llvm-project/mlir/lib/Dialect/SparseTensor/Pipelines/SparseTensorPipelines.cpp
Fabian Mora 119c489cc1 Reland [mlir][test][gpu] Migrate CUDA tests to the TargetAttr compilation workflow (llvm#65768)
The revert happened due to a build bot failure that threw 'CUDA_ERROR_UNSUPPORTED_PTX_VERSION'.
The failure's root cause was a pass using "+ptx76" for compilation and an old CUDA driver
on the bot. This commit relands the patch with "+ptx60".

Original Gh PR: #65768
Original commit message:
    Migrate tests referencing `gpu-to-cubin` to the new compilation workflow
    using `TargetAttrs`. The `test-lower-to-nvvm` pass pipeline was modified
    to use the new compilation workflow to simplify the introduction of
    future tests.

    The `createLowerGpuOpsToNVVMOpsPass` function was removed, as it didn't
    allow for passing all options available in the `ConvertGpuOpsToNVVMOp`
    pass.
2023-09-09 12:45:21 +00:00

103 lines
4.6 KiB
C++

//===- SparseTensorPipelines.cpp - Pipelines for sparse tensor code -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SparseTensor/Pipelines/Passes.h"
#include "mlir/Conversion/GPUToNVVM/GPUToNVVMPass.h"
#include "mlir/Conversion/Passes.h"
#include "mlir/Dialect/Arith/Transforms/Passes.h"
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/Transforms/Passes.h"
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/MemRef/Transforms/Passes.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/Passes.h"
//===----------------------------------------------------------------------===//
// Pipeline implementation.
//===----------------------------------------------------------------------===//
void mlir::sparse_tensor::buildSparseCompiler(
OpPassManager &pm, const SparseCompilerOptions &options) {
pm.addNestedPass<func::FuncOp>(createLinalgGeneralizationPass());
pm.addPass(createSparsificationAndBufferizationPass(
getBufferizationOptionsForSparsification(
options.testBufferizationAnalysisOnly),
options.sparsificationOptions(), options.sparseTensorConversionOptions(),
options.createSparseDeallocs, options.enableRuntimeLibrary,
options.enableBufferInitialization, options.vectorLength,
/*enableVLAVectorization=*/options.armSVE,
/*enableSIMDIndex32=*/options.force32BitVectorIndices));
if (options.testBufferizationAnalysisOnly)
return;
pm.addNestedPass<func::FuncOp>(createCanonicalizerPass());
pm.addNestedPass<func::FuncOp>(
mlir::bufferization::createFinalizingBufferizePass());
// GPU code generation.
const bool gpuCodegen = options.gpuTriple.hasValue();
if (gpuCodegen) {
pm.addPass(createSparseGPUCodegenPass());
pm.addNestedPass<gpu::GPUModuleOp>(createStripDebugInfoPass());
pm.addNestedPass<gpu::GPUModuleOp>(createConvertSCFToCFPass());
pm.addNestedPass<gpu::GPUModuleOp>(createConvertGpuOpsToNVVMOps());
}
// TODO(springerm): Add sparse support to the BufferDeallocation pass and add
// it to this pipeline.
pm.addNestedPass<func::FuncOp>(createConvertLinalgToLoopsPass());
pm.addNestedPass<func::FuncOp>(createConvertVectorToSCFPass());
pm.addNestedPass<func::FuncOp>(memref::createExpandReallocPass());
pm.addNestedPass<func::FuncOp>(createConvertSCFToCFPass());
pm.addPass(memref::createExpandStridedMetadataPass());
pm.addPass(createLowerAffinePass());
pm.addPass(createConvertVectorToLLVMPass(options.lowerVectorToLLVMOptions()));
pm.addPass(createFinalizeMemRefToLLVMConversionPass());
pm.addNestedPass<func::FuncOp>(createConvertComplexToStandardPass());
pm.addNestedPass<func::FuncOp>(arith::createArithExpandOpsPass());
pm.addNestedPass<func::FuncOp>(createConvertMathToLLVMPass());
pm.addPass(createConvertMathToLibmPass());
pm.addPass(createConvertComplexToLibmPass());
// Repeat convert-vector-to-llvm.
pm.addPass(createConvertVectorToLLVMPass(options.lowerVectorToLLVMOptions()));
pm.addPass(createConvertComplexToLLVMPass());
pm.addPass(createConvertVectorToLLVMPass(options.lowerVectorToLLVMOptions()));
pm.addPass(createConvertFuncToLLVMPass());
// Finalize GPU code generation.
if (gpuCodegen) {
#if MLIR_GPU_TO_CUBIN_PASS_ENABLE
pm.addNestedPass<gpu::GPUModuleOp>(createGpuSerializeToCubinPass(
options.gpuTriple, options.gpuChip, options.gpuFeatures));
#endif
pm.addPass(createGpuToLLVMConversionPass());
}
pm.addPass(createReconcileUnrealizedCastsPass());
}
//===----------------------------------------------------------------------===//
// Pipeline registration.
//===----------------------------------------------------------------------===//
void mlir::sparse_tensor::registerSparseTensorPipelines() {
PassPipelineRegistration<SparseCompilerOptions>(
"sparse-compiler",
"The standard pipeline for taking sparsity-agnostic IR using the"
" sparse-tensor type, and lowering it to LLVM IR with concrete"
" representations and algorithms for sparse tensors.",
buildSparseCompiler);
}