llvm-project/llvm/lib/Target/X86/X86CompressEVEX.cpp

333 lines
11 KiB
C++

//===- X86CompressEVEX.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass compresses instructions from EVEX space to legacy/VEX/EVEX space
// when possible in order to reduce code size or facilitate HW decoding.
//
// Possible compression:
// a. AVX512 instruction (EVEX) -> AVX instruction (VEX)
// b. Promoted instruction (EVEX) -> pre-promotion instruction (legacy/VEX)
// c. NDD (EVEX) -> non-NDD (legacy)
// d. NF_ND (EVEX) -> NF (EVEX)
// e. NonNF (EVEX) -> NF (EVEX)
//
// Compression a, b and c can always reduce code size, with some exceptions
// such as promoted 16-bit CRC32 which is as long as the legacy version.
//
// legacy:
// crc32w %si, %eax ## encoding: [0x66,0xf2,0x0f,0x38,0xf1,0xc6]
// promoted:
// crc32w %si, %eax ## encoding: [0x62,0xf4,0x7d,0x08,0xf1,0xc6]
//
// From performance perspective, these should be same (same uops and same EXE
// ports). From a FMV perspective, an older legacy encoding is preferred b/c it
// can execute in more places (broader HW install base). So we will still do
// the compression.
//
// Compression d can help hardware decode (HW may skip reading the NDD
// register) although the instruction length remains unchanged.
//
// Compression e can help hardware skip updating EFLAGS although the instruction
// length remains unchanged.
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/X86BaseInfo.h"
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include <atomic>
#include <cassert>
#include <cstdint>
using namespace llvm;
#define COMP_EVEX_DESC "Compressing EVEX instrs when possible"
#define COMP_EVEX_NAME "x86-compress-evex"
#define DEBUG_TYPE COMP_EVEX_NAME
extern cl::opt<bool> X86EnableAPXForRelocation;
namespace {
// Including the generated EVEX compression tables.
#define GET_X86_COMPRESS_EVEX_TABLE
#include "X86GenInstrMapping.inc"
class CompressEVEXPass : public MachineFunctionPass {
public:
static char ID;
CompressEVEXPass() : MachineFunctionPass(ID) {}
StringRef getPassName() const override { return COMP_EVEX_DESC; }
bool runOnMachineFunction(MachineFunction &MF) override;
// This pass runs after regalloc and doesn't support VReg operands.
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().setNoVRegs();
}
};
} // end anonymous namespace
char CompressEVEXPass::ID = 0;
static bool usesExtendedRegister(const MachineInstr &MI) {
auto isHiRegIdx = [](MCRegister Reg) {
// Check for XMM register with indexes between 16 - 31.
if (Reg >= X86::XMM16 && Reg <= X86::XMM31)
return true;
// Check for YMM register with indexes between 16 - 31.
if (Reg >= X86::YMM16 && Reg <= X86::YMM31)
return true;
// Check for GPR with indexes between 16 - 31.
if (X86II::isApxExtendedReg(Reg))
return true;
return false;
};
// Check that operands are not ZMM regs or
// XMM/YMM regs with hi indexes between 16 - 31.
for (const MachineOperand &MO : MI.explicit_operands()) {
if (!MO.isReg())
continue;
MCRegister Reg = MO.getReg().asMCReg();
assert(!X86II::isZMMReg(Reg) &&
"ZMM instructions should not be in the EVEX->VEX tables");
if (isHiRegIdx(Reg))
return true;
}
return false;
}
// Do any custom cleanup needed to finalize the conversion.
static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc) {
(void)NewOpc;
unsigned Opc = MI.getOpcode();
switch (Opc) {
case X86::VALIGNDZ128rri:
case X86::VALIGNDZ128rmi:
case X86::VALIGNQZ128rri:
case X86::VALIGNQZ128rmi: {
assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) &&
"Unexpected new opcode!");
unsigned Scale =
(Opc == X86::VALIGNQZ128rri || Opc == X86::VALIGNQZ128rmi) ? 8 : 4;
MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
Imm.setImm(Imm.getImm() * Scale);
break;
}
case X86::VSHUFF32X4Z256rmi:
case X86::VSHUFF32X4Z256rri:
case X86::VSHUFF64X2Z256rmi:
case X86::VSHUFF64X2Z256rri:
case X86::VSHUFI32X4Z256rmi:
case X86::VSHUFI32X4Z256rri:
case X86::VSHUFI64X2Z256rmi:
case X86::VSHUFI64X2Z256rri: {
assert((NewOpc == X86::VPERM2F128rri || NewOpc == X86::VPERM2I128rri ||
NewOpc == X86::VPERM2F128rmi || NewOpc == X86::VPERM2I128rmi) &&
"Unexpected new opcode!");
MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
int64_t ImmVal = Imm.getImm();
// Set bit 5, move bit 1 to bit 4, copy bit 0.
Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1));
break;
}
case X86::VRNDSCALEPDZ128rri:
case X86::VRNDSCALEPDZ128rmi:
case X86::VRNDSCALEPSZ128rri:
case X86::VRNDSCALEPSZ128rmi:
case X86::VRNDSCALEPDZ256rri:
case X86::VRNDSCALEPDZ256rmi:
case X86::VRNDSCALEPSZ256rri:
case X86::VRNDSCALEPSZ256rmi:
case X86::VRNDSCALESDZrri:
case X86::VRNDSCALESDZrmi:
case X86::VRNDSCALESSZrri:
case X86::VRNDSCALESSZrmi:
case X86::VRNDSCALESDZrri_Int:
case X86::VRNDSCALESDZrmi_Int:
case X86::VRNDSCALESSZrri_Int:
case X86::VRNDSCALESSZrmi_Int:
const MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
int64_t ImmVal = Imm.getImm();
// Ensure that only bits 3:0 of the immediate are used.
if ((ImmVal & 0xf) != ImmVal)
return false;
break;
}
return true;
}
static bool CompressEVEXImpl(MachineInstr &MI, const X86Subtarget &ST) {
uint64_t TSFlags = MI.getDesc().TSFlags;
// Check for EVEX instructions only.
if ((TSFlags & X86II::EncodingMask) != X86II::EVEX)
return false;
// Instructions with mask or 512-bit vector can't be converted to VEX.
if (TSFlags & (X86II::EVEX_K | X86II::EVEX_L2))
return false;
auto IsRedundantNewDataDest = [&](unsigned &Opc) {
// $rbx = ADD64rr_ND $rbx, $rax / $rbx = ADD64rr_ND $rax, $rbx
// ->
// $rbx = ADD64rr $rbx, $rax
const MCInstrDesc &Desc = MI.getDesc();
Register Reg0 = MI.getOperand(0).getReg();
const MachineOperand &Op1 = MI.getOperand(1);
if (!Op1.isReg() || X86::getFirstAddrOperandIdx(MI) == 1 ||
X86::isCFCMOVCC(MI.getOpcode()))
return false;
Register Reg1 = Op1.getReg();
if (Reg1 == Reg0)
return true;
// Op1 and Op2 may be commutable for ND instructions.
if (!Desc.isCommutable() || Desc.getNumOperands() < 3 ||
!MI.getOperand(2).isReg() || MI.getOperand(2).getReg() != Reg0)
return false;
// Opcode may change after commute, e.g. SHRD -> SHLD
ST.getInstrInfo()->commuteInstruction(MI, false, 1, 2);
Opc = MI.getOpcode();
return true;
};
// EVEX_B has several meanings.
// AVX512:
// register form: rounding control or SAE
// memory form: broadcast
//
// APX:
// MAP4: NDD
//
// For AVX512 cases, EVEX prefix is needed in order to carry this information
// thus preventing the transformation to VEX encoding.
bool IsND = X86II::hasNewDataDest(TSFlags);
if (TSFlags & X86II::EVEX_B && !IsND)
return false;
unsigned Opc = MI.getOpcode();
// MOVBE*rr is special because it has semantic of NDD but not set EVEX_B.
bool IsNDLike = IsND || Opc == X86::MOVBE32rr || Opc == X86::MOVBE64rr;
bool IsRedundantNDD = IsNDLike ? IsRedundantNewDataDest(Opc) : false;
auto GetCompressedOpc = [&](unsigned Opc) -> unsigned {
ArrayRef<X86TableEntry> Table = ArrayRef(X86CompressEVEXTable);
const auto I = llvm::lower_bound(Table, Opc);
if (I == Table.end() || I->OldOpc != Opc)
return 0;
if (usesExtendedRegister(MI) || !checkPredicate(I->NewOpc, &ST) ||
!performCustomAdjustments(MI, I->NewOpc))
return 0;
return I->NewOpc;
};
// Redundant NDD ops cannot be safely compressed if either:
// - the legacy op would introduce a partial write that BreakFalseDeps
// identified as a potential stall, or
// - the op is writing to a subregister of a live register, i.e. the
// full (zeroed) result is used.
// Both cases are indicated by an implicit def of the superregister.
if (IsRedundantNDD) {
Register Dst = MI.getOperand(0).getReg();
if (Dst &&
(X86::GR16RegClass.contains(Dst) || X86::GR8RegClass.contains(Dst))) {
Register Super = getX86SubSuperRegister(Dst, 64);
if (MI.definesRegister(Super, /*TRI=*/nullptr))
IsRedundantNDD = false;
}
// ADDrm/mr instructions with NDD + relocation had been transformed to the
// instructions without NDD in X86SuppressAPXForRelocation pass. That is to
// keep backward compatibility with linkers without APX support.
if (!X86EnableAPXForRelocation)
assert(!isAddMemInstrWithRelocation(MI) &&
"Unexpected NDD instruction with relocation!");
}
// NonNF -> NF only if it's not a compressible NDD instruction and eflags is
// dead.
unsigned NewOpc = IsRedundantNDD
? X86::getNonNDVariant(Opc)
: ((IsNDLike && ST.hasNF() &&
MI.registerDefIsDead(X86::EFLAGS, /*TRI=*/nullptr))
? X86::getNFVariant(Opc)
: GetCompressedOpc(Opc));
if (!NewOpc)
return false;
const MCInstrDesc &NewDesc = ST.getInstrInfo()->get(NewOpc);
MI.setDesc(NewDesc);
unsigned AsmComment;
switch (NewDesc.TSFlags & X86II::EncodingMask) {
case X86II::LEGACY:
AsmComment = X86::AC_EVEX_2_LEGACY;
break;
case X86II::VEX:
AsmComment = X86::AC_EVEX_2_VEX;
break;
case X86II::EVEX:
AsmComment = X86::AC_EVEX_2_EVEX;
assert(IsND && (NewDesc.TSFlags & X86II::EVEX_NF) &&
"Unknown EVEX2EVEX compression");
break;
default:
llvm_unreachable("Unknown EVEX compression");
}
MI.setAsmPrinterFlag(AsmComment);
if (IsRedundantNDD)
MI.tieOperands(0, 1);
return true;
}
bool CompressEVEXPass::runOnMachineFunction(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << "Start X86CompressEVEXPass\n";);
#ifndef NDEBUG
// Make sure the tables are sorted.
static std::atomic<bool> TableChecked(false);
if (!TableChecked.load(std::memory_order_relaxed)) {
assert(llvm::is_sorted(X86CompressEVEXTable) &&
"X86CompressEVEXTable is not sorted!");
TableChecked.store(true, std::memory_order_relaxed);
}
#endif
const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
if (!ST.hasAVX512() && !ST.hasEGPR() && !ST.hasNDD())
return false;
bool Changed = false;
for (MachineBasicBlock &MBB : MF) {
// Traverse the basic block.
for (MachineInstr &MI : MBB)
Changed |= CompressEVEXImpl(MI, ST);
}
LLVM_DEBUG(dbgs() << "End X86CompressEVEXPass\n";);
return Changed;
}
INITIALIZE_PASS(CompressEVEXPass, COMP_EVEX_NAME, COMP_EVEX_DESC, false, false)
FunctionPass *llvm::createX86CompressEVEXPass() {
return new CompressEVEXPass();
}