddr{0};
size_t NewHotEndAddr{0};
size_t CurrentAddr = BBOffsets[BlockOrder[0]];
for (BinaryBasicBlock *BB : BlockOrder) {
// We only care about new addresses of blocks in hot/warm.
if (BB->getFragmentNum() == FragmentNum::cold())
break;
const size_t NewSize = BB->getOutputSize();
BB->setOutputStartAddress(CurrentAddr);
CurrentAddr += NewSize;
BB->setOutputEndAddress(CurrentAddr);
if (BB->getLayoutIndex() == SplitIndex) {
NewHotEndAddr = CurrentAddr;
// Approximate the start address of the warm fragment of the current
// function using the original hot section size.
CurrentAddr = OrigHotSectionSize;
}
OldHotEndAddr = BBOffsets[BB] + BBSizes[BB];
}
return std::make_pair(OldHotEndAddr, NewHotEndAddr);
}
/// Get a collection of "shortenable" calls, that is, calls of type X->Y
/// when the function order is [... X ... BF ... Y ...].
/// If the hot fragment size of BF is reduced, then such calls are guaranteed
/// to get shorter by the reduced hot fragment size.
std::vector<CallInfo> extractCoverCalls(const BinaryFunction &BF) {
// Record the length and the count of the calls that can be shortened
std::vector<CallInfo> CoverCalls;
if (opts::CallScale == 0)
return CoverCalls;
const BinaryFunction *ThisBF = &BF;
const BinaryBasicBlock *ThisBB = &(ThisBF->front());
const size_t ThisGI = GlobalIndices[ThisBB];
for (const BinaryFunction *DstBF : BC.getSortedFunctions()) {
if (!shouldConsiderForCallGraph(*DstBF))
continue;
const BinaryBasicBlock *DstBB = &(DstBF->front());
if (DstBB->getKnownExecutionCount() == 0)
continue;
const size_t DstGI = GlobalIndices[DstBB];
for (const BinaryBasicBlock *SrcBB : Callers[DstGI]) {
const BinaryFunction *SrcBF = SrcBB->getFunction();
if (ThisBF == SrcBF)
continue;
const size_t CallCount = SrcBB->getKnownExecutionCount();
const size_t SrcGI = GlobalIndices[SrcBB];
const bool IsCoverCall = (SrcGI < ThisGI && ThisGI < DstGI) ||
(DstGI <= ThisGI && ThisGI < SrcGI);
if (!IsCoverCall)
continue;
const size_t SrcBBEndAddr = BBOffsets[SrcBB] + BBSizes[SrcBB];
const size_t DstBBStartAddr = BBOffsets[DstBB];
const size_t CallLength =
AbsoluteDifference(SrcBBEndAddr, DstBBStartAddr);
const CallInfo CI{CallLength, CallCount};
CoverCalls.emplace_back(CI);
}
}
return CoverCalls;
}
/// Compute the edge score of a call edge.
double computeCallScore(uint64_t CallCount, size_t CallLength) {
// Increase call lengths by 1 to avoid raising 0 to a negative power.
return opts::CallScale * static_cast<double>(CallCount) /
std::pow(static_cast<double>(CallLength + 1), opts::CallPower);
}
/// Compute the edge score of a jump (branch) edge.
double computeJumpScore(uint64_t JumpCount, size_t JumpLength) {
// Increase jump lengths by 1 to avoid raising 0 to a negative power.
return static_cast<double>(JumpCount) /
std::pow(static_cast<double>(JumpLength + 1), opts::JumpPower);
}
/// Compute sum of scores over jumps within \p BlockOrder given \p SplitIndex.
/// Increament Score.LocalScore in place by the sum.
void computeJumpScore(const BasicBlockOrder &BlockOrder,
const size_t SplitIndex, SplitScore &Score) {
for (const BinaryBasicBlock *SrcBB : BlockOrder) {
if (SrcBB->getKnownExecutionCount() == 0)
continue;
const size_t SrcBBEndAddr = SrcBB->getOutputAddressRange().second;
for (const auto Pair : zip(SrcBB->successors(), SrcBB->branch_info())) {
const BinaryBasicBlock *DstBB = std::get<0>(Pair);
const BinaryBasicBlock::BinaryBranchInfo &Branch = std::get<1>(Pair);
const size_t JumpCount = Branch.Count;
if (JumpCount == 0)
continue;
const size_t DstBBStartAddr = DstBB->getOutputAddressRange().first;
const size_t NewJumpLength =
AbsoluteDifference(SrcBBEndAddr, DstBBStartAddr);
Score.LocalScore += computeJumpScore(JumpCount, NewJumpLength);
}
}
}
/// Compute sum of scores over calls originated in the current function
/// given \p SplitIndex. Increament Score.LocalScore in place by the sum.
void computeLocalCallScore(const BasicBlockOrder &BlockOrder,
const size_t SplitIndex, SplitScore &Score) {
if (opts::CallScale == 0)
return;
// Global index of the last block in the current function.
// This is later used to determine whether a call originated in the current
// function is to a function that comes after the current function.
const size_t LastGlobalIndex = GlobalIndices[BlockOrder.back()];
// The length of calls originated in the input function can increase /
// decrease depending on the splitting decision.
for (const BinaryBasicBlock *SrcBB : BlockOrder) {
const size_t CallCount = SrcBB->getKnownExecutionCount();
// If SrcBB does not call any functions, skip it.
if (CallCount == 0)
continue;
// Obtain an estimate on the end address of the src basic block
// after splitting at SplitIndex.
const size_t SrcBBEndAddr = SrcBB->getOutputAddressRange().second;
for (const BinaryBasicBlock *DstBB : Callees[GlobalIndices[SrcBB]]) {
// Obtain an estimate on the start address of the dst basic block
// after splitting at SplitIndex. If DstBB is in a function before
// the current function, then its start address remains unchanged.
size_t DstBBStartAddr = BBOffsets[DstBB];
// If DstBB is in a function after the current function, then its
// start address should be adjusted based on the reduction in hot size.
if (GlobalIndices[DstBB] > LastGlobalIndex) {
assert(DstBBStartAddr >= Score.HotSizeReduction);
DstBBStartAddr -= Score.HotSizeReduction;
}
const size_t NewCallLength =
AbsoluteDifference(SrcBBEndAddr, DstBBStartAddr);
Score.LocalScore += computeCallScore(CallCount, NewCallLength);
}
}
}
/// Compute sum of splitting scores for cover calls of the input function.
/// Increament Score.CoverCallScore in place by the sum.
void computeCoverCallScore(const BasicBlockOrder &BlockOrder,
const size_t SplitIndex,
const std::vector<CallInfo> &CoverCalls,
SplitScore &Score) {
if (opts::CallScale == 0)
return;
for (const CallInfo CI : CoverCalls) {
assert(CI.Length >= Score.HotSizeReduction &&
"Length of cover calls must exceed reduced size of hot fragment.");
// Compute the new length of the call, which is shorter than the original
// one by the size of the splitted fragment minus the total size increase.
const size_t NewCallLength = CI.Length - Score.HotSizeReduction;
Score.CoverCallScore += computeCallScore(CI.Count, NewCallLength);
}
}
/// Compute the split score of splitting a function at a given index.
/// The split score consists of local score and cover score. This function
/// returns \p Score of SplitScore type. It contains the local score and
/// cover score of the current splitting index. For easier book keeping and
/// comparison, it also stores the split index and the resulting reduction
/// in hot fragment size.
SplitScore computeSplitScore(const BinaryFunction &BF,
const BasicBlockOrder &BlockOrder,
const size_t SplitIndex,
const std::vector<CallInfo> &CoverCalls) {
// Populate BinaryBasicBlock::OutputAddressRange with estimated
// new start and end addresses after hot-warm splitting at SplitIndex.
size_t OldHotEnd;
size_t NewHotEnd;
std::tie(OldHotEnd, NewHotEnd) =
estimatePostSplitBBAddress(BlockOrder, SplitIndex);
SplitScore Score;
Score.SplitIndex = SplitIndex;
// It's not worth splitting if OldHotEnd < NewHotEnd.
if (OldHotEnd < NewHotEnd)
return Score;
// Hot fragment size reduction due to splitting.
Score.HotSizeReduction = OldHotEnd - NewHotEnd;
// First part of LocalScore is the sum over call edges originated in the
// input function. These edges can get shorter or longer depending on
// SplitIndex. Score.LocalScore is increamented in place.
computeLocalCallScore(BlockOrder, SplitIndex, Score);
// Second part of LocalScore is the sum over jump edges with src basic block
// and dst basic block in the current function. Score.LocalScore is
// increamented in place.
computeJumpScore(BlockOrder, SplitIndex, Score);
// Compute CoverCallScore and store in Score in place.
computeCoverCallScore(BlockOrder, SplitIndex, CoverCalls, Score);
return Score;
}
/// Find the most likely successor of a basic block when it has one or two
/// successors. Return nullptr otherwise.
const BinaryBasicBlock *getMostLikelySuccessor(const BinaryBasicBlock *BB) {
if (BB->succ_size() == 1)
return BB->getSuccessor();
if (BB->succ_size() == 2) {
uint64_t TakenCount = BB->getTakenBranchInfo().Count;
assert(TakenCount != BinaryBasicBlock::COUNT_NO_PROFILE);
uint64_t NonTakenCount = BB->getFallthroughBranchInfo().Count;
assert(NonTakenCount != BinaryBasicBlock::COUNT_NO_PROFILE);
if (TakenCount > NonTakenCount)
return BB->getConditionalSuccessor(true);
else if (TakenCount < NonTakenCount)
return BB->getConditionalSuccessor(false);
}
return nullptr;
}
/// Find the best index for splitting. The returned value is the index of the
/// last hot basic block. Hence, "no splitting" is equivalent to returning the
/// value which is one less than the size of the function.
size_t findSplitIndex(const BinaryFunction &BF,
const BasicBlockOrder &BlockOrder) {
assert(BlockOrder.size() > 2);
// Find all function calls that can be shortened if we move blocks of the
// current function to warm/cold
const std::vector<CallInfo> CoverCalls = extractCoverCalls(BF);
// Find the existing hot-cold splitting index.
size_t HotColdIndex = 0;
while (HotColdIndex + 1 < BlockOrder.size()) {
if (BlockOrder[HotColdIndex + 1]->getFragmentNum() == FragmentNum::cold())
break;
HotColdIndex++;
}
assert(HotColdIndex + 1 == BlockOrder.size() ||
(BlockOrder[HotColdIndex]->getFragmentNum() == FragmentNum::main() &&
BlockOrder[HotColdIndex + 1]->getFragmentNum() ==
FragmentNum::cold()));
// Try all possible split indices up to HotColdIndex (blocks that have
// Index <= SplitIndex are in hot) and find the one maximizing the
// splitting score.
SplitScore BestScore;
for (size_t Index = 0; Index <= HotColdIndex; Index++) {
const BinaryBasicBlock *LastHotBB = BlockOrder[Index];
assert(LastHotBB->getFragmentNum() != FragmentNum::cold());
// Do not break jump to the most likely successor.
if (Index + 1 < BlockOrder.size() &&
BlockOrder[Index + 1] == getMostLikelySuccessor(LastHotBB))
continue;
const SplitScore Score =
computeSplitScore(BF, BlockOrder, Index, CoverCalls);
if (Score.sum() > BestScore.sum())
BestScore = Score;
}
// If we don't find a good splitting point, fallback to the original one.
if (BestScore.SplitIndex == size_t(-1))
return HotColdIndex;
return BestScore.SplitIndex;
}
};
struct SplitRandom2 final : public SplitStrategy {
std::minstd_rand0 Gen;
SplitRandom2() : Gen(opts::RandomSeed.getValue()) {}
bool canSplit(const BinaryFunction &BF) override { return true; }
bool compactFragments() override { return true; }
void fragment(const BlockIt Start, const BlockIt End) override {
using DiffT = typename std::iterator_traits<BlockIt>::difference_type;
const DiffT NumBlocks = End - Start;
assert(NumBlocks > 0 && "Cannot fragment empty function");
// We want to split at least one block
const auto LastSplitPoint = std::max<DiffT>(NumBlocks - 1, 1);
std::uniform_int_distribution<DiffT> Dist(1, LastSplitPoint);
const DiffT SplitPoint = Dist(Gen);
for (BinaryBasicBlock *BB : llvm::make_range(Start + SplitPoint, End))
BB->setFragmentNum(FragmentNum::cold());
LLVM_DEBUG(dbgs() << formatv("BOLT-DEBUG: randomly chose last {0} (out of "
"{1} possible) blocks to split\n",
NumBlocks - SplitPoint, End - Start));
}
};
struct SplitRandomN final : public SplitStrategy {
std::minstd_rand0 Gen;
SplitRandomN() : Gen(opts::RandomSeed.getValue()) {}
bool canSplit(const BinaryFunction &BF) override { return true; }
bool compactFragments() override { return true; }
void fragment(const BlockIt Start, const BlockIt End) override {
using DiffT = typename std::iterator_traits<BlockIt>::difference_type;
const DiffT NumBlocks = End - Start;
assert(NumBlocks > 0 && "Cannot fragment empty function");
// With n blocks, there are n-1 places to split them.
const DiffT MaximumSplits = NumBlocks - 1;
// We want to generate at least two fragment if possible, but if there is
// only one block, no splits are possible.
const auto MinimumSplits = std::min<DiffT>(MaximumSplits, 1);
std::uniform_int_distribution<DiffT> Dist(MinimumSplits, MaximumSplits);
// Choose how many splits to perform
const DiffT NumSplits = Dist(Gen);
// Draw split points from a lottery
SmallVector<unsigned, 0> Lottery(MaximumSplits);
// Start lottery at 1, because there is no meaningful splitpoint before the
// first block.
std::iota(Lottery.begin(), Lottery.end(), 1u);
std::shuffle(Lottery.begin(), Lottery.end(), Gen);
Lottery.resize(NumSplits);
llvm::sort(Lottery);
// Add one past the end entry to lottery
Lottery.push_back(NumBlocks);
unsigned LotteryIndex = 0;
unsigned BBPos = 0;
for (BinaryBasicBlock *const BB : make_range(Start, End)) {
// Check whether to start new fragment
if (BBPos >= Lottery[LotteryIndex])
++LotteryIndex;
// Because LotteryIndex is 0 based and cold fragments are 1 based, we can
// use the index to assign fragments.
BB->setFragmentNum(FragmentNum(LotteryIndex));
++BBPos;
}
}
};
struct SplitAll final : public SplitStrategy {
bool canSplit(const BinaryFunction &BF) override { return true; }
bool compactFragments() override {
// Keeping empty fragments allows us to test, that empty fragments do not
// generate symbols.
return false;
}
void fragment(const BlockIt Start, const BlockIt End) override {
unsigned Fragment = 0;
for (BinaryBasicBlock *const BB : llvm::make_range(Start, End))
BB->setFragmentNum(FragmentNum(Fragment++));
}
};
} // namespace
namespace llvm {
namespace bolt {
bool SplitFunctions::shouldOptimize(const BinaryFunction &BF) const {
// Apply execution count threshold
if (BF.getKnownExecutionCount() < opts::ExecutionCountThreshold)
return false;
return BinaryFunctionPass::shouldOptimize(BF);
}
Error SplitFunctions::runOnFunctions(BinaryContext &BC) {
if (!opts::SplitFunctions)
return Error::success();
if (BC.IsLinuxKernel && BC.BOLTReserved.empty()) {
BC.errs() << "BOLT-ERROR: split functions require reserved space in the "
"Linux kernel binary\n";
exit(1);
}
// If split strategy is not CDSplit, then a second run of the pass is not
// needed after function reordering.
if (BC.HasFinalizedFunctionOrder &&
opts::SplitStrategy != SplitFunctionsStrategy::CDSplit)
return Error::success();
std::unique_ptr<SplitStrategy> Strategy;
bool ForceSequential = false;
switch (opts::SplitStrategy) {
case SplitFunctionsStrategy::CDSplit:
// CDSplit runs two splitting passes: hot-cold splitting (SplitPrfoile2)
// before function reordering and hot-warm-cold splitting
// (SplitCacheDirected) after function reordering.
if (BC.HasFinalizedFunctionOrder)
Strategy = std::make_unique<SplitCacheDirected>(BC);
else
Strategy = std::make_unique<SplitProfile2>();
opts::AggressiveSplitting = true;
BC.HasWarmSection = true;
break;
case SplitFunctionsStrategy::Profile2:
Strategy = std::make_unique<SplitProfile2>();
break;
case SplitFunctionsStrategy::Random2:
Strategy = std::make_unique<SplitRandom2>();
// If we split functions randomly, we need to ensure that across runs with
// the same input, we generate random numbers for each function in the same
// order.
ForceSequential = true;
break;
case SplitFunctionsStrategy::RandomN:
Strategy = std::make_unique<SplitRandomN>();
ForceSequential = true;
break;
case SplitFunctionsStrategy::All:
Strategy = std::make_unique<SplitAll>();
break;
}
ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) {
return !shouldOptimize(BF);
};
ParallelUtilities::runOnEachFunction(
BC, ParallelUtilities::SchedulingPolicy::SP_BB_LINEAR,
[&](BinaryFunction &BF) { splitFunction(BF, *Strategy); }, SkipFunc,
"SplitFunctions", ForceSequential);
if (SplitBytesHot + SplitBytesCold > 0)
BC.outs() << "BOLT-INFO: splitting separates " << SplitBytesHot
<< " hot bytes from " << SplitBytesCold << " cold bytes "
<< format("(%.2lf%% of split functions is hot).\n",
100.0 * SplitBytesHot /
(SplitBytesHot + SplitBytesCold));
return Error::success();
}
void SplitFunctions::splitFunction(BinaryFunction &BF, SplitStrategy &S) {
if (BF.empty())
return;
if (!S.canSplit(BF))
return;
FunctionLayout &Layout = BF.getLayout();
BinaryFunction::BasicBlockOrderType PreSplitLayout(Layout.block_begin(),
Layout.block_end());
BinaryContext &BC = BF.getBinaryContext();
size_t OriginalHotSize;
size_t HotSize;
size_t ColdSize;
if (BC.isX86()) {
std::tie(OriginalHotSize, ColdSize) = BC.calculateEmittedSize(BF);
LLVM_DEBUG(dbgs() << "Estimated size for function " << BF
<< " pre-split is <0x"
<< Twine::utohexstr(OriginalHotSize) << ", 0x"
<< Twine::utohexstr(ColdSize) << ">\n");
}
BinaryFunction::BasicBlockOrderType NewLayout(Layout.block_begin(),
Layout.block_end());
// Never outline the first basic block.
NewLayout.front()->setCanOutline(false);
for (BinaryBasicBlock *const BB : NewLayout) {
if (!BB->canOutline())
continue;
// Do not split extra entry points in aarch64. They can be referred by
// using ADRs and when this happens, these blocks cannot be placed far
// away due to the limited range in ADR instruction.
if (BC.isAArch64() && BB->isEntryPoint()) {
BB->setCanOutline(false);
continue;
}
if (BF.hasEHRanges() && !opts::SplitEH) {
// We cannot move landing pads (or rather entry points for landing pads).
if (BB->isLandingPad()) {
BB->setCanOutline(false);
continue;
}
// We cannot move a block that can throw since exception-handling
// runtime cannot deal with split functions. However, if we can guarantee
// that the block never throws, it is safe to move the block to
// decrease the size of the function.
for (MCInst &Instr : *BB) {
if (BC.MIB->isInvoke(Instr)) {
BB->setCanOutline(false);
break;
}
}
}
// Outlining blocks with dynamic branches is not supported yet.
if (BC.IsLinuxKernel) {
if (llvm::any_of(
*BB, [&](MCInst &Inst) { return BC.MIB->isDynamicBranch(Inst); }))
BB->setCanOutline(false);
}
}
BF.getLayout().updateLayoutIndices();
S.fragment(NewLayout.begin(), NewLayout.end());
// Make sure all non-outlineable blocks are in the main-fragment.
for (BinaryBasicBlock *const BB : NewLayout) {
if (!BB->canOutline())
BB->setFragmentNum(FragmentNum::main());
}
if (opts::AggressiveSplitting) {
// All blocks with 0 count that we can move go to the end of the function.
// Even if they were natural to cluster formation and were seen in-between
// hot basic blocks.
llvm::stable_sort(NewLayout, [&](const BinaryBasicBlock *const A,
const BinaryBasicBlock *const B) {
return A->getFragmentNum() < B->getFragmentNum();
});
} else if (BF.hasEHRanges() && !opts::SplitEH) {
// Typically functions with exception handling have landing pads at the end.
// We cannot move beginning of landing pads, but we can move 0-count blocks
// comprising landing pads to the end and thus facilitate splitting.
auto FirstLP = NewLayout.begin();
while ((*FirstLP)->isLandingPad())
++FirstLP;
std::stable_sort(FirstLP, NewLayout.end(),
[&](BinaryBasicBlock *A, BinaryBasicBlock *B) {
return A->getFragmentNum() < B->getFragmentNum();
});
}
// Make sure that fragments are increasing.
FragmentNum CurrentFragment = NewLayout.back()->getFragmentNum();
for (BinaryBasicBlock *const BB : reverse(NewLayout)) {
if (BB->getFragmentNum() > CurrentFragment)
BB->setFragmentNum(CurrentFragment);
CurrentFragment = BB->getFragmentNum();
}
if (S.compactFragments()) {
FragmentNum CurrentFragment = FragmentNum::main();
FragmentNum NewFragment = FragmentNum::main();
for (BinaryBasicBlock *const BB : NewLayout) {
if (BB->getFragmentNum() > CurrentFragment) {
CurrentFragment = BB->getFragmentNum();
NewFragment = FragmentNum(NewFragment.get() + 1);
}
BB->setFragmentNum(NewFragment);
}
}
const bool LayoutUpdated = BF.getLayout().update(NewLayout);
// For shared objects, invoke instructions and corresponding landing pads
// have to be placed in the same fragment. When we split them, create
// trampoline landing pads that will redirect the execution to real LPs.
TrampolineSetType Trampolines;
if (!BC.HasFixedLoadAddress && BF.hasEHRanges() && BF.isSplit()) {
// If all landing pads for this fragment are grouped in one (potentially
// different) fragment, we can set LPStart to the start of that fragment
// and avoid trampoline code.
bool NeedsTrampolines = false;
for (FunctionFragment &FF : BF.getLayout().fragments()) {
// Vector of fragments that contain landing pads for this fragment.
SmallVector<FragmentNum, 4> LandingPadFragments;
for (const BinaryBasicBlock *BB : FF)
for (const BinaryBasicBlock *LPB : BB->landing_pads())
LandingPadFragments.push_back(LPB->getFragmentNum());
// Eliminate duplicate entries from the vector.
llvm::sort(LandingPadFragments);
auto Last = llvm::unique(LandingPadFragments);
LandingPadFragments.erase(Last, LandingPadFragments.end());
if (LandingPadFragments.size() == 0) {
// If the fragment has no landing pads, we can safely set itself as its
// landing pad fragment.
BF.setLPFragment(FF.getFragmentNum(), FF.getFragmentNum());
} else if (LandingPadFragments.size() == 1) {
BF.setLPFragment(FF.getFragmentNum(), LandingPadFragments.front());
} else {
NeedsTrampolines = true;
break;
}
}
// Trampolines guarantee that all landing pads for any given fragment will
// be contained in the same fragment.
if (NeedsTrampolines) {
for (FunctionFragment &FF : BF.getLayout().fragments())
BF.setLPFragment(FF.getFragmentNum(), FF.getFragmentNum());
Trampolines = createEHTrampolines(BF);
}
}
// Check the new size to see if it's worth splitting the function.
if (BC.isX86() && LayoutUpdated) {
std::tie(HotSize, ColdSize) = BC.calculateEmittedSize(BF);
LLVM_DEBUG(dbgs() << "Estimated size for function " << BF
<< " post-split is <0x" << Twine::utohexstr(HotSize)
<< ", 0x" << Twine::utohexstr(ColdSize) << ">\n");
if (alignTo(OriginalHotSize, opts::SplitAlignThreshold) <=
alignTo(HotSize, opts::SplitAlignThreshold) + opts::SplitThreshold) {
if (opts::Verbosity >= 2) {
BC.outs() << "BOLT-INFO: Reversing splitting of function "
<< formatv("{0}:\n {1:x}, {2:x} -> {3:x}\n", BF, HotSize,
ColdSize, OriginalHotSize);
}
// Reverse the action of createEHTrampolines(). The trampolines will be
// placed immediately before the matching destination resulting in no
// extra code.
if (PreSplitLayout.size() != BF.size())
PreSplitLayout = mergeEHTrampolines(BF, PreSplitLayout, Trampolines);
for (BinaryBasicBlock &BB : BF)
BB.setFragmentNum(FragmentNum::main());
BF.getLayout().update(PreSplitLayout);
} else {
SplitBytesHot += HotSize;
SplitBytesCold += ColdSize;
}
}
// Restore LP fragment for the main fragment if the splitting was undone.
if (BF.hasEHRanges() && !BF.isSplit())
BF.setLPFragment(FragmentNum::main(), FragmentNum::main());
// Fix branches if the splitting decision of the pass after function
// reordering is different from that of the pass before function reordering.
if (LayoutUpdated && BC.HasFinalizedFunctionOrder)
BF.fixBranches();
}
SplitFunctions::TrampolineSetType
SplitFunctions::createEHTrampolines(BinaryFunction &BF) const {
const auto &MIB = BF.getBinaryContext().MIB;
// Map real landing pads to the corresponding trampolines.
TrampolineSetType LPTrampolines;
// Iterate over the copy of basic blocks since we are adding new blocks to the
// function which will invalidate its iterators.
std::vector<BinaryBasicBlock *> Blocks(BF.pbegin(), BF.pend());
for (BinaryBasicBlock *BB : Blocks) {
for (MCInst &Instr : *BB) {
const std::optional<MCPlus::MCLandingPad> EHInfo = MIB->getEHInfo(Instr);
if (!EHInfo || !EHInfo->first)
continue;
const MCSymbol *LPLabel = EHInfo->first;
BinaryBasicBlock *LPBlock = BF.getBasicBlockForLabel(LPLabel);
if (BB->getFragmentNum() == LPBlock->getFragmentNum())
continue;
const MCSymbol *TrampolineLabel = nullptr;
const TrampolineKey Key(BB->getFragmentNum(), LPLabel);
auto Iter = LPTrampolines.find(Key);
if (Iter != LPTrampolines.end()) {
TrampolineLabel = Iter->second;
} else {
// Create a trampoline basic block in the same fragment as the thrower.
// Note: there's no need to insert the jump instruction, it will be
// added by fixBranches().
BinaryBasicBlock *TrampolineBB = BF.addBasicBlock();
TrampolineBB->setFragmentNum(BB->getFragmentNum());
TrampolineBB->setExecutionCount(LPBlock->getExecutionCount());
TrampolineBB->addSuccessor(LPBlock, TrampolineBB->getExecutionCount());
TrampolineBB->setCFIState(LPBlock->getCFIState());
TrampolineLabel = TrampolineBB->getLabel();
LPTrampolines.insert(std::make_pair(Key, TrampolineLabel));
}
// Substitute the landing pad with the trampoline.
MIB->updateEHInfo(Instr,
MCPlus::MCLandingPad(TrampolineLabel, EHInfo->second));
}
}
if (LPTrampolines.empty())
return LPTrampolines;
// All trampoline blocks were added to the end of the function. Place them at
// the end of corresponding fragments.
BinaryFunction::BasicBlockOrderType NewLayout(BF.getLayout().block_begin(),
BF.getLayout().block_end());
stable_sort(NewLayout, [&](BinaryBasicBlock *A, BinaryBasicBlock *B) {
return A->getFragmentNum() < B->getFragmentNum();
});
BF.getLayout().update(NewLayout);
// Conservatively introduce branch instructions.
BF.fixBranches();
// Update exception-handling CFG for the function.
BF.recomputeLandingPads();
return LPTrampolines;
}
SplitFunctions::BasicBlockOrderType SplitFunctions::mergeEHTrampolines(
BinaryFunction &BF, SplitFunctions::BasicBlockOrderType &Layout,
const SplitFunctions::TrampolineSetType &Trampolines) const {
DenseMap<const MCSymbol *, SmallVector<const MCSymbol *, 0>>
IncomingTrampolines;
for (const auto &Entry : Trampolines) {
IncomingTrampolines[Entry.getFirst().Target].emplace_back(
Entry.getSecond());
}
BasicBlockOrderType MergedLayout;
for (BinaryBasicBlock *BB : Layout) {
auto Iter = IncomingTrampolines.find(BB->getLabel());
if (Iter != IncomingTrampolines.end()) {
for (const MCSymbol *const Trampoline : Iter->getSecond()) {
BinaryBasicBlock *LPBlock = BF.getBasicBlockForLabel(Trampoline);
assert(LPBlock && "Could not find matching landing pad block.");
MergedLayout.push_back(LPBlock);
}
}
MergedLayout.push_back(BB);
}
return MergedLayout;
}
} // namespace bolt
} // namespace llvm