
Code duplication (subsequently removed by refactoring) allowed a logic discrepancy to creep in here. We were being conservative about creating a vector binop -- but not a vector cmp -- in the case where a vector op has the same estimated cost as the scalar op. We want to be more aggressive here because that can allow other combines based on reduced instruction count/uses. We can reverse the transform in DAGCombiner (potentially with a more accurate cost model) if this causes regressions. AFAIK, this does not conflict with InstCombine. We have a scalarize transform there, but it relies on finding a constant operand or a matching insertelement, so that means it eliminates an extractelement from the sequence (so we won't have 2 extracts by the time we get here if InstCombine succeeds). Differential Revision: https://reviews.llvm.org/D75062
251 lines
9.9 KiB
C++
251 lines
9.9 KiB
C++
//===------- VectorCombine.cpp - Optimize partial vector operations -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass optimizes scalar/vector interactions using target cost models. The
|
|
// transforms implemented here may not fit in traditional loop-based or SLP
|
|
// vectorization passes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Vectorize/VectorCombine.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Transforms/Vectorize.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
#define DEBUG_TYPE "vector-combine"
|
|
STATISTIC(NumVecCmp, "Number of vector compares formed");
|
|
STATISTIC(NumVecBO, "Number of vector binops formed");
|
|
|
|
/// Compare the relative costs of extracts followed by scalar operation vs.
|
|
/// vector operation followed by extract:
|
|
/// opcode (extelt V0, C), (extelt V1, C) --> extelt (opcode V0, V1), C
|
|
/// Unless the vector op is much more expensive than the scalar op, this
|
|
/// eliminates an extract.
|
|
static bool isExtractExtractCheap(Instruction *Ext0, Instruction *Ext1,
|
|
unsigned Opcode,
|
|
const TargetTransformInfo &TTI) {
|
|
assert(Ext0->getOperand(1) == Ext1->getOperand(1) &&
|
|
isa<ConstantInt>(Ext0->getOperand(1)) &&
|
|
"Expected same constant extract index");
|
|
|
|
Type *ScalarTy = Ext0->getType();
|
|
Type *VecTy = Ext0->getOperand(0)->getType();
|
|
int ScalarOpCost, VectorOpCost;
|
|
|
|
// Get cost estimates for scalar and vector versions of the operation.
|
|
bool IsBinOp = Instruction::isBinaryOp(Opcode);
|
|
if (IsBinOp) {
|
|
ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
|
|
VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
|
|
} else {
|
|
assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
|
|
"Expected a compare");
|
|
ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy,
|
|
CmpInst::makeCmpResultType(ScalarTy));
|
|
VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy,
|
|
CmpInst::makeCmpResultType(VecTy));
|
|
}
|
|
|
|
// Get cost estimate for the extract element. This cost will factor into
|
|
// both sequences.
|
|
unsigned ExtIndex = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
|
|
int ExtractCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
|
|
VecTy, ExtIndex);
|
|
|
|
// Extra uses of the extracts mean that we include those costs in the
|
|
// vector total because those instructions will not be eliminated.
|
|
int OldCost, NewCost;
|
|
if (Ext0->getOperand(0) == Ext1->getOperand(0)) {
|
|
// Handle a special case. If the 2 operands are identical, adjust the
|
|
// formulas to account for that. The extra use charge allows for either the
|
|
// CSE'd pattern or an unoptimized form with identical values:
|
|
// opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
|
|
bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
|
|
: !Ext0->hasOneUse() || !Ext1->hasOneUse();
|
|
OldCost = ExtractCost + ScalarOpCost;
|
|
NewCost = VectorOpCost + ExtractCost + HasUseTax * ExtractCost;
|
|
} else {
|
|
// Handle the general case. Each extract is actually a different value:
|
|
// opcode (extelt V0, C), (extelt V1, C) --> extelt (opcode V0, V1), C
|
|
OldCost = 2 * ExtractCost + ScalarOpCost;
|
|
NewCost = VectorOpCost + ExtractCost + !Ext0->hasOneUse() * ExtractCost +
|
|
!Ext1->hasOneUse() * ExtractCost;
|
|
}
|
|
// Aggressively form a vector op if the cost is equal because the transform
|
|
// may enable further optimization.
|
|
// Codegen can reverse this transform (scalarize) if it was not profitable.
|
|
return OldCost < NewCost;
|
|
}
|
|
|
|
/// Try to reduce extract element costs by converting scalar compares to vector
|
|
/// compares followed by extract.
|
|
/// cmp (ext0 V0, C), (ext1 V1, C)
|
|
static void foldExtExtCmp(Instruction *Ext0, Instruction *Ext1,
|
|
Instruction &I, const TargetTransformInfo &TTI) {
|
|
assert(isa<CmpInst>(&I) && "Expected a compare");
|
|
|
|
// cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
|
|
++NumVecCmp;
|
|
IRBuilder<> Builder(&I);
|
|
CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
|
|
Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0);
|
|
Value *VecCmp =
|
|
Ext0->getType()->isFloatingPointTy() ? Builder.CreateFCmp(Pred, V0, V1)
|
|
: Builder.CreateICmp(Pred, V0, V1);
|
|
Value *Extract = Builder.CreateExtractElement(VecCmp, Ext0->getOperand(1));
|
|
I.replaceAllUsesWith(Extract);
|
|
}
|
|
|
|
/// Try to reduce extract element costs by converting scalar binops to vector
|
|
/// binops followed by extract.
|
|
/// bo (ext0 V0, C), (ext1 V1, C)
|
|
static void foldExtExtBinop(Instruction *Ext0, Instruction *Ext1,
|
|
Instruction &I, const TargetTransformInfo &TTI) {
|
|
assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
|
|
|
|
// bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
|
|
++NumVecBO;
|
|
IRBuilder<> Builder(&I);
|
|
Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0);
|
|
Value *VecBO =
|
|
Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
|
|
|
|
// All IR flags are safe to back-propagate because any potential poison
|
|
// created in unused vector elements is discarded by the extract.
|
|
if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
|
|
VecBOInst->copyIRFlags(&I);
|
|
|
|
Value *Extract = Builder.CreateExtractElement(VecBO, Ext0->getOperand(1));
|
|
I.replaceAllUsesWith(Extract);
|
|
}
|
|
|
|
/// Match an instruction with extracted vector operands.
|
|
static bool foldExtractExtract(Instruction &I, const TargetTransformInfo &TTI) {
|
|
// It is not safe to transform things like div, urem, etc. because we may
|
|
// create undefined behavior when executing those on unknown vector elements.
|
|
if (!isSafeToSpeculativelyExecute(&I))
|
|
return false;
|
|
|
|
Instruction *Ext0, *Ext1;
|
|
CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
|
|
if (!match(&I, m_Cmp(Pred, m_Instruction(Ext0), m_Instruction(Ext1))) &&
|
|
!match(&I, m_BinOp(m_Instruction(Ext0), m_Instruction(Ext1))))
|
|
return false;
|
|
|
|
Value *V0, *V1;
|
|
uint64_t C0, C1;
|
|
if (!match(Ext0, m_ExtractElement(m_Value(V0), m_ConstantInt(C0))) ||
|
|
!match(Ext1, m_ExtractElement(m_Value(V1), m_ConstantInt(C1))) ||
|
|
V0->getType() != V1->getType())
|
|
return false;
|
|
|
|
// TODO: Handle C0 != C1 by shuffling 1 of the operands.
|
|
if (C0 != C1)
|
|
return false;
|
|
|
|
if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), TTI))
|
|
return false;
|
|
|
|
if (Pred != CmpInst::BAD_ICMP_PREDICATE)
|
|
foldExtExtCmp(Ext0, Ext1, I, TTI);
|
|
else
|
|
foldExtExtBinop(Ext0, Ext1, I, TTI);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// This is the entry point for all transforms. Pass manager differences are
|
|
/// handled in the callers of this function.
|
|
static bool runImpl(Function &F, const TargetTransformInfo &TTI,
|
|
const DominatorTree &DT) {
|
|
bool MadeChange = false;
|
|
for (BasicBlock &BB : F) {
|
|
// Ignore unreachable basic blocks.
|
|
if (!DT.isReachableFromEntry(&BB))
|
|
continue;
|
|
// Do not delete instructions under here and invalidate the iterator.
|
|
// Walk the block backwards for efficiency. We're matching a chain of
|
|
// use->defs, so we're more likely to succeed by starting from the bottom.
|
|
// TODO: It could be more efficient to remove dead instructions
|
|
// iteratively in this loop rather than waiting until the end.
|
|
for (Instruction &I : make_range(BB.rbegin(), BB.rend()))
|
|
MadeChange |= foldExtractExtract(I, TTI);
|
|
}
|
|
|
|
// We're done with transforms, so remove dead instructions.
|
|
if (MadeChange)
|
|
for (BasicBlock &BB : F)
|
|
SimplifyInstructionsInBlock(&BB);
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
// Pass manager boilerplate below here.
|
|
|
|
namespace {
|
|
class VectorCombineLegacyPass : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
VectorCombineLegacyPass() : FunctionPass(ID) {
|
|
initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.setPreservesCFG();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
FunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (skipFunction(F))
|
|
return false;
|
|
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
return runImpl(F, TTI, DT);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
char VectorCombineLegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
|
|
"Optimize scalar/vector ops", false,
|
|
false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
|
|
"Optimize scalar/vector ops", false, false)
|
|
Pass *llvm::createVectorCombinePass() {
|
|
return new VectorCombineLegacyPass();
|
|
}
|
|
|
|
PreservedAnalyses VectorCombinePass::run(Function &F,
|
|
FunctionAnalysisManager &FAM) {
|
|
TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
|
|
DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
|
|
if (!runImpl(F, TTI, DT))
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
PA.preserve<GlobalsAA>();
|
|
return PA;
|
|
}
|