David Green 123064dc39 [Clang][Arm] Convert -fallow-half-arguments-and-returns to a target option. NFC
This cc1 option -fallow-half-arguments-and-returns allows __fp16 to be
passed by argument and returned, without giving an error. It is
currently always enabled for Arm and AArch64, by forcing the option in
the driver. This means any cc1 tests (especially those needing
arm_neon.h) need to specify the option too, to prevent the error from
being emitted.

This changes it to a target option instead, set to true for Arm and
AArch64. This allows the option to be removed. Previously it was implied
by -fnative_half_arguments_and_returns, which is set for certain
languages like open_cl, renderscript and hlsl, so that option now too
controls the errors. There were are few other non-arm uses of
-fallow-half-arguments-and-returns but I believe they were unnecessary.
The strictfp_builtins.c tests were converted from __fp16 to _Float16 to
avoid the issues.

Differential Revision: https://reviews.llvm.org/D133885
2022-09-29 11:00:32 +01:00

8512 lines
327 KiB
C++

//===-- Clang.cpp - Clang+LLVM ToolChain Implementations --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Clang.h"
#include "AMDGPU.h"
#include "Arch/AArch64.h"
#include "Arch/ARM.h"
#include "Arch/CSKY.h"
#include "Arch/LoongArch.h"
#include "Arch/M68k.h"
#include "Arch/Mips.h"
#include "Arch/PPC.h"
#include "Arch/RISCV.h"
#include "Arch/Sparc.h"
#include "Arch/SystemZ.h"
#include "Arch/VE.h"
#include "Arch/X86.h"
#include "CommonArgs.h"
#include "Hexagon.h"
#include "MSP430.h"
#include "PS4CPU.h"
#include "clang/Basic/CLWarnings.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/MakeSupport.h"
#include "clang/Basic/ObjCRuntime.h"
#include "clang/Basic/Version.h"
#include "clang/Config/config.h"
#include "clang/Driver/Action.h"
#include "clang/Driver/Distro.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/Driver/InputInfo.h"
#include "clang/Driver/Options.h"
#include "clang/Driver/SanitizerArgs.h"
#include "clang/Driver/Types.h"
#include "clang/Driver/XRayArgs.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Support/YAMLParser.h"
#include <cctype>
using namespace clang::driver;
using namespace clang::driver::tools;
using namespace clang;
using namespace llvm::opt;
static void CheckPreprocessingOptions(const Driver &D, const ArgList &Args) {
if (Arg *A = Args.getLastArg(clang::driver::options::OPT_C, options::OPT_CC,
options::OPT_fminimize_whitespace,
options::OPT_fno_minimize_whitespace)) {
if (!Args.hasArg(options::OPT_E) && !Args.hasArg(options::OPT__SLASH_P) &&
!Args.hasArg(options::OPT__SLASH_EP) && !D.CCCIsCPP()) {
D.Diag(clang::diag::err_drv_argument_only_allowed_with)
<< A->getBaseArg().getAsString(Args)
<< (D.IsCLMode() ? "/E, /P or /EP" : "-E");
}
}
}
static void CheckCodeGenerationOptions(const Driver &D, const ArgList &Args) {
// In gcc, only ARM checks this, but it seems reasonable to check universally.
if (Args.hasArg(options::OPT_static))
if (const Arg *A =
Args.getLastArg(options::OPT_dynamic, options::OPT_mdynamic_no_pic))
D.Diag(diag::err_drv_argument_not_allowed_with) << A->getAsString(Args)
<< "-static";
}
// Add backslashes to escape spaces and other backslashes.
// This is used for the space-separated argument list specified with
// the -dwarf-debug-flags option.
static void EscapeSpacesAndBackslashes(const char *Arg,
SmallVectorImpl<char> &Res) {
for (; *Arg; ++Arg) {
switch (*Arg) {
default:
break;
case ' ':
case '\\':
Res.push_back('\\');
break;
}
Res.push_back(*Arg);
}
}
/// Apply \a Work on the current tool chain \a RegularToolChain and any other
/// offloading tool chain that is associated with the current action \a JA.
static void
forAllAssociatedToolChains(Compilation &C, const JobAction &JA,
const ToolChain &RegularToolChain,
llvm::function_ref<void(const ToolChain &)> Work) {
// Apply Work on the current/regular tool chain.
Work(RegularToolChain);
// Apply Work on all the offloading tool chains associated with the current
// action.
if (JA.isHostOffloading(Action::OFK_Cuda))
Work(*C.getSingleOffloadToolChain<Action::OFK_Cuda>());
else if (JA.isDeviceOffloading(Action::OFK_Cuda))
Work(*C.getSingleOffloadToolChain<Action::OFK_Host>());
else if (JA.isHostOffloading(Action::OFK_HIP))
Work(*C.getSingleOffloadToolChain<Action::OFK_HIP>());
else if (JA.isDeviceOffloading(Action::OFK_HIP))
Work(*C.getSingleOffloadToolChain<Action::OFK_Host>());
if (JA.isHostOffloading(Action::OFK_OpenMP)) {
auto TCs = C.getOffloadToolChains<Action::OFK_OpenMP>();
for (auto II = TCs.first, IE = TCs.second; II != IE; ++II)
Work(*II->second);
} else if (JA.isDeviceOffloading(Action::OFK_OpenMP))
Work(*C.getSingleOffloadToolChain<Action::OFK_Host>());
//
// TODO: Add support for other offloading programming models here.
//
}
/// This is a helper function for validating the optional refinement step
/// parameter in reciprocal argument strings. Return false if there is an error
/// parsing the refinement step. Otherwise, return true and set the Position
/// of the refinement step in the input string.
static bool getRefinementStep(StringRef In, const Driver &D,
const Arg &A, size_t &Position) {
const char RefinementStepToken = ':';
Position = In.find(RefinementStepToken);
if (Position != StringRef::npos) {
StringRef Option = A.getOption().getName();
StringRef RefStep = In.substr(Position + 1);
// Allow exactly one numeric character for the additional refinement
// step parameter. This is reasonable for all currently-supported
// operations and architectures because we would expect that a larger value
// of refinement steps would cause the estimate "optimization" to
// under-perform the native operation. Also, if the estimate does not
// converge quickly, it probably will not ever converge, so further
// refinement steps will not produce a better answer.
if (RefStep.size() != 1) {
D.Diag(diag::err_drv_invalid_value) << Option << RefStep;
return false;
}
char RefStepChar = RefStep[0];
if (RefStepChar < '0' || RefStepChar > '9') {
D.Diag(diag::err_drv_invalid_value) << Option << RefStep;
return false;
}
}
return true;
}
/// The -mrecip flag requires processing of many optional parameters.
static void ParseMRecip(const Driver &D, const ArgList &Args,
ArgStringList &OutStrings) {
StringRef DisabledPrefixIn = "!";
StringRef DisabledPrefixOut = "!";
StringRef EnabledPrefixOut = "";
StringRef Out = "-mrecip=";
Arg *A = Args.getLastArg(options::OPT_mrecip, options::OPT_mrecip_EQ);
if (!A)
return;
unsigned NumOptions = A->getNumValues();
if (NumOptions == 0) {
// No option is the same as "all".
OutStrings.push_back(Args.MakeArgString(Out + "all"));
return;
}
// Pass through "all", "none", or "default" with an optional refinement step.
if (NumOptions == 1) {
StringRef Val = A->getValue(0);
size_t RefStepLoc;
if (!getRefinementStep(Val, D, *A, RefStepLoc))
return;
StringRef ValBase = Val.slice(0, RefStepLoc);
if (ValBase == "all" || ValBase == "none" || ValBase == "default") {
OutStrings.push_back(Args.MakeArgString(Out + Val));
return;
}
}
// Each reciprocal type may be enabled or disabled individually.
// Check each input value for validity, concatenate them all back together,
// and pass through.
llvm::StringMap<bool> OptionStrings;
OptionStrings.insert(std::make_pair("divd", false));
OptionStrings.insert(std::make_pair("divf", false));
OptionStrings.insert(std::make_pair("divh", false));
OptionStrings.insert(std::make_pair("vec-divd", false));
OptionStrings.insert(std::make_pair("vec-divf", false));
OptionStrings.insert(std::make_pair("vec-divh", false));
OptionStrings.insert(std::make_pair("sqrtd", false));
OptionStrings.insert(std::make_pair("sqrtf", false));
OptionStrings.insert(std::make_pair("sqrth", false));
OptionStrings.insert(std::make_pair("vec-sqrtd", false));
OptionStrings.insert(std::make_pair("vec-sqrtf", false));
OptionStrings.insert(std::make_pair("vec-sqrth", false));
for (unsigned i = 0; i != NumOptions; ++i) {
StringRef Val = A->getValue(i);
bool IsDisabled = Val.startswith(DisabledPrefixIn);
// Ignore the disablement token for string matching.
if (IsDisabled)
Val = Val.substr(1);
size_t RefStep;
if (!getRefinementStep(Val, D, *A, RefStep))
return;
StringRef ValBase = Val.slice(0, RefStep);
llvm::StringMap<bool>::iterator OptionIter = OptionStrings.find(ValBase);
if (OptionIter == OptionStrings.end()) {
// Try again specifying float suffix.
OptionIter = OptionStrings.find(ValBase.str() + 'f');
if (OptionIter == OptionStrings.end()) {
// The input name did not match any known option string.
D.Diag(diag::err_drv_unknown_argument) << Val;
return;
}
// The option was specified without a half or float or double suffix.
// Make sure that the double or half entry was not already specified.
// The float entry will be checked below.
if (OptionStrings[ValBase.str() + 'd'] ||
OptionStrings[ValBase.str() + 'h']) {
D.Diag(diag::err_drv_invalid_value) << A->getOption().getName() << Val;
return;
}
}
if (OptionIter->second == true) {
// Duplicate option specified.
D.Diag(diag::err_drv_invalid_value) << A->getOption().getName() << Val;
return;
}
// Mark the matched option as found. Do not allow duplicate specifiers.
OptionIter->second = true;
// If the precision was not specified, also mark the double and half entry
// as found.
if (ValBase.back() != 'f' && ValBase.back() != 'd' && ValBase.back() != 'h') {
OptionStrings[ValBase.str() + 'd'] = true;
OptionStrings[ValBase.str() + 'h'] = true;
}
// Build the output string.
StringRef Prefix = IsDisabled ? DisabledPrefixOut : EnabledPrefixOut;
Out = Args.MakeArgString(Out + Prefix + Val);
if (i != NumOptions - 1)
Out = Args.MakeArgString(Out + ",");
}
OutStrings.push_back(Args.MakeArgString(Out));
}
/// The -mprefer-vector-width option accepts either a positive integer
/// or the string "none".
static void ParseMPreferVectorWidth(const Driver &D, const ArgList &Args,
ArgStringList &CmdArgs) {
Arg *A = Args.getLastArg(options::OPT_mprefer_vector_width_EQ);
if (!A)
return;
StringRef Value = A->getValue();
if (Value == "none") {
CmdArgs.push_back("-mprefer-vector-width=none");
} else {
unsigned Width;
if (Value.getAsInteger(10, Width)) {
D.Diag(diag::err_drv_invalid_value) << A->getOption().getName() << Value;
return;
}
CmdArgs.push_back(Args.MakeArgString("-mprefer-vector-width=" + Value));
}
}
static void getWebAssemblyTargetFeatures(const ArgList &Args,
std::vector<StringRef> &Features) {
handleTargetFeaturesGroup(Args, Features, options::OPT_m_wasm_Features_Group);
}
static void getTargetFeatures(const Driver &D, const llvm::Triple &Triple,
const ArgList &Args, ArgStringList &CmdArgs,
bool ForAS, bool IsAux = false) {
std::vector<StringRef> Features;
switch (Triple.getArch()) {
default:
break;
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
mips::getMIPSTargetFeatures(D, Triple, Args, Features);
break;
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
arm::getARMTargetFeatures(D, Triple, Args, Features, ForAS);
break;
case llvm::Triple::ppc:
case llvm::Triple::ppcle:
case llvm::Triple::ppc64:
case llvm::Triple::ppc64le:
ppc::getPPCTargetFeatures(D, Triple, Args, Features);
break;
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
riscv::getRISCVTargetFeatures(D, Triple, Args, Features);
break;
case llvm::Triple::systemz:
systemz::getSystemZTargetFeatures(D, Args, Features);
break;
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32:
case llvm::Triple::aarch64_be:
aarch64::getAArch64TargetFeatures(D, Triple, Args, Features, ForAS);
break;
case llvm::Triple::x86:
case llvm::Triple::x86_64:
x86::getX86TargetFeatures(D, Triple, Args, Features);
break;
case llvm::Triple::hexagon:
hexagon::getHexagonTargetFeatures(D, Args, Features);
break;
case llvm::Triple::wasm32:
case llvm::Triple::wasm64:
getWebAssemblyTargetFeatures(Args, Features);
break;
case llvm::Triple::sparc:
case llvm::Triple::sparcel:
case llvm::Triple::sparcv9:
sparc::getSparcTargetFeatures(D, Args, Features);
break;
case llvm::Triple::r600:
case llvm::Triple::amdgcn:
amdgpu::getAMDGPUTargetFeatures(D, Triple, Args, Features);
break;
case llvm::Triple::nvptx:
case llvm::Triple::nvptx64:
NVPTX::getNVPTXTargetFeatures(D, Triple, Args, Features);
break;
case llvm::Triple::m68k:
m68k::getM68kTargetFeatures(D, Triple, Args, Features);
break;
case llvm::Triple::msp430:
msp430::getMSP430TargetFeatures(D, Args, Features);
break;
case llvm::Triple::ve:
ve::getVETargetFeatures(D, Args, Features);
break;
case llvm::Triple::csky:
csky::getCSKYTargetFeatures(D, Triple, Args, CmdArgs, Features);
break;
}
for (auto Feature : unifyTargetFeatures(Features)) {
CmdArgs.push_back(IsAux ? "-aux-target-feature" : "-target-feature");
CmdArgs.push_back(Feature.data());
}
}
static bool
shouldUseExceptionTablesForObjCExceptions(const ObjCRuntime &runtime,
const llvm::Triple &Triple) {
// We use the zero-cost exception tables for Objective-C if the non-fragile
// ABI is enabled or when compiling for x86_64 and ARM on Snow Leopard and
// later.
if (runtime.isNonFragile())
return true;
if (!Triple.isMacOSX())
return false;
return (!Triple.isMacOSXVersionLT(10, 5) &&
(Triple.getArch() == llvm::Triple::x86_64 ||
Triple.getArch() == llvm::Triple::arm));
}
/// Adds exception related arguments to the driver command arguments. There's a
/// main flag, -fexceptions and also language specific flags to enable/disable
/// C++ and Objective-C exceptions. This makes it possible to for example
/// disable C++ exceptions but enable Objective-C exceptions.
static bool addExceptionArgs(const ArgList &Args, types::ID InputType,
const ToolChain &TC, bool KernelOrKext,
const ObjCRuntime &objcRuntime,
ArgStringList &CmdArgs) {
const llvm::Triple &Triple = TC.getTriple();
if (KernelOrKext) {
// -mkernel and -fapple-kext imply no exceptions, so claim exception related
// arguments now to avoid warnings about unused arguments.
Args.ClaimAllArgs(options::OPT_fexceptions);
Args.ClaimAllArgs(options::OPT_fno_exceptions);
Args.ClaimAllArgs(options::OPT_fobjc_exceptions);
Args.ClaimAllArgs(options::OPT_fno_objc_exceptions);
Args.ClaimAllArgs(options::OPT_fcxx_exceptions);
Args.ClaimAllArgs(options::OPT_fno_cxx_exceptions);
Args.ClaimAllArgs(options::OPT_fasync_exceptions);
Args.ClaimAllArgs(options::OPT_fno_async_exceptions);
return false;
}
// See if the user explicitly enabled exceptions.
bool EH = Args.hasFlag(options::OPT_fexceptions, options::OPT_fno_exceptions,
false);
bool EHa = Args.hasFlag(options::OPT_fasync_exceptions,
options::OPT_fno_async_exceptions, false);
if (EHa) {
CmdArgs.push_back("-fasync-exceptions");
EH = true;
}
// Obj-C exceptions are enabled by default, regardless of -fexceptions. This
// is not necessarily sensible, but follows GCC.
if (types::isObjC(InputType) &&
Args.hasFlag(options::OPT_fobjc_exceptions,
options::OPT_fno_objc_exceptions, true)) {
CmdArgs.push_back("-fobjc-exceptions");
EH |= shouldUseExceptionTablesForObjCExceptions(objcRuntime, Triple);
}
if (types::isCXX(InputType)) {
// Disable C++ EH by default on XCore and PS4/PS5.
bool CXXExceptionsEnabled = Triple.getArch() != llvm::Triple::xcore &&
!Triple.isPS() && !Triple.isDriverKit();
Arg *ExceptionArg = Args.getLastArg(
options::OPT_fcxx_exceptions, options::OPT_fno_cxx_exceptions,
options::OPT_fexceptions, options::OPT_fno_exceptions);
if (ExceptionArg)
CXXExceptionsEnabled =
ExceptionArg->getOption().matches(options::OPT_fcxx_exceptions) ||
ExceptionArg->getOption().matches(options::OPT_fexceptions);
if (CXXExceptionsEnabled) {
CmdArgs.push_back("-fcxx-exceptions");
EH = true;
}
}
// OPT_fignore_exceptions means exception could still be thrown,
// but no clean up or catch would happen in current module.
// So we do not set EH to false.
Args.AddLastArg(CmdArgs, options::OPT_fignore_exceptions);
if (EH)
CmdArgs.push_back("-fexceptions");
return EH;
}
static bool ShouldEnableAutolink(const ArgList &Args, const ToolChain &TC,
const JobAction &JA) {
bool Default = true;
if (TC.getTriple().isOSDarwin()) {
// The native darwin assembler doesn't support the linker_option directives,
// so we disable them if we think the .s file will be passed to it.
Default = TC.useIntegratedAs();
}
// The linker_option directives are intended for host compilation.
if (JA.isDeviceOffloading(Action::OFK_Cuda) ||
JA.isDeviceOffloading(Action::OFK_HIP))
Default = false;
return Args.hasFlag(options::OPT_fautolink, options::OPT_fno_autolink,
Default);
}
// Convert an arg of the form "-gN" or "-ggdbN" or one of their aliases
// to the corresponding DebugInfoKind.
static codegenoptions::DebugInfoKind DebugLevelToInfoKind(const Arg &A) {
assert(A.getOption().matches(options::OPT_gN_Group) &&
"Not a -g option that specifies a debug-info level");
if (A.getOption().matches(options::OPT_g0) ||
A.getOption().matches(options::OPT_ggdb0))
return codegenoptions::NoDebugInfo;
if (A.getOption().matches(options::OPT_gline_tables_only) ||
A.getOption().matches(options::OPT_ggdb1))
return codegenoptions::DebugLineTablesOnly;
if (A.getOption().matches(options::OPT_gline_directives_only))
return codegenoptions::DebugDirectivesOnly;
return codegenoptions::DebugInfoConstructor;
}
static bool mustUseNonLeafFramePointerForTarget(const llvm::Triple &Triple) {
switch (Triple.getArch()){
default:
return false;
case llvm::Triple::arm:
case llvm::Triple::thumb:
// ARM Darwin targets require a frame pointer to be always present to aid
// offline debugging via backtraces.
return Triple.isOSDarwin();
}
}
static bool useFramePointerForTargetByDefault(const ArgList &Args,
const llvm::Triple &Triple) {
if (Args.hasArg(options::OPT_pg) && !Args.hasArg(options::OPT_mfentry))
return true;
switch (Triple.getArch()) {
case llvm::Triple::xcore:
case llvm::Triple::wasm32:
case llvm::Triple::wasm64:
case llvm::Triple::msp430:
// XCore never wants frame pointers, regardless of OS.
// WebAssembly never wants frame pointers.
return false;
case llvm::Triple::ppc:
case llvm::Triple::ppcle:
case llvm::Triple::ppc64:
case llvm::Triple::ppc64le:
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
case llvm::Triple::amdgcn:
case llvm::Triple::r600:
case llvm::Triple::csky:
case llvm::Triple::loongarch32:
case llvm::Triple::loongarch64:
return !areOptimizationsEnabled(Args);
default:
break;
}
if (Triple.isOSFuchsia() || Triple.isOSNetBSD()) {
return !areOptimizationsEnabled(Args);
}
if (Triple.isOSLinux() || Triple.getOS() == llvm::Triple::CloudABI ||
Triple.isOSHurd()) {
switch (Triple.getArch()) {
// Don't use a frame pointer on linux if optimizing for certain targets.
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
if (Triple.isAndroid())
return true;
[[fallthrough]];
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::systemz:
case llvm::Triple::x86:
case llvm::Triple::x86_64:
return !areOptimizationsEnabled(Args);
default:
return true;
}
}
if (Triple.isOSWindows()) {
switch (Triple.getArch()) {
case llvm::Triple::x86:
return !areOptimizationsEnabled(Args);
case llvm::Triple::x86_64:
return Triple.isOSBinFormatMachO();
case llvm::Triple::arm:
case llvm::Triple::thumb:
// Windows on ARM builds with FPO disabled to aid fast stack walking
return true;
default:
// All other supported Windows ISAs use xdata unwind information, so frame
// pointers are not generally useful.
return false;
}
}
return true;
}
static CodeGenOptions::FramePointerKind
getFramePointerKind(const ArgList &Args, const llvm::Triple &Triple) {
// We have 4 states:
//
// 00) leaf retained, non-leaf retained
// 01) leaf retained, non-leaf omitted (this is invalid)
// 10) leaf omitted, non-leaf retained
// (what -momit-leaf-frame-pointer was designed for)
// 11) leaf omitted, non-leaf omitted
//
// "omit" options taking precedence over "no-omit" options is the only way
// to make 3 valid states representable
Arg *A = Args.getLastArg(options::OPT_fomit_frame_pointer,
options::OPT_fno_omit_frame_pointer);
bool OmitFP = A && A->getOption().matches(options::OPT_fomit_frame_pointer);
bool NoOmitFP =
A && A->getOption().matches(options::OPT_fno_omit_frame_pointer);
bool OmitLeafFP =
Args.hasFlag(options::OPT_momit_leaf_frame_pointer,
options::OPT_mno_omit_leaf_frame_pointer,
Triple.isAArch64() || Triple.isPS() || Triple.isVE());
if (NoOmitFP || mustUseNonLeafFramePointerForTarget(Triple) ||
(!OmitFP && useFramePointerForTargetByDefault(Args, Triple))) {
if (OmitLeafFP)
return CodeGenOptions::FramePointerKind::NonLeaf;
return CodeGenOptions::FramePointerKind::All;
}
return CodeGenOptions::FramePointerKind::None;
}
/// Add a CC1 option to specify the debug compilation directory.
static const char *addDebugCompDirArg(const ArgList &Args,
ArgStringList &CmdArgs,
const llvm::vfs::FileSystem &VFS) {
if (Arg *A = Args.getLastArg(options::OPT_ffile_compilation_dir_EQ,
options::OPT_fdebug_compilation_dir_EQ)) {
if (A->getOption().matches(options::OPT_ffile_compilation_dir_EQ))
CmdArgs.push_back(Args.MakeArgString(Twine("-fdebug-compilation-dir=") +
A->getValue()));
else
A->render(Args, CmdArgs);
} else if (llvm::ErrorOr<std::string> CWD =
VFS.getCurrentWorkingDirectory()) {
CmdArgs.push_back(Args.MakeArgString("-fdebug-compilation-dir=" + *CWD));
}
StringRef Path(CmdArgs.back());
return Path.substr(Path.find('=') + 1).data();
}
static void addDebugObjectName(const ArgList &Args, ArgStringList &CmdArgs,
const char *DebugCompilationDir,
const char *OutputFileName) {
// No need to generate a value for -object-file-name if it was provided.
for (auto *Arg : Args.filtered(options::OPT_Xclang))
if (StringRef(Arg->getValue()).startswith("-object-file-name"))
return;
if (Args.hasArg(options::OPT_object_file_name_EQ))
return;
SmallString<128> ObjFileNameForDebug(OutputFileName);
if (ObjFileNameForDebug != "-" &&
!llvm::sys::path::is_absolute(ObjFileNameForDebug) &&
(!DebugCompilationDir ||
llvm::sys::path::is_absolute(DebugCompilationDir))) {
// Make the path absolute in the debug infos like MSVC does.
llvm::sys::fs::make_absolute(ObjFileNameForDebug);
}
CmdArgs.push_back(
Args.MakeArgString(Twine("-object-file-name=") + ObjFileNameForDebug));
}
/// Add a CC1 and CC1AS option to specify the debug file path prefix map.
static void addDebugPrefixMapArg(const Driver &D, const ToolChain &TC,
const ArgList &Args, ArgStringList &CmdArgs) {
auto AddOneArg = [&](StringRef Map, StringRef Name) {
if (!Map.contains('='))
D.Diag(diag::err_drv_invalid_argument_to_option) << Map << Name;
else
CmdArgs.push_back(Args.MakeArgString("-fdebug-prefix-map=" + Map));
};
for (const Arg *A : Args.filtered(options::OPT_ffile_prefix_map_EQ,
options::OPT_fdebug_prefix_map_EQ)) {
AddOneArg(A->getValue(), A->getOption().getName());
A->claim();
}
std::string GlobalRemapEntry = TC.GetGlobalDebugPathRemapping();
if (GlobalRemapEntry.empty())
return;
AddOneArg(GlobalRemapEntry, "environment");
}
/// Add a CC1 and CC1AS option to specify the macro file path prefix map.
static void addMacroPrefixMapArg(const Driver &D, const ArgList &Args,
ArgStringList &CmdArgs) {
for (const Arg *A : Args.filtered(options::OPT_ffile_prefix_map_EQ,
options::OPT_fmacro_prefix_map_EQ)) {
StringRef Map = A->getValue();
if (!Map.contains('='))
D.Diag(diag::err_drv_invalid_argument_to_option)
<< Map << A->getOption().getName();
else
CmdArgs.push_back(Args.MakeArgString("-fmacro-prefix-map=" + Map));
A->claim();
}
}
/// Add a CC1 and CC1AS option to specify the coverage file path prefix map.
static void addCoveragePrefixMapArg(const Driver &D, const ArgList &Args,
ArgStringList &CmdArgs) {
for (const Arg *A : Args.filtered(options::OPT_ffile_prefix_map_EQ,
options::OPT_fcoverage_prefix_map_EQ)) {
StringRef Map = A->getValue();
if (!Map.contains('='))
D.Diag(diag::err_drv_invalid_argument_to_option)
<< Map << A->getOption().getName();
else
CmdArgs.push_back(Args.MakeArgString("-fcoverage-prefix-map=" + Map));
A->claim();
}
}
/// Vectorize at all optimization levels greater than 1 except for -Oz.
/// For -Oz the loop vectorizer is disabled, while the slp vectorizer is
/// enabled.
static bool shouldEnableVectorizerAtOLevel(const ArgList &Args, bool isSlpVec) {
if (Arg *A = Args.getLastArg(options::OPT_O_Group)) {
if (A->getOption().matches(options::OPT_O4) ||
A->getOption().matches(options::OPT_Ofast))
return true;
if (A->getOption().matches(options::OPT_O0))
return false;
assert(A->getOption().matches(options::OPT_O) && "Must have a -O flag");
// Vectorize -Os.
StringRef S(A->getValue());
if (S == "s")
return true;
// Don't vectorize -Oz, unless it's the slp vectorizer.
if (S == "z")
return isSlpVec;
unsigned OptLevel = 0;
if (S.getAsInteger(10, OptLevel))
return false;
return OptLevel > 1;
}
return false;
}
/// Add -x lang to \p CmdArgs for \p Input.
static void addDashXForInput(const ArgList &Args, const InputInfo &Input,
ArgStringList &CmdArgs) {
// When using -verify-pch, we don't want to provide the type
// 'precompiled-header' if it was inferred from the file extension
if (Args.hasArg(options::OPT_verify_pch) && Input.getType() == types::TY_PCH)
return;
CmdArgs.push_back("-x");
if (Args.hasArg(options::OPT_rewrite_objc))
CmdArgs.push_back(types::getTypeName(types::TY_PP_ObjCXX));
else {
// Map the driver type to the frontend type. This is mostly an identity
// mapping, except that the distinction between module interface units
// and other source files does not exist at the frontend layer.
const char *ClangType;
switch (Input.getType()) {
case types::TY_CXXModule:
ClangType = "c++";
break;
case types::TY_PP_CXXModule:
ClangType = "c++-cpp-output";
break;
default:
ClangType = types::getTypeName(Input.getType());
break;
}
CmdArgs.push_back(ClangType);
}
}
static void addPGOAndCoverageFlags(const ToolChain &TC, Compilation &C,
const Driver &D, const InputInfo &Output,
const ArgList &Args, SanitizerArgs &SanArgs,
ArgStringList &CmdArgs) {
auto *PGOGenerateArg = Args.getLastArg(options::OPT_fprofile_generate,
options::OPT_fprofile_generate_EQ,
options::OPT_fno_profile_generate);
if (PGOGenerateArg &&
PGOGenerateArg->getOption().matches(options::OPT_fno_profile_generate))
PGOGenerateArg = nullptr;
auto *CSPGOGenerateArg = Args.getLastArg(options::OPT_fcs_profile_generate,
options::OPT_fcs_profile_generate_EQ,
options::OPT_fno_profile_generate);
if (CSPGOGenerateArg &&
CSPGOGenerateArg->getOption().matches(options::OPT_fno_profile_generate))
CSPGOGenerateArg = nullptr;
auto *ProfileGenerateArg = Args.getLastArg(
options::OPT_fprofile_instr_generate,
options::OPT_fprofile_instr_generate_EQ,
options::OPT_fno_profile_instr_generate);
if (ProfileGenerateArg &&
ProfileGenerateArg->getOption().matches(
options::OPT_fno_profile_instr_generate))
ProfileGenerateArg = nullptr;
if (PGOGenerateArg && ProfileGenerateArg)
D.Diag(diag::err_drv_argument_not_allowed_with)
<< PGOGenerateArg->getSpelling() << ProfileGenerateArg->getSpelling();
auto *ProfileUseArg = getLastProfileUseArg(Args);
if (PGOGenerateArg && ProfileUseArg)
D.Diag(diag::err_drv_argument_not_allowed_with)
<< ProfileUseArg->getSpelling() << PGOGenerateArg->getSpelling();
if (ProfileGenerateArg && ProfileUseArg)
D.Diag(diag::err_drv_argument_not_allowed_with)
<< ProfileGenerateArg->getSpelling() << ProfileUseArg->getSpelling();
if (CSPGOGenerateArg && PGOGenerateArg) {
D.Diag(diag::err_drv_argument_not_allowed_with)
<< CSPGOGenerateArg->getSpelling() << PGOGenerateArg->getSpelling();
PGOGenerateArg = nullptr;
}
if (TC.getTriple().isOSAIX()) {
if (ProfileGenerateArg)
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< ProfileGenerateArg->getSpelling() << TC.getTriple().str();
if (Arg *ProfileSampleUseArg = getLastProfileSampleUseArg(Args))
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< ProfileSampleUseArg->getSpelling() << TC.getTriple().str();
}
if (ProfileGenerateArg) {
if (ProfileGenerateArg->getOption().matches(
options::OPT_fprofile_instr_generate_EQ))
CmdArgs.push_back(Args.MakeArgString(Twine("-fprofile-instrument-path=") +
ProfileGenerateArg->getValue()));
// The default is to use Clang Instrumentation.
CmdArgs.push_back("-fprofile-instrument=clang");
if (TC.getTriple().isWindowsMSVCEnvironment()) {
// Add dependent lib for clang_rt.profile
CmdArgs.push_back(Args.MakeArgString(
"--dependent-lib=" + TC.getCompilerRTBasename(Args, "profile")));
}
}
Arg *PGOGenArg = nullptr;
if (PGOGenerateArg) {
assert(!CSPGOGenerateArg);
PGOGenArg = PGOGenerateArg;
CmdArgs.push_back("-fprofile-instrument=llvm");
}
if (CSPGOGenerateArg) {
assert(!PGOGenerateArg);
PGOGenArg = CSPGOGenerateArg;
CmdArgs.push_back("-fprofile-instrument=csllvm");
}
if (PGOGenArg) {
if (TC.getTriple().isWindowsMSVCEnvironment()) {
// Add dependent lib for clang_rt.profile
CmdArgs.push_back(Args.MakeArgString(
"--dependent-lib=" + TC.getCompilerRTBasename(Args, "profile")));
}
if (PGOGenArg->getOption().matches(
PGOGenerateArg ? options::OPT_fprofile_generate_EQ
: options::OPT_fcs_profile_generate_EQ)) {
SmallString<128> Path(PGOGenArg->getValue());
llvm::sys::path::append(Path, "default_%m.profraw");
CmdArgs.push_back(
Args.MakeArgString(Twine("-fprofile-instrument-path=") + Path));
}
}
if (ProfileUseArg) {
if (ProfileUseArg->getOption().matches(options::OPT_fprofile_instr_use_EQ))
CmdArgs.push_back(Args.MakeArgString(
Twine("-fprofile-instrument-use-path=") + ProfileUseArg->getValue()));
else if ((ProfileUseArg->getOption().matches(
options::OPT_fprofile_use_EQ) ||
ProfileUseArg->getOption().matches(
options::OPT_fprofile_instr_use))) {
SmallString<128> Path(
ProfileUseArg->getNumValues() == 0 ? "" : ProfileUseArg->getValue());
if (Path.empty() || llvm::sys::fs::is_directory(Path))
llvm::sys::path::append(Path, "default.profdata");
CmdArgs.push_back(
Args.MakeArgString(Twine("-fprofile-instrument-use-path=") + Path));
}
}
bool EmitCovNotes = Args.hasFlag(options::OPT_ftest_coverage,
options::OPT_fno_test_coverage, false) ||
Args.hasArg(options::OPT_coverage);
bool EmitCovData = TC.needsGCovInstrumentation(Args);
if (EmitCovNotes)
CmdArgs.push_back("-ftest-coverage");
if (EmitCovData)
CmdArgs.push_back("-fprofile-arcs");
if (Args.hasFlag(options::OPT_fcoverage_mapping,
options::OPT_fno_coverage_mapping, false)) {
if (!ProfileGenerateArg)
D.Diag(clang::diag::err_drv_argument_only_allowed_with)
<< "-fcoverage-mapping"
<< "-fprofile-instr-generate";
CmdArgs.push_back("-fcoverage-mapping");
}
if (Arg *A = Args.getLastArg(options::OPT_ffile_compilation_dir_EQ,
options::OPT_fcoverage_compilation_dir_EQ)) {
if (A->getOption().matches(options::OPT_ffile_compilation_dir_EQ))
CmdArgs.push_back(Args.MakeArgString(
Twine("-fcoverage-compilation-dir=") + A->getValue()));
else
A->render(Args, CmdArgs);
} else if (llvm::ErrorOr<std::string> CWD =
D.getVFS().getCurrentWorkingDirectory()) {
CmdArgs.push_back(Args.MakeArgString("-fcoverage-compilation-dir=" + *CWD));
}
if (Args.hasArg(options::OPT_fprofile_exclude_files_EQ)) {
auto *Arg = Args.getLastArg(options::OPT_fprofile_exclude_files_EQ);
if (!Args.hasArg(options::OPT_coverage))
D.Diag(clang::diag::err_drv_argument_only_allowed_with)
<< "-fprofile-exclude-files="
<< "--coverage";
StringRef v = Arg->getValue();
CmdArgs.push_back(
Args.MakeArgString(Twine("-fprofile-exclude-files=" + v)));
}
if (Args.hasArg(options::OPT_fprofile_filter_files_EQ)) {
auto *Arg = Args.getLastArg(options::OPT_fprofile_filter_files_EQ);
if (!Args.hasArg(options::OPT_coverage))
D.Diag(clang::diag::err_drv_argument_only_allowed_with)
<< "-fprofile-filter-files="
<< "--coverage";
StringRef v = Arg->getValue();
CmdArgs.push_back(Args.MakeArgString(Twine("-fprofile-filter-files=" + v)));
}
if (const auto *A = Args.getLastArg(options::OPT_fprofile_update_EQ)) {
StringRef Val = A->getValue();
if (Val == "atomic" || Val == "prefer-atomic")
CmdArgs.push_back("-fprofile-update=atomic");
else if (Val != "single")
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Val;
} else if (SanArgs.needsTsanRt()) {
CmdArgs.push_back("-fprofile-update=atomic");
}
int FunctionGroups = 1;
int SelectedFunctionGroup = 0;
if (const auto *A = Args.getLastArg(options::OPT_fprofile_function_groups)) {
StringRef Val = A->getValue();
if (Val.getAsInteger(0, FunctionGroups) || FunctionGroups < 1)
D.Diag(diag::err_drv_invalid_int_value) << A->getAsString(Args) << Val;
}
if (const auto *A =
Args.getLastArg(options::OPT_fprofile_selected_function_group)) {
StringRef Val = A->getValue();
if (Val.getAsInteger(0, SelectedFunctionGroup) ||
SelectedFunctionGroup < 0 || SelectedFunctionGroup >= FunctionGroups)
D.Diag(diag::err_drv_invalid_int_value) << A->getAsString(Args) << Val;
}
if (FunctionGroups != 1)
CmdArgs.push_back(Args.MakeArgString("-fprofile-function-groups=" +
Twine(FunctionGroups)));
if (SelectedFunctionGroup != 0)
CmdArgs.push_back(Args.MakeArgString("-fprofile-selected-function-group=" +
Twine(SelectedFunctionGroup)));
// Leave -fprofile-dir= an unused argument unless .gcda emission is
// enabled. To be polite, with '-fprofile-arcs -fno-profile-arcs' consider
// the flag used. There is no -fno-profile-dir, so the user has no
// targeted way to suppress the warning.
Arg *FProfileDir = nullptr;
if (Args.hasArg(options::OPT_fprofile_arcs) ||
Args.hasArg(options::OPT_coverage))
FProfileDir = Args.getLastArg(options::OPT_fprofile_dir);
// Put the .gcno and .gcda files (if needed) next to the object file or
// bitcode file in the case of LTO.
// FIXME: There should be a simpler way to find the object file for this
// input, and this code probably does the wrong thing for commands that
// compile and link all at once.
if ((Args.hasArg(options::OPT_c) || Args.hasArg(options::OPT_S)) &&
(EmitCovNotes || EmitCovData) && Output.isFilename()) {
SmallString<128> OutputFilename;
if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT__SLASH_Fo))
OutputFilename = FinalOutput->getValue();
else if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
OutputFilename = FinalOutput->getValue();
else
OutputFilename = llvm::sys::path::filename(Output.getBaseInput());
SmallString<128> CoverageFilename = OutputFilename;
if (llvm::sys::path::is_relative(CoverageFilename))
(void)D.getVFS().makeAbsolute(CoverageFilename);
llvm::sys::path::replace_extension(CoverageFilename, "gcno");
CmdArgs.push_back("-coverage-notes-file");
CmdArgs.push_back(Args.MakeArgString(CoverageFilename));
if (EmitCovData) {
if (FProfileDir) {
CoverageFilename = FProfileDir->getValue();
llvm::sys::path::append(CoverageFilename, OutputFilename);
}
llvm::sys::path::replace_extension(CoverageFilename, "gcda");
CmdArgs.push_back("-coverage-data-file");
CmdArgs.push_back(Args.MakeArgString(CoverageFilename));
}
}
}
/// Check whether the given input tree contains any compilation actions.
static bool ContainsCompileAction(const Action *A) {
if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A))
return true;
return llvm::any_of(A->inputs(), ContainsCompileAction);
}
/// Check if -relax-all should be passed to the internal assembler.
/// This is done by default when compiling non-assembler source with -O0.
static bool UseRelaxAll(Compilation &C, const ArgList &Args) {
bool RelaxDefault = true;
if (Arg *A = Args.getLastArg(options::OPT_O_Group))
RelaxDefault = A->getOption().matches(options::OPT_O0);
if (RelaxDefault) {
RelaxDefault = false;
for (const auto &Act : C.getActions()) {
if (ContainsCompileAction(Act)) {
RelaxDefault = true;
break;
}
}
}
return Args.hasFlag(options::OPT_mrelax_all, options::OPT_mno_relax_all,
RelaxDefault);
}
// Extract the integer N from a string spelled "-dwarf-N", returning 0
// on mismatch. The StringRef input (rather than an Arg) allows
// for use by the "-Xassembler" option parser.
static unsigned DwarfVersionNum(StringRef ArgValue) {
return llvm::StringSwitch<unsigned>(ArgValue)
.Case("-gdwarf-2", 2)
.Case("-gdwarf-3", 3)
.Case("-gdwarf-4", 4)
.Case("-gdwarf-5", 5)
.Default(0);
}
// Find a DWARF format version option.
// This function is a complementary for DwarfVersionNum().
static const Arg *getDwarfNArg(const ArgList &Args) {
return Args.getLastArg(options::OPT_gdwarf_2, options::OPT_gdwarf_3,
options::OPT_gdwarf_4, options::OPT_gdwarf_5,
options::OPT_gdwarf);
}
static void RenderDebugEnablingArgs(const ArgList &Args, ArgStringList &CmdArgs,
codegenoptions::DebugInfoKind DebugInfoKind,
unsigned DwarfVersion,
llvm::DebuggerKind DebuggerTuning) {
switch (DebugInfoKind) {
case codegenoptions::DebugDirectivesOnly:
CmdArgs.push_back("-debug-info-kind=line-directives-only");
break;
case codegenoptions::DebugLineTablesOnly:
CmdArgs.push_back("-debug-info-kind=line-tables-only");
break;
case codegenoptions::DebugInfoConstructor:
CmdArgs.push_back("-debug-info-kind=constructor");
break;
case codegenoptions::LimitedDebugInfo:
CmdArgs.push_back("-debug-info-kind=limited");
break;
case codegenoptions::FullDebugInfo:
CmdArgs.push_back("-debug-info-kind=standalone");
break;
case codegenoptions::UnusedTypeInfo:
CmdArgs.push_back("-debug-info-kind=unused-types");
break;
default:
break;
}
if (DwarfVersion > 0)
CmdArgs.push_back(
Args.MakeArgString("-dwarf-version=" + Twine(DwarfVersion)));
switch (DebuggerTuning) {
case llvm::DebuggerKind::GDB:
CmdArgs.push_back("-debugger-tuning=gdb");
break;
case llvm::DebuggerKind::LLDB:
CmdArgs.push_back("-debugger-tuning=lldb");
break;
case llvm::DebuggerKind::SCE:
CmdArgs.push_back("-debugger-tuning=sce");
break;
case llvm::DebuggerKind::DBX:
CmdArgs.push_back("-debugger-tuning=dbx");
break;
default:
break;
}
}
static bool checkDebugInfoOption(const Arg *A, const ArgList &Args,
const Driver &D, const ToolChain &TC) {
assert(A && "Expected non-nullptr argument.");
if (TC.supportsDebugInfoOption(A))
return true;
D.Diag(diag::warn_drv_unsupported_debug_info_opt_for_target)
<< A->getAsString(Args) << TC.getTripleString();
return false;
}
static void RenderDebugInfoCompressionArgs(const ArgList &Args,
ArgStringList &CmdArgs,
const Driver &D,
const ToolChain &TC) {
const Arg *A = Args.getLastArg(options::OPT_gz_EQ);
if (!A)
return;
if (checkDebugInfoOption(A, Args, D, TC)) {
StringRef Value = A->getValue();
if (Value == "none") {
CmdArgs.push_back("--compress-debug-sections=none");
} else if (Value == "zlib") {
if (llvm::compression::zlib::isAvailable()) {
CmdArgs.push_back(
Args.MakeArgString("--compress-debug-sections=" + Twine(Value)));
} else {
D.Diag(diag::warn_debug_compression_unavailable) << "zlib";
}
} else if (Value == "zstd") {
if (llvm::compression::zstd::isAvailable()) {
CmdArgs.push_back(
Args.MakeArgString("--compress-debug-sections=" + Twine(Value)));
} else {
D.Diag(diag::warn_debug_compression_unavailable) << "zstd";
}
} else {
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Value;
}
}
}
static void handleAMDGPUCodeObjectVersionOptions(const Driver &D,
const ArgList &Args,
ArgStringList &CmdArgs,
bool IsCC1As = false) {
// If no version was requested by the user, use the default value from the
// back end. This is consistent with the value returned from
// getAMDGPUCodeObjectVersion. This lets clang emit IR for amdgpu without
// requiring the corresponding llvm to have the AMDGPU target enabled,
// provided the user (e.g. front end tests) can use the default.
if (haveAMDGPUCodeObjectVersionArgument(D, Args)) {
unsigned CodeObjVer = getAMDGPUCodeObjectVersion(D, Args);
CmdArgs.insert(CmdArgs.begin() + 1,
Args.MakeArgString(Twine("--amdhsa-code-object-version=") +
Twine(CodeObjVer)));
CmdArgs.insert(CmdArgs.begin() + 1, "-mllvm");
// -cc1as does not accept -mcode-object-version option.
if (!IsCC1As)
CmdArgs.insert(CmdArgs.begin() + 1,
Args.MakeArgString(Twine("-mcode-object-version=") +
Twine(CodeObjVer)));
}
}
void Clang::AddPreprocessingOptions(Compilation &C, const JobAction &JA,
const Driver &D, const ArgList &Args,
ArgStringList &CmdArgs,
const InputInfo &Output,
const InputInfoList &Inputs) const {
const bool IsIAMCU = getToolChain().getTriple().isOSIAMCU();
CheckPreprocessingOptions(D, Args);
Args.AddLastArg(CmdArgs, options::OPT_C);
Args.AddLastArg(CmdArgs, options::OPT_CC);
// Handle dependency file generation.
Arg *ArgM = Args.getLastArg(options::OPT_MM);
if (!ArgM)
ArgM = Args.getLastArg(options::OPT_M);
Arg *ArgMD = Args.getLastArg(options::OPT_MMD);
if (!ArgMD)
ArgMD = Args.getLastArg(options::OPT_MD);
// -M and -MM imply -w.
if (ArgM)
CmdArgs.push_back("-w");
else
ArgM = ArgMD;
if (ArgM) {
// Determine the output location.
const char *DepFile;
if (Arg *MF = Args.getLastArg(options::OPT_MF)) {
DepFile = MF->getValue();
C.addFailureResultFile(DepFile, &JA);
} else if (Output.getType() == types::TY_Dependencies) {
DepFile = Output.getFilename();
} else if (!ArgMD) {
DepFile = "-";
} else {
DepFile = getDependencyFileName(Args, Inputs);
C.addFailureResultFile(DepFile, &JA);
}
CmdArgs.push_back("-dependency-file");
CmdArgs.push_back(DepFile);
bool HasTarget = false;
for (const Arg *A : Args.filtered(options::OPT_MT, options::OPT_MQ)) {
HasTarget = true;
A->claim();
if (A->getOption().matches(options::OPT_MT)) {
A->render(Args, CmdArgs);
} else {
CmdArgs.push_back("-MT");
SmallString<128> Quoted;
quoteMakeTarget(A->getValue(), Quoted);
CmdArgs.push_back(Args.MakeArgString(Quoted));
}
}
// Add a default target if one wasn't specified.
if (!HasTarget) {
const char *DepTarget;
// If user provided -o, that is the dependency target, except
// when we are only generating a dependency file.
Arg *OutputOpt = Args.getLastArg(options::OPT_o);
if (OutputOpt && Output.getType() != types::TY_Dependencies) {
DepTarget = OutputOpt->getValue();
} else {
// Otherwise derive from the base input.
//
// FIXME: This should use the computed output file location.
SmallString<128> P(Inputs[0].getBaseInput());
llvm::sys::path::replace_extension(P, "o");
DepTarget = Args.MakeArgString(llvm::sys::path::filename(P));
}
CmdArgs.push_back("-MT");
SmallString<128> Quoted;
quoteMakeTarget(DepTarget, Quoted);
CmdArgs.push_back(Args.MakeArgString(Quoted));
}
if (ArgM->getOption().matches(options::OPT_M) ||
ArgM->getOption().matches(options::OPT_MD))
CmdArgs.push_back("-sys-header-deps");
if ((isa<PrecompileJobAction>(JA) &&
!Args.hasArg(options::OPT_fno_module_file_deps)) ||
Args.hasArg(options::OPT_fmodule_file_deps))
CmdArgs.push_back("-module-file-deps");
}
if (Args.hasArg(options::OPT_MG)) {
if (!ArgM || ArgM->getOption().matches(options::OPT_MD) ||
ArgM->getOption().matches(options::OPT_MMD))
D.Diag(diag::err_drv_mg_requires_m_or_mm);
CmdArgs.push_back("-MG");
}
Args.AddLastArg(CmdArgs, options::OPT_MP);
Args.AddLastArg(CmdArgs, options::OPT_MV);
// Add offload include arguments specific for CUDA/HIP. This must happen
// before we -I or -include anything else, because we must pick up the
// CUDA/HIP headers from the particular CUDA/ROCm installation, rather than
// from e.g. /usr/local/include.
if (JA.isOffloading(Action::OFK_Cuda))
getToolChain().AddCudaIncludeArgs(Args, CmdArgs);
if (JA.isOffloading(Action::OFK_HIP))
getToolChain().AddHIPIncludeArgs(Args, CmdArgs);
// If we are offloading to a target via OpenMP we need to include the
// openmp_wrappers folder which contains alternative system headers.
if (JA.isDeviceOffloading(Action::OFK_OpenMP) &&
!Args.hasArg(options::OPT_nostdinc) &&
(getToolChain().getTriple().isNVPTX() ||
getToolChain().getTriple().isAMDGCN())) {
if (!Args.hasArg(options::OPT_nobuiltininc)) {
// Add openmp_wrappers/* to our system include path. This lets us wrap
// standard library headers.
SmallString<128> P(D.ResourceDir);
llvm::sys::path::append(P, "include");
llvm::sys::path::append(P, "openmp_wrappers");
CmdArgs.push_back("-internal-isystem");
CmdArgs.push_back(Args.MakeArgString(P));
}
CmdArgs.push_back("-include");
CmdArgs.push_back("__clang_openmp_device_functions.h");
}
// Add -i* options, and automatically translate to
// -include-pch/-include-pth for transparent PCH support. It's
// wonky, but we include looking for .gch so we can support seamless
// replacement into a build system already set up to be generating
// .gch files.
if (getToolChain().getDriver().IsCLMode()) {
const Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
const Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
if (YcArg && JA.getKind() >= Action::PrecompileJobClass &&
JA.getKind() <= Action::AssembleJobClass) {
CmdArgs.push_back(Args.MakeArgString("-building-pch-with-obj"));
// -fpch-instantiate-templates is the default when creating
// precomp using /Yc
if (Args.hasFlag(options::OPT_fpch_instantiate_templates,
options::OPT_fno_pch_instantiate_templates, true))
CmdArgs.push_back(Args.MakeArgString("-fpch-instantiate-templates"));
}
if (YcArg || YuArg) {
StringRef ThroughHeader = YcArg ? YcArg->getValue() : YuArg->getValue();
if (!isa<PrecompileJobAction>(JA)) {
CmdArgs.push_back("-include-pch");
CmdArgs.push_back(Args.MakeArgString(D.GetClPchPath(
C, !ThroughHeader.empty()
? ThroughHeader
: llvm::sys::path::filename(Inputs[0].getBaseInput()))));
}
if (ThroughHeader.empty()) {
CmdArgs.push_back(Args.MakeArgString(
Twine("-pch-through-hdrstop-") + (YcArg ? "create" : "use")));
} else {
CmdArgs.push_back(
Args.MakeArgString(Twine("-pch-through-header=") + ThroughHeader));
}
}
}
bool RenderedImplicitInclude = false;
for (const Arg *A : Args.filtered(options::OPT_clang_i_Group)) {
if (A->getOption().matches(options::OPT_include) &&
D.getProbePrecompiled()) {
// Handling of gcc-style gch precompiled headers.
bool IsFirstImplicitInclude = !RenderedImplicitInclude;
RenderedImplicitInclude = true;
bool FoundPCH = false;
SmallString<128> P(A->getValue());
// We want the files to have a name like foo.h.pch. Add a dummy extension
// so that replace_extension does the right thing.
P += ".dummy";
llvm::sys::path::replace_extension(P, "pch");
if (D.getVFS().exists(P))
FoundPCH = true;
if (!FoundPCH) {
llvm::sys::path::replace_extension(P, "gch");
if (D.getVFS().exists(P)) {
FoundPCH = true;
}
}
if (FoundPCH) {
if (IsFirstImplicitInclude) {
A->claim();
CmdArgs.push_back("-include-pch");
CmdArgs.push_back(Args.MakeArgString(P));
continue;
} else {
// Ignore the PCH if not first on command line and emit warning.
D.Diag(diag::warn_drv_pch_not_first_include) << P
<< A->getAsString(Args);
}
}
} else if (A->getOption().matches(options::OPT_isystem_after)) {
// Handling of paths which must come late. These entries are handled by
// the toolchain itself after the resource dir is inserted in the right
// search order.
// Do not claim the argument so that the use of the argument does not
// silently go unnoticed on toolchains which do not honour the option.
continue;
} else if (A->getOption().matches(options::OPT_stdlibxx_isystem)) {
// Translated to -internal-isystem by the driver, no need to pass to cc1.
continue;
}
// Not translated, render as usual.
A->claim();
A->render(Args, CmdArgs);
}
Args.AddAllArgs(CmdArgs,
{options::OPT_D, options::OPT_U, options::OPT_I_Group,
options::OPT_F, options::OPT_index_header_map});
// Add -Wp, and -Xpreprocessor if using the preprocessor.
// FIXME: There is a very unfortunate problem here, some troubled
// souls abuse -Wp, to pass preprocessor options in gcc syntax. To
// really support that we would have to parse and then translate
// those options. :(
Args.AddAllArgValues(CmdArgs, options::OPT_Wp_COMMA,
options::OPT_Xpreprocessor);
// -I- is a deprecated GCC feature, reject it.
if (Arg *A = Args.getLastArg(options::OPT_I_))
D.Diag(diag::err_drv_I_dash_not_supported) << A->getAsString(Args);
// If we have a --sysroot, and don't have an explicit -isysroot flag, add an
// -isysroot to the CC1 invocation.
StringRef sysroot = C.getSysRoot();
if (sysroot != "") {
if (!Args.hasArg(options::OPT_isysroot)) {
CmdArgs.push_back("-isysroot");
CmdArgs.push_back(C.getArgs().MakeArgString(sysroot));
}
}
// Parse additional include paths from environment variables.
// FIXME: We should probably sink the logic for handling these from the
// frontend into the driver. It will allow deleting 4 otherwise unused flags.
// CPATH - included following the user specified includes (but prior to
// builtin and standard includes).
addDirectoryList(Args, CmdArgs, "-I", "CPATH");
// C_INCLUDE_PATH - system includes enabled when compiling C.
addDirectoryList(Args, CmdArgs, "-c-isystem", "C_INCLUDE_PATH");
// CPLUS_INCLUDE_PATH - system includes enabled when compiling C++.
addDirectoryList(Args, CmdArgs, "-cxx-isystem", "CPLUS_INCLUDE_PATH");
// OBJC_INCLUDE_PATH - system includes enabled when compiling ObjC.
addDirectoryList(Args, CmdArgs, "-objc-isystem", "OBJC_INCLUDE_PATH");
// OBJCPLUS_INCLUDE_PATH - system includes enabled when compiling ObjC++.
addDirectoryList(Args, CmdArgs, "-objcxx-isystem", "OBJCPLUS_INCLUDE_PATH");
// While adding the include arguments, we also attempt to retrieve the
// arguments of related offloading toolchains or arguments that are specific
// of an offloading programming model.
// Add C++ include arguments, if needed.
if (types::isCXX(Inputs[0].getType())) {
bool HasStdlibxxIsystem = Args.hasArg(options::OPT_stdlibxx_isystem);
forAllAssociatedToolChains(
C, JA, getToolChain(),
[&Args, &CmdArgs, HasStdlibxxIsystem](const ToolChain &TC) {
HasStdlibxxIsystem ? TC.AddClangCXXStdlibIsystemArgs(Args, CmdArgs)
: TC.AddClangCXXStdlibIncludeArgs(Args, CmdArgs);
});
}
// Add system include arguments for all targets but IAMCU.
if (!IsIAMCU)
forAllAssociatedToolChains(C, JA, getToolChain(),
[&Args, &CmdArgs](const ToolChain &TC) {
TC.AddClangSystemIncludeArgs(Args, CmdArgs);
});
else {
// For IAMCU add special include arguments.
getToolChain().AddIAMCUIncludeArgs(Args, CmdArgs);
}
addMacroPrefixMapArg(D, Args, CmdArgs);
addCoveragePrefixMapArg(D, Args, CmdArgs);
Args.AddLastArg(CmdArgs, options::OPT_ffile_reproducible,
options::OPT_fno_file_reproducible);
}
// FIXME: Move to target hook.
static bool isSignedCharDefault(const llvm::Triple &Triple) {
switch (Triple.getArch()) {
default:
return true;
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32:
case llvm::Triple::aarch64_be:
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
if (Triple.isOSDarwin() || Triple.isOSWindows())
return true;
return false;
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
if (Triple.isOSDarwin())
return true;
return false;
case llvm::Triple::hexagon:
case llvm::Triple::ppcle:
case llvm::Triple::ppc64le:
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
case llvm::Triple::systemz:
case llvm::Triple::xcore:
return false;
}
}
static bool hasMultipleInvocations(const llvm::Triple &Triple,
const ArgList &Args) {
// Supported only on Darwin where we invoke the compiler multiple times
// followed by an invocation to lipo.
if (!Triple.isOSDarwin())
return false;
// If more than one "-arch <arch>" is specified, we're targeting multiple
// architectures resulting in a fat binary.
return Args.getAllArgValues(options::OPT_arch).size() > 1;
}
static bool checkRemarksOptions(const Driver &D, const ArgList &Args,
const llvm::Triple &Triple) {
// When enabling remarks, we need to error if:
// * The remark file is specified but we're targeting multiple architectures,
// which means more than one remark file is being generated.
bool hasMultipleInvocations = ::hasMultipleInvocations(Triple, Args);
bool hasExplicitOutputFile =
Args.getLastArg(options::OPT_foptimization_record_file_EQ);
if (hasMultipleInvocations && hasExplicitOutputFile) {
D.Diag(diag::err_drv_invalid_output_with_multiple_archs)
<< "-foptimization-record-file";
return false;
}
return true;
}
static void renderRemarksOptions(const ArgList &Args, ArgStringList &CmdArgs,
const llvm::Triple &Triple,
const InputInfo &Input,
const InputInfo &Output, const JobAction &JA) {
StringRef Format = "yaml";
if (const Arg *A = Args.getLastArg(options::OPT_fsave_optimization_record_EQ))
Format = A->getValue();
CmdArgs.push_back("-opt-record-file");
const Arg *A = Args.getLastArg(options::OPT_foptimization_record_file_EQ);
if (A) {
CmdArgs.push_back(A->getValue());
} else {
bool hasMultipleArchs =
Triple.isOSDarwin() && // Only supported on Darwin platforms.
Args.getAllArgValues(options::OPT_arch).size() > 1;
SmallString<128> F;
if (Args.hasArg(options::OPT_c) || Args.hasArg(options::OPT_S)) {
if (Arg *FinalOutput = Args.getLastArg(options::OPT_o))
F = FinalOutput->getValue();
} else {
if (Format != "yaml" && // For YAML, keep the original behavior.
Triple.isOSDarwin() && // Enable this only on darwin, since it's the only platform supporting .dSYM bundles.
Output.isFilename())
F = Output.getFilename();
}
if (F.empty()) {
// Use the input filename.
F = llvm::sys::path::stem(Input.getBaseInput());
// If we're compiling for an offload architecture (i.e. a CUDA device),
// we need to make the file name for the device compilation different
// from the host compilation.
if (!JA.isDeviceOffloading(Action::OFK_None) &&
!JA.isDeviceOffloading(Action::OFK_Host)) {
llvm::sys::path::replace_extension(F, "");
F += Action::GetOffloadingFileNamePrefix(JA.getOffloadingDeviceKind(),
Triple.normalize());
F += "-";
F += JA.getOffloadingArch();
}
}
// If we're having more than one "-arch", we should name the files
// differently so that every cc1 invocation writes to a different file.
// We're doing that by appending "-<arch>" with "<arch>" being the arch
// name from the triple.
if (hasMultipleArchs) {
// First, remember the extension.
SmallString<64> OldExtension = llvm::sys::path::extension(F);
// then, remove it.
llvm::sys::path::replace_extension(F, "");
// attach -<arch> to it.
F += "-";
F += Triple.getArchName();
// put back the extension.
llvm::sys::path::replace_extension(F, OldExtension);
}
SmallString<32> Extension;
Extension += "opt.";
Extension += Format;
llvm::sys::path::replace_extension(F, Extension);
CmdArgs.push_back(Args.MakeArgString(F));
}
if (const Arg *A =
Args.getLastArg(options::OPT_foptimization_record_passes_EQ)) {
CmdArgs.push_back("-opt-record-passes");
CmdArgs.push_back(A->getValue());
}
if (!Format.empty()) {
CmdArgs.push_back("-opt-record-format");
CmdArgs.push_back(Format.data());
}
}
void AddAAPCSVolatileBitfieldArgs(const ArgList &Args, ArgStringList &CmdArgs) {
if (!Args.hasFlag(options::OPT_faapcs_bitfield_width,
options::OPT_fno_aapcs_bitfield_width, true))
CmdArgs.push_back("-fno-aapcs-bitfield-width");
if (Args.getLastArg(options::OPT_ForceAAPCSBitfieldLoad))
CmdArgs.push_back("-faapcs-bitfield-load");
}
namespace {
void RenderARMABI(const Driver &D, const llvm::Triple &Triple,
const ArgList &Args, ArgStringList &CmdArgs) {
// Select the ABI to use.
// FIXME: Support -meabi.
// FIXME: Parts of this are duplicated in the backend, unify this somehow.
const char *ABIName = nullptr;
if (Arg *A = Args.getLastArg(options::OPT_mabi_EQ)) {
ABIName = A->getValue();
} else {
std::string CPU = getCPUName(D, Args, Triple, /*FromAs*/ false);
ABIName = llvm::ARM::computeDefaultTargetABI(Triple, CPU).data();
}
CmdArgs.push_back("-target-abi");
CmdArgs.push_back(ABIName);
}
void AddUnalignedAccessWarning(ArgStringList &CmdArgs) {
auto StrictAlignIter =
std::find_if(CmdArgs.rbegin(), CmdArgs.rend(), [](StringRef Arg) {
return Arg == "+strict-align" || Arg == "-strict-align";
});
if (StrictAlignIter != CmdArgs.rend() &&
StringRef(*StrictAlignIter) == "+strict-align")
CmdArgs.push_back("-Wunaligned-access");
}
}
static void CollectARMPACBTIOptions(const ToolChain &TC, const ArgList &Args,
ArgStringList &CmdArgs, bool isAArch64) {
const Arg *A = isAArch64
? Args.getLastArg(options::OPT_msign_return_address_EQ,
options::OPT_mbranch_protection_EQ)
: Args.getLastArg(options::OPT_mbranch_protection_EQ);
if (!A)
return;
const Driver &D = TC.getDriver();
const llvm::Triple &Triple = TC.getEffectiveTriple();
if (!(isAArch64 || (Triple.isArmT32() && Triple.isArmMClass())))
D.Diag(diag::warn_incompatible_branch_protection_option)
<< Triple.getArchName();
StringRef Scope, Key;
bool IndirectBranches;
if (A->getOption().matches(options::OPT_msign_return_address_EQ)) {
Scope = A->getValue();
if (Scope != "none" && Scope != "non-leaf" && Scope != "all")
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Scope;
Key = "a_key";
IndirectBranches = false;
} else {
StringRef DiagMsg;
llvm::ARM::ParsedBranchProtection PBP;
if (!llvm::ARM::parseBranchProtection(A->getValue(), PBP, DiagMsg))
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << DiagMsg;
if (!isAArch64 && PBP.Key == "b_key")
D.Diag(diag::warn_unsupported_branch_protection)
<< "b-key" << A->getAsString(Args);
Scope = PBP.Scope;
Key = PBP.Key;
IndirectBranches = PBP.BranchTargetEnforcement;
}
CmdArgs.push_back(
Args.MakeArgString(Twine("-msign-return-address=") + Scope));
if (!Scope.equals("none"))
CmdArgs.push_back(
Args.MakeArgString(Twine("-msign-return-address-key=") + Key));
if (IndirectBranches)
CmdArgs.push_back("-mbranch-target-enforce");
}
void Clang::AddARMTargetArgs(const llvm::Triple &Triple, const ArgList &Args,
ArgStringList &CmdArgs, bool KernelOrKext) const {
RenderARMABI(getToolChain().getDriver(), Triple, Args, CmdArgs);
// Determine floating point ABI from the options & target defaults.
arm::FloatABI ABI = arm::getARMFloatABI(getToolChain(), Args);
if (ABI == arm::FloatABI::Soft) {
// Floating point operations and argument passing are soft.
// FIXME: This changes CPP defines, we need -target-soft-float.
CmdArgs.push_back("-msoft-float");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("soft");
} else if (ABI == arm::FloatABI::SoftFP) {
// Floating point operations are hard, but argument passing is soft.
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("soft");
} else {
// Floating point operations and argument passing are hard.
assert(ABI == arm::FloatABI::Hard && "Invalid float abi!");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("hard");
}
// Forward the -mglobal-merge option for explicit control over the pass.
if (Arg *A = Args.getLastArg(options::OPT_mglobal_merge,
options::OPT_mno_global_merge)) {
CmdArgs.push_back("-mllvm");
if (A->getOption().matches(options::OPT_mno_global_merge))
CmdArgs.push_back("-arm-global-merge=false");
else
CmdArgs.push_back("-arm-global-merge=true");
}
if (!Args.hasFlag(options::OPT_mimplicit_float,
options::OPT_mno_implicit_float, true))
CmdArgs.push_back("-no-implicit-float");
if (Args.getLastArg(options::OPT_mcmse))
CmdArgs.push_back("-mcmse");
AddAAPCSVolatileBitfieldArgs(Args, CmdArgs);
// Enable/disable return address signing and indirect branch targets.
CollectARMPACBTIOptions(getToolChain(), Args, CmdArgs, false /*isAArch64*/);
AddUnalignedAccessWarning(CmdArgs);
}
void Clang::RenderTargetOptions(const llvm::Triple &EffectiveTriple,
const ArgList &Args, bool KernelOrKext,
ArgStringList &CmdArgs) const {
const ToolChain &TC = getToolChain();
// Add the target features
getTargetFeatures(TC.getDriver(), EffectiveTriple, Args, CmdArgs, false);
// Add target specific flags.
switch (TC.getArch()) {
default:
break;
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
// Use the effective triple, which takes into account the deployment target.
AddARMTargetArgs(EffectiveTriple, Args, CmdArgs, KernelOrKext);
break;
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32:
case llvm::Triple::aarch64_be:
AddAArch64TargetArgs(Args, CmdArgs);
break;
case llvm::Triple::loongarch32:
case llvm::Triple::loongarch64:
AddLoongArchTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
AddMIPSTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::ppc:
case llvm::Triple::ppcle:
case llvm::Triple::ppc64:
case llvm::Triple::ppc64le:
AddPPCTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
AddRISCVTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::sparc:
case llvm::Triple::sparcel:
case llvm::Triple::sparcv9:
AddSparcTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::systemz:
AddSystemZTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::x86:
case llvm::Triple::x86_64:
AddX86TargetArgs(Args, CmdArgs);
break;
case llvm::Triple::lanai:
AddLanaiTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::hexagon:
AddHexagonTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::wasm32:
case llvm::Triple::wasm64:
AddWebAssemblyTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::ve:
AddVETargetArgs(Args, CmdArgs);
break;
}
}
namespace {
void RenderAArch64ABI(const llvm::Triple &Triple, const ArgList &Args,
ArgStringList &CmdArgs) {
const char *ABIName = nullptr;
if (Arg *A = Args.getLastArg(options::OPT_mabi_EQ))
ABIName = A->getValue();
else if (Triple.isOSDarwin())
ABIName = "darwinpcs";
else
ABIName = "aapcs";
CmdArgs.push_back("-target-abi");
CmdArgs.push_back(ABIName);
}
}
void Clang::AddAArch64TargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
const llvm::Triple &Triple = getToolChain().getEffectiveTriple();
if (!Args.hasFlag(options::OPT_mred_zone, options::OPT_mno_red_zone, true) ||
Args.hasArg(options::OPT_mkernel) ||
Args.hasArg(options::OPT_fapple_kext))
CmdArgs.push_back("-disable-red-zone");
if (!Args.hasFlag(options::OPT_mimplicit_float,
options::OPT_mno_implicit_float, true))
CmdArgs.push_back("-no-implicit-float");
RenderAArch64ABI(Triple, Args, CmdArgs);
// Forward the -mglobal-merge option for explicit control over the pass.
if (Arg *A = Args.getLastArg(options::OPT_mglobal_merge,
options::OPT_mno_global_merge)) {
CmdArgs.push_back("-mllvm");
if (A->getOption().matches(options::OPT_mno_global_merge))
CmdArgs.push_back("-aarch64-enable-global-merge=false");
else
CmdArgs.push_back("-aarch64-enable-global-merge=true");
}
// Enable/disable return address signing and indirect branch targets.
CollectARMPACBTIOptions(getToolChain(), Args, CmdArgs, true /*isAArch64*/);
// Handle -msve_vector_bits=<bits>
if (Arg *A = Args.getLastArg(options::OPT_msve_vector_bits_EQ)) {
StringRef Val = A->getValue();
const Driver &D = getToolChain().getDriver();
if (Val.equals("128") || Val.equals("256") || Val.equals("512") ||
Val.equals("1024") || Val.equals("2048") || Val.equals("128+") ||
Val.equals("256+") || Val.equals("512+") || Val.equals("1024+") ||
Val.equals("2048+")) {
unsigned Bits = 0;
if (Val.endswith("+"))
Val = Val.substr(0, Val.size() - 1);
else {
bool Invalid = Val.getAsInteger(10, Bits); (void)Invalid;
assert(!Invalid && "Failed to parse value");
CmdArgs.push_back(
Args.MakeArgString("-mvscale-max=" + llvm::Twine(Bits / 128)));
}
bool Invalid = Val.getAsInteger(10, Bits); (void)Invalid;
assert(!Invalid && "Failed to parse value");
CmdArgs.push_back(
Args.MakeArgString("-mvscale-min=" + llvm::Twine(Bits / 128)));
// Silently drop requests for vector-length agnostic code as it's implied.
} else if (!Val.equals("scalable"))
// Handle the unsupported values passed to msve-vector-bits.
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Val;
}
AddAAPCSVolatileBitfieldArgs(Args, CmdArgs);
if (const Arg *A = Args.getLastArg(clang::driver::options::OPT_mtune_EQ)) {
CmdArgs.push_back("-tune-cpu");
if (strcmp(A->getValue(), "native") == 0)
CmdArgs.push_back(Args.MakeArgString(llvm::sys::getHostCPUName()));
else
CmdArgs.push_back(A->getValue());
}
AddUnalignedAccessWarning(CmdArgs);
}
void Clang::AddLoongArchTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
CmdArgs.push_back("-target-abi");
CmdArgs.push_back(
loongarch::getLoongArchABI(Args, getToolChain().getTriple()).data());
}
void Clang::AddMIPSTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
const Driver &D = getToolChain().getDriver();
StringRef CPUName;
StringRef ABIName;
const llvm::Triple &Triple = getToolChain().getTriple();
mips::getMipsCPUAndABI(Args, Triple, CPUName, ABIName);
CmdArgs.push_back("-target-abi");
CmdArgs.push_back(ABIName.data());
mips::FloatABI ABI = mips::getMipsFloatABI(D, Args, Triple);
if (ABI == mips::FloatABI::Soft) {
// Floating point operations and argument passing are soft.
CmdArgs.push_back("-msoft-float");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("soft");
} else {
// Floating point operations and argument passing are hard.
assert(ABI == mips::FloatABI::Hard && "Invalid float abi!");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("hard");
}
if (Arg *A = Args.getLastArg(options::OPT_mldc1_sdc1,
options::OPT_mno_ldc1_sdc1)) {
if (A->getOption().matches(options::OPT_mno_ldc1_sdc1)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-mno-ldc1-sdc1");
}
}
if (Arg *A = Args.getLastArg(options::OPT_mcheck_zero_division,
options::OPT_mno_check_zero_division)) {
if (A->getOption().matches(options::OPT_mno_check_zero_division)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-mno-check-zero-division");
}
}
if (Args.getLastArg(options::OPT_mfix4300)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-mfix4300");
}
if (Arg *A = Args.getLastArg(options::OPT_G)) {
StringRef v = A->getValue();
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(Args.MakeArgString("-mips-ssection-threshold=" + v));
A->claim();
}
Arg *GPOpt = Args.getLastArg(options::OPT_mgpopt, options::OPT_mno_gpopt);
Arg *ABICalls =
Args.getLastArg(options::OPT_mabicalls, options::OPT_mno_abicalls);
// -mabicalls is the default for many MIPS environments, even with -fno-pic.
// -mgpopt is the default for static, -fno-pic environments but these two
// options conflict. We want to be certain that -mno-abicalls -mgpopt is
// the only case where -mllvm -mgpopt is passed.
// NOTE: We need a warning here or in the backend to warn when -mgpopt is
// passed explicitly when compiling something with -mabicalls
// (implictly) in affect. Currently the warning is in the backend.
//
// When the ABI in use is N64, we also need to determine the PIC mode that
// is in use, as -fno-pic for N64 implies -mno-abicalls.
bool NoABICalls =
ABICalls && ABICalls->getOption().matches(options::OPT_mno_abicalls);
llvm::Reloc::Model RelocationModel;
unsigned PICLevel;
bool IsPIE;
std::tie(RelocationModel, PICLevel, IsPIE) =
ParsePICArgs(getToolChain(), Args);
NoABICalls = NoABICalls ||
(RelocationModel == llvm::Reloc::Static && ABIName == "n64");
bool WantGPOpt = GPOpt && GPOpt->getOption().matches(options::OPT_mgpopt);
// We quietly ignore -mno-gpopt as the backend defaults to -mno-gpopt.
if (NoABICalls && (!GPOpt || WantGPOpt)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-mgpopt");
Arg *LocalSData = Args.getLastArg(options::OPT_mlocal_sdata,
options::OPT_mno_local_sdata);
Arg *ExternSData = Args.getLastArg(options::OPT_mextern_sdata,
options::OPT_mno_extern_sdata);
Arg *EmbeddedData = Args.getLastArg(options::OPT_membedded_data,
options::OPT_mno_embedded_data);
if (LocalSData) {
CmdArgs.push_back("-mllvm");
if (LocalSData->getOption().matches(options::OPT_mlocal_sdata)) {
CmdArgs.push_back("-mlocal-sdata=1");
} else {
CmdArgs.push_back("-mlocal-sdata=0");
}
LocalSData->claim();
}
if (ExternSData) {
CmdArgs.push_back("-mllvm");
if (ExternSData->getOption().matches(options::OPT_mextern_sdata)) {
CmdArgs.push_back("-mextern-sdata=1");
} else {
CmdArgs.push_back("-mextern-sdata=0");
}
ExternSData->claim();
}
if (EmbeddedData) {
CmdArgs.push_back("-mllvm");
if (EmbeddedData->getOption().matches(options::OPT_membedded_data)) {
CmdArgs.push_back("-membedded-data=1");
} else {
CmdArgs.push_back("-membedded-data=0");
}
EmbeddedData->claim();
}
} else if ((!ABICalls || (!NoABICalls && ABICalls)) && WantGPOpt)
D.Diag(diag::warn_drv_unsupported_gpopt) << (ABICalls ? 0 : 1);
if (GPOpt)
GPOpt->claim();
if (Arg *A = Args.getLastArg(options::OPT_mcompact_branches_EQ)) {
StringRef Val = StringRef(A->getValue());
if (mips::hasCompactBranches(CPUName)) {
if (Val == "never" || Val == "always" || Val == "optimal") {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(Args.MakeArgString("-mips-compact-branches=" + Val));
} else
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Val;
} else
D.Diag(diag::warn_target_unsupported_compact_branches) << CPUName;
}
if (Arg *A = Args.getLastArg(options::OPT_mrelax_pic_calls,
options::OPT_mno_relax_pic_calls)) {
if (A->getOption().matches(options::OPT_mno_relax_pic_calls)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-mips-jalr-reloc=0");
}
}
}
void Clang::AddPPCTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
if (const Arg *A = Args.getLastArg(options::OPT_mtune_EQ)) {
CmdArgs.push_back("-tune-cpu");
if (strcmp(A->getValue(), "native") == 0)
CmdArgs.push_back(Args.MakeArgString(llvm::sys::getHostCPUName()));
else
CmdArgs.push_back(A->getValue());
}
// Select the ABI to use.
const char *ABIName = nullptr;
const llvm::Triple &T = getToolChain().getTriple();
if (T.isOSBinFormatELF()) {
switch (getToolChain().getArch()) {
case llvm::Triple::ppc64: {
if ((T.isOSFreeBSD() && T.getOSMajorVersion() >= 13) ||
T.isOSOpenBSD() || T.isMusl())
ABIName = "elfv2";
else
ABIName = "elfv1";
break;
}
case llvm::Triple::ppc64le:
ABIName = "elfv2";
break;
default:
break;
}
}
bool IEEELongDouble = getToolChain().defaultToIEEELongDouble();
for (const Arg *A : Args.filtered(options::OPT_mabi_EQ)) {
StringRef V = A->getValue();
if (V == "ieeelongdouble")
IEEELongDouble = true;
else if (V == "ibmlongdouble")
IEEELongDouble = false;
else if (V != "altivec")
// The ppc64 linux abis are all "altivec" abis by default. Accept and ignore
// the option if given as we don't have backend support for any targets
// that don't use the altivec abi.
ABIName = A->getValue();
}
if (IEEELongDouble)
CmdArgs.push_back("-mabi=ieeelongdouble");
ppc::FloatABI FloatABI =
ppc::getPPCFloatABI(getToolChain().getDriver(), Args);
if (FloatABI == ppc::FloatABI::Soft) {
// Floating point operations and argument passing are soft.
CmdArgs.push_back("-msoft-float");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("soft");
} else {
// Floating point operations and argument passing are hard.
assert(FloatABI == ppc::FloatABI::Hard && "Invalid float abi!");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("hard");
}
if (ABIName) {
CmdArgs.push_back("-target-abi");
CmdArgs.push_back(ABIName);
}
}
static void SetRISCVSmallDataLimit(const ToolChain &TC, const ArgList &Args,
ArgStringList &CmdArgs) {
const Driver &D = TC.getDriver();
const llvm::Triple &Triple = TC.getTriple();
// Default small data limitation is eight.
const char *SmallDataLimit = "8";
// Get small data limitation.
if (Args.getLastArg(options::OPT_shared, options::OPT_fpic,
options::OPT_fPIC)) {
// Not support linker relaxation for PIC.
SmallDataLimit = "0";
if (Args.hasArg(options::OPT_G)) {
D.Diag(diag::warn_drv_unsupported_sdata);
}
} else if (Args.getLastArgValue(options::OPT_mcmodel_EQ)
.equals_insensitive("large") &&
(Triple.getArch() == llvm::Triple::riscv64)) {
// Not support linker relaxation for RV64 with large code model.
SmallDataLimit = "0";
if (Args.hasArg(options::OPT_G)) {
D.Diag(diag::warn_drv_unsupported_sdata);
}
} else if (Arg *A = Args.getLastArg(options::OPT_G)) {
SmallDataLimit = A->getValue();
}
// Forward the -msmall-data-limit= option.
CmdArgs.push_back("-msmall-data-limit");
CmdArgs.push_back(SmallDataLimit);
}
void Clang::AddRISCVTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
const llvm::Triple &Triple = getToolChain().getTriple();
StringRef ABIName = riscv::getRISCVABI(Args, Triple);
CmdArgs.push_back("-target-abi");
CmdArgs.push_back(ABIName.data());
SetRISCVSmallDataLimit(getToolChain(), Args, CmdArgs);
if (!Args.hasFlag(options::OPT_mimplicit_float,
options::OPT_mno_implicit_float, true))
CmdArgs.push_back("-no-implicit-float");
if (const Arg *A = Args.getLastArg(options::OPT_mtune_EQ)) {
CmdArgs.push_back("-tune-cpu");
CmdArgs.push_back(A->getValue());
}
}
void Clang::AddSparcTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
sparc::FloatABI FloatABI =
sparc::getSparcFloatABI(getToolChain().getDriver(), Args);
if (FloatABI == sparc::FloatABI::Soft) {
// Floating point operations and argument passing are soft.
CmdArgs.push_back("-msoft-float");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("soft");
} else {
// Floating point operations and argument passing are hard.
assert(FloatABI == sparc::FloatABI::Hard && "Invalid float abi!");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("hard");
}
if (const Arg *A = Args.getLastArg(clang::driver::options::OPT_mtune_EQ)) {
StringRef Name = A->getValue();
std::string TuneCPU;
if (Name == "native")
TuneCPU = std::string(llvm::sys::getHostCPUName());
else
TuneCPU = std::string(Name);
CmdArgs.push_back("-tune-cpu");
CmdArgs.push_back(Args.MakeArgString(TuneCPU));
}
}
void Clang::AddSystemZTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
if (const Arg *A = Args.getLastArg(options::OPT_mtune_EQ)) {
CmdArgs.push_back("-tune-cpu");
if (strcmp(A->getValue(), "native") == 0)
CmdArgs.push_back(Args.MakeArgString(llvm::sys::getHostCPUName()));
else
CmdArgs.push_back(A->getValue());
}
bool HasBackchain =
Args.hasFlag(options::OPT_mbackchain, options::OPT_mno_backchain, false);
bool HasPackedStack = Args.hasFlag(options::OPT_mpacked_stack,
options::OPT_mno_packed_stack, false);
systemz::FloatABI FloatABI =
systemz::getSystemZFloatABI(getToolChain().getDriver(), Args);
bool HasSoftFloat = (FloatABI == systemz::FloatABI::Soft);
if (HasBackchain && HasPackedStack && !HasSoftFloat) {
const Driver &D = getToolChain().getDriver();
D.Diag(diag::err_drv_unsupported_opt)
<< "-mpacked-stack -mbackchain -mhard-float";
}
if (HasBackchain)
CmdArgs.push_back("-mbackchain");
if (HasPackedStack)
CmdArgs.push_back("-mpacked-stack");
if (HasSoftFloat) {
// Floating point operations and argument passing are soft.
CmdArgs.push_back("-msoft-float");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("soft");
}
}
void Clang::AddX86TargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
const Driver &D = getToolChain().getDriver();
addX86AlignBranchArgs(D, Args, CmdArgs, /*IsLTO=*/false);
if (!Args.hasFlag(options::OPT_mred_zone, options::OPT_mno_red_zone, true) ||
Args.hasArg(options::OPT_mkernel) ||
Args.hasArg(options::OPT_fapple_kext))
CmdArgs.push_back("-disable-red-zone");
if (!Args.hasFlag(options::OPT_mtls_direct_seg_refs,
options::OPT_mno_tls_direct_seg_refs, true))
CmdArgs.push_back("-mno-tls-direct-seg-refs");
// Default to avoid implicit floating-point for kernel/kext code, but allow
// that to be overridden with -mno-soft-float.
bool NoImplicitFloat = (Args.hasArg(options::OPT_mkernel) ||
Args.hasArg(options::OPT_fapple_kext));
if (Arg *A = Args.getLastArg(
options::OPT_msoft_float, options::OPT_mno_soft_float,
options::OPT_mimplicit_float, options::OPT_mno_implicit_float)) {
const Option &O = A->getOption();
NoImplicitFloat = (O.matches(options::OPT_mno_implicit_float) ||
O.matches(options::OPT_msoft_float));
}
if (NoImplicitFloat)
CmdArgs.push_back("-no-implicit-float");
if (Arg *A = Args.getLastArg(options::OPT_masm_EQ)) {
StringRef Value = A->getValue();
if (Value == "intel" || Value == "att") {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(Args.MakeArgString("-x86-asm-syntax=" + Value));
CmdArgs.push_back(Args.MakeArgString("-inline-asm=" + Value));
} else {
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Value;
}
} else if (D.IsCLMode()) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-x86-asm-syntax=intel");
}
if (Arg *A = Args.getLastArg(options::OPT_mskip_rax_setup,
options::OPT_mno_skip_rax_setup))
if (A->getOption().matches(options::OPT_mskip_rax_setup))
CmdArgs.push_back(Args.MakeArgString("-mskip-rax-setup"));
// Set flags to support MCU ABI.
if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("soft");
CmdArgs.push_back("-mstack-alignment=4");
}
// Handle -mtune.
// Default to "generic" unless -march is present or targetting the PS4/PS5.
std::string TuneCPU;
if (!Args.hasArg(clang::driver::options::OPT_march_EQ) &&
!getToolChain().getTriple().isPS())
TuneCPU = "generic";
// Override based on -mtune.
if (const Arg *A = Args.getLastArg(clang::driver::options::OPT_mtune_EQ)) {
StringRef Name = A->getValue();
if (Name == "native") {
Name = llvm::sys::getHostCPUName();
if (!Name.empty())
TuneCPU = std::string(Name);
} else
TuneCPU = std::string(Name);
}
if (!TuneCPU.empty()) {
CmdArgs.push_back("-tune-cpu");
CmdArgs.push_back(Args.MakeArgString(TuneCPU));
}
}
void Clang::AddHexagonTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
CmdArgs.push_back("-mqdsp6-compat");
CmdArgs.push_back("-Wreturn-type");
if (auto G = toolchains::HexagonToolChain::getSmallDataThreshold(Args)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(Args.MakeArgString("-hexagon-small-data-threshold=" +
Twine(G.value())));
}
if (!Args.hasArg(options::OPT_fno_short_enums))
CmdArgs.push_back("-fshort-enums");
if (Args.getLastArg(options::OPT_mieee_rnd_near)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-enable-hexagon-ieee-rnd-near");
}
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-machine-sink-split=0");
}
void Clang::AddLanaiTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
if (Arg *A = Args.getLastArg(options::OPT_mcpu_EQ)) {
StringRef CPUName = A->getValue();
CmdArgs.push_back("-target-cpu");
CmdArgs.push_back(Args.MakeArgString(CPUName));
}
if (Arg *A = Args.getLastArg(options::OPT_mregparm_EQ)) {
StringRef Value = A->getValue();
// Only support mregparm=4 to support old usage. Report error for all other
// cases.
int Mregparm;
if (Value.getAsInteger(10, Mregparm)) {
if (Mregparm != 4) {
getToolChain().getDriver().Diag(
diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Value;
}
}
}
}
void Clang::AddWebAssemblyTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
// Default to "hidden" visibility.
if (!Args.hasArg(options::OPT_fvisibility_EQ,
options::OPT_fvisibility_ms_compat))
CmdArgs.push_back("-fvisibility=hidden");
}
void Clang::AddVETargetArgs(const ArgList &Args, ArgStringList &CmdArgs) const {
// Floating point operations and argument passing are hard.
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("hard");
}
void Clang::DumpCompilationDatabase(Compilation &C, StringRef Filename,
StringRef Target, const InputInfo &Output,
const InputInfo &Input, const ArgList &Args) const {
// If this is a dry run, do not create the compilation database file.
if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH))
return;
using llvm::yaml::escape;
const Driver &D = getToolChain().getDriver();
if (!CompilationDatabase) {
std::error_code EC;
auto File = std::make_unique<llvm::raw_fd_ostream>(
Filename, EC,
llvm::sys::fs::OF_TextWithCRLF | llvm::sys::fs::OF_Append);
if (EC) {
D.Diag(clang::diag::err_drv_compilationdatabase) << Filename
<< EC.message();
return;
}
CompilationDatabase = std::move(File);
}
auto &CDB = *CompilationDatabase;
auto CWD = D.getVFS().getCurrentWorkingDirectory();
if (!CWD)
CWD = ".";
CDB << "{ \"directory\": \"" << escape(*CWD) << "\"";
CDB << ", \"file\": \"" << escape(Input.getFilename()) << "\"";
CDB << ", \"output\": \"" << escape(Output.getFilename()) << "\"";
CDB << ", \"arguments\": [\"" << escape(D.ClangExecutable) << "\"";
SmallString<128> Buf;
Buf = "-x";
Buf += types::getTypeName(Input.getType());
CDB << ", \"" << escape(Buf) << "\"";
if (!D.SysRoot.empty() && !Args.hasArg(options::OPT__sysroot_EQ)) {
Buf = "--sysroot=";
Buf += D.SysRoot;
CDB << ", \"" << escape(Buf) << "\"";
}
CDB << ", \"" << escape(Input.getFilename()) << "\"";
CDB << ", \"-o\", \"" << escape(Output.getFilename()) << "\"";
for (auto &A: Args) {
auto &O = A->getOption();
// Skip language selection, which is positional.
if (O.getID() == options::OPT_x)
continue;
// Skip writing dependency output and the compilation database itself.
if (O.getGroup().isValid() && O.getGroup().getID() == options::OPT_M_Group)
continue;
if (O.getID() == options::OPT_gen_cdb_fragment_path)
continue;
// Skip inputs.
if (O.getKind() == Option::InputClass)
continue;
// Skip output.
if (O.getID() == options::OPT_o)
continue;
// All other arguments are quoted and appended.
ArgStringList ASL;
A->render(Args, ASL);
for (auto &it: ASL)
CDB << ", \"" << escape(it) << "\"";
}
Buf = "--target=";
Buf += Target;
CDB << ", \"" << escape(Buf) << "\"]},\n";
}
void Clang::DumpCompilationDatabaseFragmentToDir(
StringRef Dir, Compilation &C, StringRef Target, const InputInfo &Output,
const InputInfo &Input, const llvm::opt::ArgList &Args) const {
// If this is a dry run, do not create the compilation database file.
if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH))
return;
if (CompilationDatabase)
DumpCompilationDatabase(C, "", Target, Output, Input, Args);
SmallString<256> Path = Dir;
const auto &Driver = C.getDriver();
Driver.getVFS().makeAbsolute(Path);
auto Err = llvm::sys::fs::create_directory(Path, /*IgnoreExisting=*/true);
if (Err) {
Driver.Diag(diag::err_drv_compilationdatabase) << Dir << Err.message();
return;
}
llvm::sys::path::append(
Path,
Twine(llvm::sys::path::filename(Input.getFilename())) + ".%%%%.json");
int FD;
SmallString<256> TempPath;
Err = llvm::sys::fs::createUniqueFile(Path, FD, TempPath,
llvm::sys::fs::OF_Text);
if (Err) {
Driver.Diag(diag::err_drv_compilationdatabase) << Path << Err.message();
return;
}
CompilationDatabase =
std::make_unique<llvm::raw_fd_ostream>(FD, /*shouldClose=*/true);
DumpCompilationDatabase(C, "", Target, Output, Input, Args);
}
static bool CheckARMImplicitITArg(StringRef Value) {
return Value == "always" || Value == "never" || Value == "arm" ||
Value == "thumb";
}
static void AddARMImplicitITArgs(const ArgList &Args, ArgStringList &CmdArgs,
StringRef Value) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(Args.MakeArgString("-arm-implicit-it=" + Value));
}
static void CollectArgsForIntegratedAssembler(Compilation &C,
const ArgList &Args,
ArgStringList &CmdArgs,
const Driver &D) {
if (UseRelaxAll(C, Args))
CmdArgs.push_back("-mrelax-all");
// Only default to -mincremental-linker-compatible if we think we are
// targeting the MSVC linker.
bool DefaultIncrementalLinkerCompatible =
C.getDefaultToolChain().getTriple().isWindowsMSVCEnvironment();
if (Args.hasFlag(options::OPT_mincremental_linker_compatible,
options::OPT_mno_incremental_linker_compatible,
DefaultIncrementalLinkerCompatible))
CmdArgs.push_back("-mincremental-linker-compatible");
Args.AddLastArg(CmdArgs, options::OPT_femit_dwarf_unwind_EQ);
// If you add more args here, also add them to the block below that
// starts with "// If CollectArgsForIntegratedAssembler() isn't called below".
// When passing -I arguments to the assembler we sometimes need to
// unconditionally take the next argument. For example, when parsing
// '-Wa,-I -Wa,foo' we need to accept the -Wa,foo arg after seeing the
// -Wa,-I arg and when parsing '-Wa,-I,foo' we need to accept the 'foo'
// arg after parsing the '-I' arg.
bool TakeNextArg = false;
bool UseRelaxRelocations = C.getDefaultToolChain().useRelaxRelocations();
bool UseNoExecStack = false;
const char *MipsTargetFeature = nullptr;
StringRef ImplicitIt;
for (const Arg *A :
Args.filtered(options::OPT_Wa_COMMA, options::OPT_Xassembler,
options::OPT_mimplicit_it_EQ)) {
A->claim();
if (A->getOption().getID() == options::OPT_mimplicit_it_EQ) {
switch (C.getDefaultToolChain().getArch()) {
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
// Only store the value; the last value set takes effect.
ImplicitIt = A->getValue();
if (!CheckARMImplicitITArg(ImplicitIt))
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << ImplicitIt;
continue;
default:
break;
}
}
for (StringRef Value : A->getValues()) {
if (TakeNextArg) {
CmdArgs.push_back(Value.data());
TakeNextArg = false;
continue;
}
if (C.getDefaultToolChain().getTriple().isOSBinFormatCOFF() &&
Value == "-mbig-obj")
continue; // LLVM handles bigobj automatically
switch (C.getDefaultToolChain().getArch()) {
default:
break;
case llvm::Triple::wasm32:
case llvm::Triple::wasm64:
if (Value == "--no-type-check") {
CmdArgs.push_back("-mno-type-check");
continue;
}
break;
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
case llvm::Triple::arm:
case llvm::Triple::armeb:
if (Value.startswith("-mimplicit-it=")) {
// Only store the value; the last value set takes effect.
ImplicitIt = Value.split("=").second;
if (CheckARMImplicitITArg(ImplicitIt))
continue;
}
if (Value == "-mthumb")
// -mthumb has already been processed in ComputeLLVMTriple()
// recognize but skip over here.
continue;
break;
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
if (Value == "--trap") {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back("+use-tcc-in-div");
continue;
}
if (Value == "--break") {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back("-use-tcc-in-div");
continue;
}
if (Value.startswith("-msoft-float")) {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back("+soft-float");
continue;
}
if (Value.startswith("-mhard-float")) {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back("-soft-float");
continue;
}
MipsTargetFeature = llvm::StringSwitch<const char *>(Value)
.Case("-mips1", "+mips1")
.Case("-mips2", "+mips2")
.Case("-mips3", "+mips3")
.Case("-mips4", "+mips4")
.Case("-mips5", "+mips5")
.Case("-mips32", "+mips32")
.Case("-mips32r2", "+mips32r2")
.Case("-mips32r3", "+mips32r3")
.Case("-mips32r5", "+mips32r5")
.Case("-mips32r6", "+mips32r6")
.Case("-mips64", "+mips64")
.Case("-mips64r2", "+mips64r2")
.Case("-mips64r3", "+mips64r3")
.Case("-mips64r5", "+mips64r5")
.Case("-mips64r6", "+mips64r6")
.Default(nullptr);
if (MipsTargetFeature)
continue;
}
if (Value == "-force_cpusubtype_ALL") {
// Do nothing, this is the default and we don't support anything else.
} else if (Value == "-L") {
CmdArgs.push_back("-msave-temp-labels");
} else if (Value == "--fatal-warnings") {
CmdArgs.push_back("-massembler-fatal-warnings");
} else if (Value == "--no-warn" || Value == "-W") {
CmdArgs.push_back("-massembler-no-warn");
} else if (Value == "--noexecstack") {
UseNoExecStack = true;
} else if (Value.startswith("-compress-debug-sections") ||
Value.startswith("--compress-debug-sections") ||
Value == "-nocompress-debug-sections" ||
Value == "--nocompress-debug-sections") {
CmdArgs.push_back(Value.data());
} else if (Value == "-mrelax-relocations=yes" ||
Value == "--mrelax-relocations=yes") {
UseRelaxRelocations = true;
} else if (Value == "-mrelax-relocations=no" ||
Value == "--mrelax-relocations=no") {
UseRelaxRelocations = false;
} else if (Value.startswith("-I")) {
CmdArgs.push_back(Value.data());
// We need to consume the next argument if the current arg is a plain
// -I. The next arg will be the include directory.
if (Value == "-I")
TakeNextArg = true;
} else if (Value.startswith("-gdwarf-")) {
// "-gdwarf-N" options are not cc1as options.
unsigned DwarfVersion = DwarfVersionNum(Value);
if (DwarfVersion == 0) { // Send it onward, and let cc1as complain.
CmdArgs.push_back(Value.data());
} else {
RenderDebugEnablingArgs(Args, CmdArgs,
codegenoptions::DebugInfoConstructor,
DwarfVersion, llvm::DebuggerKind::Default);
}
} else if (Value.startswith("-mcpu") || Value.startswith("-mfpu") ||
Value.startswith("-mhwdiv") || Value.startswith("-march")) {
// Do nothing, we'll validate it later.
} else if (Value == "-defsym") {
if (A->getNumValues() != 2) {
D.Diag(diag::err_drv_defsym_invalid_format) << Value;
break;
}
const char *S = A->getValue(1);
auto Pair = StringRef(S).split('=');
auto Sym = Pair.first;
auto SVal = Pair.second;
if (Sym.empty() || SVal.empty()) {
D.Diag(diag::err_drv_defsym_invalid_format) << S;
break;
}
int64_t IVal;
if (SVal.getAsInteger(0, IVal)) {
D.Diag(diag::err_drv_defsym_invalid_symval) << SVal;
break;
}
CmdArgs.push_back(Value.data());
TakeNextArg = true;
} else if (Value == "-fdebug-compilation-dir") {
CmdArgs.push_back("-fdebug-compilation-dir");
TakeNextArg = true;
} else if (Value.consume_front("-fdebug-compilation-dir=")) {
// The flag is a -Wa / -Xassembler argument and Options doesn't
// parse the argument, so this isn't automatically aliased to
// -fdebug-compilation-dir (without '=') here.
CmdArgs.push_back("-fdebug-compilation-dir");
CmdArgs.push_back(Value.data());
} else if (Value == "--version") {
D.PrintVersion(C, llvm::outs());
} else {
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Value;
}
}
}
if (ImplicitIt.size())
AddARMImplicitITArgs(Args, CmdArgs, ImplicitIt);
if (UseRelaxRelocations)
CmdArgs.push_back("--mrelax-relocations");
if (UseNoExecStack)
CmdArgs.push_back("-mnoexecstack");
if (MipsTargetFeature != nullptr) {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back(MipsTargetFeature);
}
// forward -fembed-bitcode to assmebler
if (C.getDriver().embedBitcodeEnabled() ||
C.getDriver().embedBitcodeMarkerOnly())
Args.AddLastArg(CmdArgs, options::OPT_fembed_bitcode_EQ);
}
static void RenderFloatingPointOptions(const ToolChain &TC, const Driver &D,
bool OFastEnabled, const ArgList &Args,
ArgStringList &CmdArgs,
const JobAction &JA) {
// Handle various floating point optimization flags, mapping them to the
// appropriate LLVM code generation flags. This is complicated by several
// "umbrella" flags, so we do this by stepping through the flags incrementally
// adjusting what we think is enabled/disabled, then at the end setting the
// LLVM flags based on the final state.
bool HonorINFs = true;
bool HonorNaNs = true;
bool ApproxFunc = false;
// -fmath-errno is the default on some platforms, e.g. BSD-derived OSes.
bool MathErrno = TC.IsMathErrnoDefault();
bool AssociativeMath = false;
bool ReciprocalMath = false;
bool SignedZeros = true;
bool TrappingMath = false; // Implemented via -ffp-exception-behavior
bool TrappingMathPresent = false; // Is trapping-math in args, and not
// overriden by ffp-exception-behavior?
bool RoundingFPMath = false;
bool RoundingMathPresent = false; // Is rounding-math in args?
// -ffp-model values: strict, fast, precise
StringRef FPModel = "";
// -ffp-exception-behavior options: strict, maytrap, ignore
StringRef FPExceptionBehavior = "";
// -ffp-eval-method options: double, extended, source
StringRef FPEvalMethod = "";
const llvm::DenormalMode DefaultDenormalFPMath =
TC.getDefaultDenormalModeForType(Args, JA);
const llvm::DenormalMode DefaultDenormalFP32Math =
TC.getDefaultDenormalModeForType(Args, JA, &llvm::APFloat::IEEEsingle());
llvm::DenormalMode DenormalFPMath = DefaultDenormalFPMath;
llvm::DenormalMode DenormalFP32Math = DefaultDenormalFP32Math;
// CUDA and HIP don't rely on the frontend to pass an ffp-contract option.
// If one wasn't given by the user, don't pass it here.
StringRef FPContract;
StringRef LastSeenFfpContractOption;
bool SeenFfastMathOption = false;
if (!JA.isDeviceOffloading(Action::OFK_Cuda) &&
!JA.isOffloading(Action::OFK_HIP))
FPContract = "on";
bool StrictFPModel = false;
if (const Arg *A = Args.getLastArg(options::OPT_flimited_precision_EQ)) {
CmdArgs.push_back("-mlimit-float-precision");
CmdArgs.push_back(A->getValue());
}
for (const Arg *A : Args) {
auto optID = A->getOption().getID();
bool PreciseFPModel = false;
switch (optID) {
default:
break;
case options::OPT_ffp_model_EQ: {
// If -ffp-model= is seen, reset to fno-fast-math
HonorINFs = true;
HonorNaNs = true;
// Turning *off* -ffast-math restores the toolchain default.
MathErrno = TC.IsMathErrnoDefault();
AssociativeMath = false;
ReciprocalMath = false;
SignedZeros = true;
// -fno_fast_math restores default denormal and fpcontract handling
FPContract = "on";
DenormalFPMath = llvm::DenormalMode::getIEEE();
// FIXME: The target may have picked a non-IEEE default mode here based on
// -cl-denorms-are-zero. Should the target consider -fp-model interaction?
DenormalFP32Math = llvm::DenormalMode::getIEEE();
StringRef Val = A->getValue();
if (OFastEnabled && !Val.equals("fast")) {
// Only -ffp-model=fast is compatible with OFast, ignore.
D.Diag(clang::diag::warn_drv_overriding_flag_option)
<< Args.MakeArgString("-ffp-model=" + Val)
<< "-Ofast";
break;
}
StrictFPModel = false;
PreciseFPModel = true;
// ffp-model= is a Driver option, it is entirely rewritten into more
// granular options before being passed into cc1.
// Use the gcc option in the switch below.
if (!FPModel.empty() && !FPModel.equals(Val))
D.Diag(clang::diag::warn_drv_overriding_flag_option)
<< Args.MakeArgString("-ffp-model=" + FPModel)
<< Args.MakeArgString("-ffp-model=" + Val);
if (Val.equals("fast")) {
optID = options::OPT_ffast_math;
FPModel = Val;
FPContract = "fast";
} else if (Val.equals("precise")) {
optID = options::OPT_ffp_contract;
FPModel = Val;
FPContract = "on";
PreciseFPModel = true;
} else if (Val.equals("strict")) {
StrictFPModel = true;
optID = options::OPT_frounding_math;
FPExceptionBehavior = "strict";
FPModel = Val;
FPContract = "off";
TrappingMath = true;
} else
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Val;
break;
}
}
switch (optID) {
// If this isn't an FP option skip the claim below
default: continue;
// Options controlling individual features
case options::OPT_fhonor_infinities: HonorINFs = true; break;
case options::OPT_fno_honor_infinities: HonorINFs = false; break;
case options::OPT_fhonor_nans: HonorNaNs = true; break;
case options::OPT_fno_honor_nans: HonorNaNs = false; break;
case options::OPT_fapprox_func: ApproxFunc = true; break;
case options::OPT_fno_approx_func: ApproxFunc = false; break;
case options::OPT_fmath_errno: MathErrno = true; break;
case options::OPT_fno_math_errno: MathErrno = false; break;
case options::OPT_fassociative_math: AssociativeMath = true; break;
case options::OPT_fno_associative_math: AssociativeMath = false; break;
case options::OPT_freciprocal_math: ReciprocalMath = true; break;
case options::OPT_fno_reciprocal_math: ReciprocalMath = false; break;
case options::OPT_fsigned_zeros: SignedZeros = true; break;
case options::OPT_fno_signed_zeros: SignedZeros = false; break;
case options::OPT_ftrapping_math:
if (!TrappingMathPresent && !FPExceptionBehavior.empty() &&
!FPExceptionBehavior.equals("strict"))
// Warn that previous value of option is overridden.
D.Diag(clang::diag::warn_drv_overriding_flag_option)
<< Args.MakeArgString("-ffp-exception-behavior=" + FPExceptionBehavior)
<< "-ftrapping-math";
TrappingMath = true;
TrappingMathPresent = true;
FPExceptionBehavior = "strict";
break;
case options::OPT_fno_trapping_math:
if (!TrappingMathPresent && !FPExceptionBehavior.empty() &&
!FPExceptionBehavior.equals("ignore"))
// Warn that previous value of option is overridden.
D.Diag(clang::diag::warn_drv_overriding_flag_option)
<< Args.MakeArgString("-ffp-exception-behavior=" + FPExceptionBehavior)
<< "-fno-trapping-math";
TrappingMath = false;
TrappingMathPresent = true;
FPExceptionBehavior = "ignore";
break;
case options::OPT_frounding_math:
RoundingFPMath = true;
RoundingMathPresent = true;
break;
case options::OPT_fno_rounding_math:
RoundingFPMath = false;
RoundingMathPresent = false;
break;
case options::OPT_fdenormal_fp_math_EQ:
DenormalFPMath = llvm::parseDenormalFPAttribute(A->getValue());
DenormalFP32Math = DenormalFPMath;
if (!DenormalFPMath.isValid()) {
D.Diag(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
}
break;
case options::OPT_fdenormal_fp_math_f32_EQ:
DenormalFP32Math = llvm::parseDenormalFPAttribute(A->getValue());
if (!DenormalFP32Math.isValid()) {
D.Diag(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
}
break;
// Validate and pass through -ffp-contract option.
case options::OPT_ffp_contract: {
StringRef Val = A->getValue();
if (PreciseFPModel) {
// -ffp-model=precise enables ffp-contract=on.
// -ffp-model=precise sets PreciseFPModel to on and Val to
// "precise". FPContract is set.
;
} else if (Val.equals("fast") || Val.equals("on") || Val.equals("off")) {
FPContract = Val;
LastSeenFfpContractOption = Val;
} else
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Val;
break;
}
// Validate and pass through -ffp-model option.
case options::OPT_ffp_model_EQ:
// This should only occur in the error case
// since the optID has been replaced by a more granular
// floating point option.
break;
// Validate and pass through -ffp-exception-behavior option.
case options::OPT_ffp_exception_behavior_EQ: {
StringRef Val = A->getValue();
if (!TrappingMathPresent && !FPExceptionBehavior.empty() &&
!FPExceptionBehavior.equals(Val))
// Warn that previous value of option is overridden.
D.Diag(clang::diag::warn_drv_overriding_flag_option)
<< Args.MakeArgString("-ffp-exception-behavior=" + FPExceptionBehavior)
<< Args.MakeArgString("-ffp-exception-behavior=" + Val);
TrappingMath = TrappingMathPresent = false;
if (Val.equals("ignore") || Val.equals("maytrap"))
FPExceptionBehavior = Val;
else if (Val.equals("strict")) {
FPExceptionBehavior = Val;
TrappingMath = TrappingMathPresent = true;
} else
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Val;
break;
}
// Validate and pass through -ffp-eval-method option.
case options::OPT_ffp_eval_method_EQ: {
StringRef Val = A->getValue();
if (Val.equals("double") || Val.equals("extended") ||
Val.equals("source"))
FPEvalMethod = Val;
else
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Val;
break;
}
case options::OPT_ffinite_math_only:
HonorINFs = false;
HonorNaNs = false;
break;
case options::OPT_fno_finite_math_only:
HonorINFs = true;
HonorNaNs = true;
break;
case options::OPT_funsafe_math_optimizations:
AssociativeMath = true;
ReciprocalMath = true;
SignedZeros = false;
ApproxFunc = true;
TrappingMath = false;
FPExceptionBehavior = "";
break;
case options::OPT_fno_unsafe_math_optimizations:
AssociativeMath = false;
ReciprocalMath = false;
SignedZeros = true;
ApproxFunc = false;
TrappingMath = true;
FPExceptionBehavior = "strict";
// The target may have opted to flush by default, so force IEEE.
DenormalFPMath = llvm::DenormalMode::getIEEE();
DenormalFP32Math = llvm::DenormalMode::getIEEE();
break;
case options::OPT_Ofast:
// If -Ofast is the optimization level, then -ffast-math should be enabled
if (!OFastEnabled)
continue;
[[fallthrough]];
case options::OPT_ffast_math:
HonorINFs = false;
HonorNaNs = false;
MathErrno = false;
AssociativeMath = true;
ReciprocalMath = true;
ApproxFunc = true;
SignedZeros = false;
TrappingMath = false;
RoundingFPMath = false;
// If fast-math is set then set the fp-contract mode to fast.
FPContract = "fast";
SeenFfastMathOption = true;
break;
case options::OPT_fno_fast_math:
HonorINFs = true;
HonorNaNs = true;
// Turning on -ffast-math (with either flag) removes the need for
// MathErrno. However, turning *off* -ffast-math merely restores the
// toolchain default (which may be false).
MathErrno = TC.IsMathErrnoDefault();
AssociativeMath = false;
ReciprocalMath = false;
ApproxFunc = false;
SignedZeros = true;
// -fno_fast_math restores default denormal and fpcontract handling
DenormalFPMath = DefaultDenormalFPMath;
DenormalFP32Math = llvm::DenormalMode::getIEEE();
if (!JA.isDeviceOffloading(Action::OFK_Cuda) &&
!JA.isOffloading(Action::OFK_HIP)) {
if (LastSeenFfpContractOption != "") {
FPContract = LastSeenFfpContractOption;
} else if (SeenFfastMathOption)
FPContract = "on";
}
break;
}
if (StrictFPModel) {
// If -ffp-model=strict has been specified on command line but
// subsequent options conflict then emit warning diagnostic.
if (HonorINFs && HonorNaNs && !AssociativeMath && !ReciprocalMath &&
SignedZeros && TrappingMath && RoundingFPMath && !ApproxFunc &&
DenormalFPMath == llvm::DenormalMode::getIEEE() &&
DenormalFP32Math == llvm::DenormalMode::getIEEE() &&
FPContract.equals("off"))
// OK: Current Arg doesn't conflict with -ffp-model=strict
;
else {
StrictFPModel = false;
FPModel = "";
D.Diag(clang::diag::warn_drv_overriding_flag_option)
<< "-ffp-model=strict" <<
((A->getNumValues() == 0) ? A->getSpelling()
: Args.MakeArgString(A->getSpelling() + A->getValue()));
}
}
// If we handled this option claim it
A->claim();
}
if (!HonorINFs)
CmdArgs.push_back("-menable-no-infs");
if (!HonorNaNs)
CmdArgs.push_back("-menable-no-nans");
if (ApproxFunc)
CmdArgs.push_back("-fapprox-func");
if (MathErrno)
CmdArgs.push_back("-fmath-errno");
if (!MathErrno && AssociativeMath && ReciprocalMath && !SignedZeros &&
ApproxFunc && !TrappingMath)
CmdArgs.push_back("-menable-unsafe-fp-math");
if (!SignedZeros)
CmdArgs.push_back("-fno-signed-zeros");
if (AssociativeMath && !SignedZeros && !TrappingMath)
CmdArgs.push_back("-mreassociate");
if (ReciprocalMath)
CmdArgs.push_back("-freciprocal-math");
if (TrappingMath) {
// FP Exception Behavior is also set to strict
assert(FPExceptionBehavior.equals("strict"));
}
// The default is IEEE.
if (DenormalFPMath != llvm::DenormalMode::getIEEE()) {
llvm::SmallString<64> DenormFlag;
llvm::raw_svector_ostream ArgStr(DenormFlag);
ArgStr << "-fdenormal-fp-math=" << DenormalFPMath;
CmdArgs.push_back(Args.MakeArgString(ArgStr.str()));
}
// Add f32 specific denormal mode flag if it's different.
if (DenormalFP32Math != DenormalFPMath) {
llvm::SmallString<64> DenormFlag;
llvm::raw_svector_ostream ArgStr(DenormFlag);
ArgStr << "-fdenormal-fp-math-f32=" << DenormalFP32Math;
CmdArgs.push_back(Args.MakeArgString(ArgStr.str()));
}
if (!FPContract.empty())
CmdArgs.push_back(Args.MakeArgString("-ffp-contract=" + FPContract));
if (!RoundingFPMath)
CmdArgs.push_back(Args.MakeArgString("-fno-rounding-math"));
if (RoundingFPMath && RoundingMathPresent)
CmdArgs.push_back(Args.MakeArgString("-frounding-math"));
if (!FPExceptionBehavior.empty())
CmdArgs.push_back(Args.MakeArgString("-ffp-exception-behavior=" +
FPExceptionBehavior));
if (!FPEvalMethod.empty())
CmdArgs.push_back(Args.MakeArgString("-ffp-eval-method=" + FPEvalMethod));
ParseMRecip(D, Args, CmdArgs);
// -ffast-math enables the __FAST_MATH__ preprocessor macro, but check for the
// individual features enabled by -ffast-math instead of the option itself as
// that's consistent with gcc's behaviour.
if (!HonorINFs && !HonorNaNs && !MathErrno && AssociativeMath && ApproxFunc &&
ReciprocalMath && !SignedZeros && !TrappingMath && !RoundingFPMath) {
CmdArgs.push_back("-ffast-math");
if (FPModel.equals("fast")) {
if (FPContract.equals("fast"))
// All set, do nothing.
;
else if (FPContract.empty())
// Enable -ffp-contract=fast
CmdArgs.push_back(Args.MakeArgString("-ffp-contract=fast"));
else
D.Diag(clang::diag::warn_drv_overriding_flag_option)
<< "-ffp-model=fast"
<< Args.MakeArgString("-ffp-contract=" + FPContract);
}
}
// Handle __FINITE_MATH_ONLY__ similarly.
if (!HonorINFs && !HonorNaNs)
CmdArgs.push_back("-ffinite-math-only");
if (const Arg *A = Args.getLastArg(options::OPT_mfpmath_EQ)) {
CmdArgs.push_back("-mfpmath");
CmdArgs.push_back(A->getValue());
}
// Disable a codegen optimization for floating-point casts.
if (Args.hasFlag(options::OPT_fno_strict_float_cast_overflow,
options::OPT_fstrict_float_cast_overflow, false))
CmdArgs.push_back("-fno-strict-float-cast-overflow");
}
static void RenderAnalyzerOptions(const ArgList &Args, ArgStringList &CmdArgs,
const llvm::Triple &Triple,
const InputInfo &Input) {
// Add default argument set.
if (!Args.hasArg(options::OPT__analyzer_no_default_checks)) {
CmdArgs.push_back("-analyzer-checker=core");
CmdArgs.push_back("-analyzer-checker=apiModeling");
if (!Triple.isWindowsMSVCEnvironment()) {
CmdArgs.push_back("-analyzer-checker=unix");
} else {
// Enable "unix" checkers that also work on Windows.
CmdArgs.push_back("-analyzer-checker=unix.API");
CmdArgs.push_back("-analyzer-checker=unix.Malloc");
CmdArgs.push_back("-analyzer-checker=unix.MallocSizeof");
CmdArgs.push_back("-analyzer-checker=unix.MismatchedDeallocator");
CmdArgs.push_back("-analyzer-checker=unix.cstring.BadSizeArg");
CmdArgs.push_back("-analyzer-checker=unix.cstring.NullArg");
}
// Disable some unix checkers for PS4/PS5.
if (Triple.isPS()) {
CmdArgs.push_back("-analyzer-disable-checker=unix.API");
CmdArgs.push_back("-analyzer-disable-checker=unix.Vfork");
}
if (Triple.isOSDarwin()) {
CmdArgs.push_back("-analyzer-checker=osx");
CmdArgs.push_back(
"-analyzer-checker=security.insecureAPI.decodeValueOfObjCType");
}
else if (Triple.isOSFuchsia())
CmdArgs.push_back("-analyzer-checker=fuchsia");
CmdArgs.push_back("-analyzer-checker=deadcode");
if (types::isCXX(Input.getType()))
CmdArgs.push_back("-analyzer-checker=cplusplus");
if (!Triple.isPS()) {
CmdArgs.push_back("-analyzer-checker=security.insecureAPI.UncheckedReturn");
CmdArgs.push_back("-analyzer-checker=security.insecureAPI.getpw");
CmdArgs.push_back("-analyzer-checker=security.insecureAPI.gets");
CmdArgs.push_back("-analyzer-checker=security.insecureAPI.mktemp");
CmdArgs.push_back("-analyzer-checker=security.insecureAPI.mkstemp");
CmdArgs.push_back("-analyzer-checker=security.insecureAPI.vfork");
}
// Default nullability checks.
CmdArgs.push_back("-analyzer-checker=nullability.NullPassedToNonnull");
CmdArgs.push_back("-analyzer-checker=nullability.NullReturnedFromNonnull");
}
// Set the output format. The default is plist, for (lame) historical reasons.
CmdArgs.push_back("-analyzer-output");
if (Arg *A = Args.getLastArg(options::OPT__analyzer_output))
CmdArgs.push_back(A->getValue());
else
CmdArgs.push_back("plist");
// Disable the presentation of standard compiler warnings when using
// --analyze. We only want to show static analyzer diagnostics or frontend
// errors.
CmdArgs.push_back("-w");
// Add -Xanalyzer arguments when running as analyzer.
Args.AddAllArgValues(CmdArgs, options::OPT_Xanalyzer);
}
static bool isValidSymbolName(StringRef S) {
if (S.empty())
return false;
if (std::isdigit(S[0]))
return false;
return llvm::all_of(S, [](char C) { return std::isalnum(C) || C == '_'; });
}
static void RenderSSPOptions(const Driver &D, const ToolChain &TC,
const ArgList &Args, ArgStringList &CmdArgs,
bool KernelOrKext) {
const llvm::Triple &EffectiveTriple = TC.getEffectiveTriple();
// NVPTX doesn't support stack protectors; from the compiler's perspective, it
// doesn't even have a stack!
if (EffectiveTriple.isNVPTX())
return;
// -stack-protector=0 is default.
LangOptions::StackProtectorMode StackProtectorLevel = LangOptions::SSPOff;
LangOptions::StackProtectorMode DefaultStackProtectorLevel =
TC.GetDefaultStackProtectorLevel(KernelOrKext);
if (Arg *A = Args.getLastArg(options::OPT_fno_stack_protector,
options::OPT_fstack_protector_all,
options::OPT_fstack_protector_strong,
options::OPT_fstack_protector)) {
if (A->getOption().matches(options::OPT_fstack_protector))
StackProtectorLevel =
std::max<>(LangOptions::SSPOn, DefaultStackProtectorLevel);
else if (A->getOption().matches(options::OPT_fstack_protector_strong))
StackProtectorLevel = LangOptions::SSPStrong;
else if (A->getOption().matches(options::OPT_fstack_protector_all))
StackProtectorLevel = LangOptions::SSPReq;
} else {
StackProtectorLevel = DefaultStackProtectorLevel;
}
if (StackProtectorLevel) {
CmdArgs.push_back("-stack-protector");
CmdArgs.push_back(Args.MakeArgString(Twine(StackProtectorLevel)));
}
// --param ssp-buffer-size=
for (const Arg *A : Args.filtered(options::OPT__param)) {
StringRef Str(A->getValue());
if (Str.startswith("ssp-buffer-size=")) {
if (StackProtectorLevel) {
CmdArgs.push_back("-stack-protector-buffer-size");
// FIXME: Verify the argument is a valid integer.
CmdArgs.push_back(Args.MakeArgString(Str.drop_front(16)));
}
A->claim();
}
}
const std::string &TripleStr = EffectiveTriple.getTriple();
if (Arg *A = Args.getLastArg(options::OPT_mstack_protector_guard_EQ)) {
StringRef Value = A->getValue();
if (!EffectiveTriple.isX86() && !EffectiveTriple.isAArch64() &&
!EffectiveTriple.isARM() && !EffectiveTriple.isThumb())
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
if ((EffectiveTriple.isX86() || EffectiveTriple.isARM() ||
EffectiveTriple.isThumb()) &&
Value != "tls" && Value != "global") {
D.Diag(diag::err_drv_invalid_value_with_suggestion)
<< A->getOption().getName() << Value << "tls global";
return;
}
if ((EffectiveTriple.isARM() || EffectiveTriple.isThumb()) &&
Value == "tls") {
if (!Args.hasArg(options::OPT_mstack_protector_guard_offset_EQ)) {
D.Diag(diag::err_drv_ssp_missing_offset_argument)
<< A->getAsString(Args);
return;
}
// Check whether the target subarch supports the hardware TLS register
if (!arm::isHardTPSupported(EffectiveTriple)) {
D.Diag(diag::err_target_unsupported_tp_hard)
<< EffectiveTriple.getArchName();
return;
}
// Check whether the user asked for something other than -mtp=cp15
if (Arg *A = Args.getLastArg(options::OPT_mtp_mode_EQ)) {
StringRef Value = A->getValue();
if (Value != "cp15") {
D.Diag(diag::err_drv_argument_not_allowed_with)
<< A->getAsString(Args) << "-mstack-protector-guard=tls";
return;
}
}
CmdArgs.push_back("-target-feature");
CmdArgs.push_back("+read-tp-hard");
}
if (EffectiveTriple.isAArch64() && Value != "sysreg" && Value != "global") {
D.Diag(diag::err_drv_invalid_value_with_suggestion)
<< A->getOption().getName() << Value << "sysreg global";
return;
}
A->render(Args, CmdArgs);
}
if (Arg *A = Args.getLastArg(options::OPT_mstack_protector_guard_offset_EQ)) {
StringRef Value = A->getValue();
if (!EffectiveTriple.isX86() && !EffectiveTriple.isAArch64() &&
!EffectiveTriple.isARM() && !EffectiveTriple.isThumb())
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
int Offset;
if (Value.getAsInteger(10, Offset)) {
D.Diag(diag::err_drv_invalid_value) << A->getOption().getName() << Value;
return;
}
if ((EffectiveTriple.isARM() || EffectiveTriple.isThumb()) &&
(Offset < 0 || Offset > 0xfffff)) {
D.Diag(diag::err_drv_invalid_int_value)
<< A->getOption().getName() << Value;
return;
}
A->render(Args, CmdArgs);
}
if (Arg *A = Args.getLastArg(options::OPT_mstack_protector_guard_reg_EQ)) {
StringRef Value = A->getValue();
if (!EffectiveTriple.isX86() && !EffectiveTriple.isAArch64())
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
if (EffectiveTriple.isX86() && (Value != "fs" && Value != "gs")) {
D.Diag(diag::err_drv_invalid_value_with_suggestion)
<< A->getOption().getName() << Value << "fs gs";
return;
}
if (EffectiveTriple.isAArch64() && Value != "sp_el0") {
D.Diag(diag::err_drv_invalid_value) << A->getOption().getName() << Value;
return;
}
A->render(Args, CmdArgs);
}
if (Arg *A = Args.getLastArg(options::OPT_mstack_protector_guard_symbol_EQ)) {
StringRef Value = A->getValue();
if (!isValidSymbolName(Value)) {
D.Diag(diag::err_drv_argument_only_allowed_with)
<< A->getOption().getName() << "legal symbol name";
return;
}
A->render(Args, CmdArgs);
}
}
static void RenderSCPOptions(const ToolChain &TC, const ArgList &Args,
ArgStringList &CmdArgs) {
const llvm::Triple &EffectiveTriple = TC.getEffectiveTriple();
if (!EffectiveTriple.isOSFreeBSD() && !EffectiveTriple.isOSLinux())
return;
if (!EffectiveTriple.isX86() && !EffectiveTriple.isSystemZ() &&
!EffectiveTriple.isPPC64())
return;
Args.addOptInFlag(CmdArgs, options::OPT_fstack_clash_protection,
options::OPT_fno_stack_clash_protection);
}
static void RenderTrivialAutoVarInitOptions(const Driver &D,
const ToolChain &TC,
const ArgList &Args,
ArgStringList &CmdArgs) {
auto DefaultTrivialAutoVarInit = TC.GetDefaultTrivialAutoVarInit();
StringRef TrivialAutoVarInit = "";
for (const Arg *A : Args) {
switch (A->getOption().getID()) {
default:
continue;
case options::OPT_ftrivial_auto_var_init: {
A->claim();
StringRef Val = A->getValue();
if (Val == "uninitialized" || Val == "zero" || Val == "pattern")
TrivialAutoVarInit = Val;
else
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Val;
break;
}
}
}
if (TrivialAutoVarInit.empty())
switch (DefaultTrivialAutoVarInit) {
case LangOptions::TrivialAutoVarInitKind::Uninitialized:
break;
case LangOptions::TrivialAutoVarInitKind::Pattern:
TrivialAutoVarInit = "pattern";
break;
case LangOptions::TrivialAutoVarInitKind::Zero:
TrivialAutoVarInit = "zero";
break;
}
if (!TrivialAutoVarInit.empty()) {
if (TrivialAutoVarInit == "zero" && !Args.hasArg(options::OPT_enable_trivial_var_init_zero))
D.Diag(diag::err_drv_trivial_auto_var_init_zero_disabled);
CmdArgs.push_back(
Args.MakeArgString("-ftrivial-auto-var-init=" + TrivialAutoVarInit));
}
if (Arg *A =
Args.getLastArg(options::OPT_ftrivial_auto_var_init_stop_after)) {
if (!Args.hasArg(options::OPT_ftrivial_auto_var_init) ||
StringRef(
Args.getLastArg(options::OPT_ftrivial_auto_var_init)->getValue()) ==
"uninitialized")
D.Diag(diag::err_drv_trivial_auto_var_init_stop_after_missing_dependency);
A->claim();
StringRef Val = A->getValue();
if (std::stoi(Val.str()) <= 0)
D.Diag(diag::err_drv_trivial_auto_var_init_stop_after_invalid_value);
CmdArgs.push_back(
Args.MakeArgString("-ftrivial-auto-var-init-stop-after=" + Val));
}
}
static void RenderOpenCLOptions(const ArgList &Args, ArgStringList &CmdArgs,
types::ID InputType) {
// cl-denorms-are-zero is not forwarded. It is translated into a generic flag
// for denormal flushing handling based on the target.
const unsigned ForwardedArguments[] = {
options::OPT_cl_opt_disable,
options::OPT_cl_strict_aliasing,
options::OPT_cl_single_precision_constant,
options::OPT_cl_finite_math_only,
options::OPT_cl_kernel_arg_info,
options::OPT_cl_unsafe_math_optimizations,
options::OPT_cl_fast_relaxed_math,
options::OPT_cl_mad_enable,
options::OPT_cl_no_signed_zeros,
options::OPT_cl_fp32_correctly_rounded_divide_sqrt,
options::OPT_cl_uniform_work_group_size
};
if (Arg *A = Args.getLastArg(options::OPT_cl_std_EQ)) {
std::string CLStdStr = std::string("-cl-std=") + A->getValue();
CmdArgs.push_back(Args.MakeArgString(CLStdStr));
} else if (Arg *A = Args.getLastArg(options::OPT_cl_ext_EQ)) {
std::string CLExtStr = std::string("-cl-ext=") + A->getValue();
CmdArgs.push_back(Args.MakeArgString(CLExtStr));
}
for (const auto &Arg : ForwardedArguments)
if (const auto *A = Args.getLastArg(Arg))
CmdArgs.push_back(Args.MakeArgString(A->getOption().getPrefixedName()));
// Only add the default headers if we are compiling OpenCL sources.
if ((types::isOpenCL(InputType) ||
(Args.hasArg(options::OPT_cl_std_EQ) && types::isSrcFile(InputType))) &&
!Args.hasArg(options::OPT_cl_no_stdinc)) {
CmdArgs.push_back("-finclude-default-header");
CmdArgs.push_back("-fdeclare-opencl-builtins");
}
}
static void RenderHLSLOptions(const ArgList &Args, ArgStringList &CmdArgs,
types::ID InputType) {
const unsigned ForwardedArguments[] = {options::OPT_dxil_validator_version,
options::OPT_D,
options::OPT_I,
options::OPT_S,
options::OPT_O,
options::OPT_emit_llvm,
options::OPT_emit_obj,
options::OPT_disable_llvm_passes,
options::OPT_fnative_half_type,
options::OPT_hlsl_entrypoint};
if (!types::isHLSL(InputType))
return;
for (const auto &Arg : ForwardedArguments)
if (const auto *A = Args.getLastArg(Arg))
A->renderAsInput(Args, CmdArgs);
// Add the default headers if dxc_no_stdinc is not set.
if (!Args.hasArg(options::OPT_dxc_no_stdinc) &&
!Args.hasArg(options::OPT_nostdinc))
CmdArgs.push_back("-finclude-default-header");
}
static void RenderARCMigrateToolOptions(const Driver &D, const ArgList &Args,
ArgStringList &CmdArgs) {
bool ARCMTEnabled = false;
if (!Args.hasArg(options::OPT_fno_objc_arc, options::OPT_fobjc_arc)) {
if (const Arg *A = Args.getLastArg(options::OPT_ccc_arcmt_check,
options::OPT_ccc_arcmt_modify,
options::OPT_ccc_arcmt_migrate)) {
ARCMTEnabled = true;
switch (A->getOption().getID()) {
default: llvm_unreachable("missed a case");
case options::OPT_ccc_arcmt_check:
CmdArgs.push_back("-arcmt-action=check");
break;
case options::OPT_ccc_arcmt_modify:
CmdArgs.push_back("-arcmt-action=modify");
break;
case options::OPT_ccc_arcmt_migrate:
CmdArgs.push_back("-arcmt-action=migrate");
CmdArgs.push_back("-mt-migrate-directory");
CmdArgs.push_back(A->getValue());
Args.AddLastArg(CmdArgs, options::OPT_arcmt_migrate_report_output);
Args.AddLastArg(CmdArgs, options::OPT_arcmt_migrate_emit_arc_errors);
break;
}
}
} else {
Args.ClaimAllArgs(options::OPT_ccc_arcmt_check);
Args.ClaimAllArgs(options::OPT_ccc_arcmt_modify);
Args.ClaimAllArgs(options::OPT_ccc_arcmt_migrate);
}
if (const Arg *A = Args.getLastArg(options::OPT_ccc_objcmt_migrate)) {
if (ARCMTEnabled)
D.Diag(diag::err_drv_argument_not_allowed_with)
<< A->getAsString(Args) << "-ccc-arcmt-migrate";
CmdArgs.push_back("-mt-migrate-directory");
CmdArgs.push_back(A->getValue());
if (!Args.hasArg(options::OPT_objcmt_migrate_literals,
options::OPT_objcmt_migrate_subscripting,
options::OPT_objcmt_migrate_property)) {
// None specified, means enable them all.
CmdArgs.push_back("-objcmt-migrate-literals");
CmdArgs.push_back("-objcmt-migrate-subscripting");
CmdArgs.push_back("-objcmt-migrate-property");
} else {
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_literals);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_subscripting);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_property);
}
} else {
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_literals);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_subscripting);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_property);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_all);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_readonly_property);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_readwrite_property);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_property_dot_syntax);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_annotation);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_instancetype);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_nsmacros);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_protocol_conformance);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_atomic_property);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_returns_innerpointer_property);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_ns_nonatomic_iosonly);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_designated_init);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_allowlist_dir_path);
}
}
static void RenderBuiltinOptions(const ToolChain &TC, const llvm::Triple &T,
const ArgList &Args, ArgStringList &CmdArgs) {
// -fbuiltin is default unless -mkernel is used.
bool UseBuiltins =
Args.hasFlag(options::OPT_fbuiltin, options::OPT_fno_builtin,
!Args.hasArg(options::OPT_mkernel));
if (!UseBuiltins)
CmdArgs.push_back("-fno-builtin");
// -ffreestanding implies -fno-builtin.
if (Args.hasArg(options::OPT_ffreestanding))
UseBuiltins = false;
// Process the -fno-builtin-* options.
for (const Arg *A : Args.filtered(options::OPT_fno_builtin_)) {
A->claim();
// If -fno-builtin is specified, then there's no need to pass the option to
// the frontend.
if (UseBuiltins)
A->render(Args, CmdArgs);
}
// le32-specific flags:
// -fno-math-builtin: clang should not convert math builtins to intrinsics
// by default.
if (TC.getArch() == llvm::Triple::le32)
CmdArgs.push_back("-fno-math-builtin");
}
bool Driver::getDefaultModuleCachePath(SmallVectorImpl<char> &Result) {
if (const char *Str = std::getenv("CLANG_MODULE_CACHE_PATH")) {
Twine Path{Str};
Path.toVector(Result);
return Path.getSingleStringRef() != "";
}
if (llvm::sys::path::cache_directory(Result)) {
llvm::sys::path::append(Result, "clang");
llvm::sys::path::append(Result, "ModuleCache");
return true;
}
return false;
}
static void RenderModulesOptions(Compilation &C, const Driver &D,
const ArgList &Args, const InputInfo &Input,
const InputInfo &Output,
ArgStringList &CmdArgs, bool &HaveModules) {
// -fmodules enables the use of precompiled modules (off by default).
// Users can pass -fno-cxx-modules to turn off modules support for
// C++/Objective-C++ programs.
bool HaveClangModules = false;
if (Args.hasFlag(options::OPT_fmodules, options::OPT_fno_modules, false)) {
bool AllowedInCXX = Args.hasFlag(options::OPT_fcxx_modules,
options::OPT_fno_cxx_modules, true);
if (AllowedInCXX || !types::isCXX(Input.getType())) {
CmdArgs.push_back("-fmodules");
HaveClangModules = true;
}
}
HaveModules |= HaveClangModules;
if (Args.hasArg(options::OPT_fmodules_ts)) {
CmdArgs.push_back("-fmodules-ts");
HaveModules = true;
}
// -fmodule-maps enables implicit reading of module map files. By default,
// this is enabled if we are using Clang's flavor of precompiled modules.
if (Args.hasFlag(options::OPT_fimplicit_module_maps,
options::OPT_fno_implicit_module_maps, HaveClangModules))
CmdArgs.push_back("-fimplicit-module-maps");
// -fmodules-decluse checks that modules used are declared so (off by default)
Args.addOptInFlag(CmdArgs, options::OPT_fmodules_decluse,
options::OPT_fno_modules_decluse);
// -fmodules-strict-decluse is like -fmodule-decluse, but also checks that
// all #included headers are part of modules.
if (Args.hasFlag(options::OPT_fmodules_strict_decluse,
options::OPT_fno_modules_strict_decluse, false))
CmdArgs.push_back("-fmodules-strict-decluse");
// -fno-implicit-modules turns off implicitly compiling modules on demand.
bool ImplicitModules = false;
if (!Args.hasFlag(options::OPT_fimplicit_modules,
options::OPT_fno_implicit_modules, HaveClangModules)) {
if (HaveModules)
CmdArgs.push_back("-fno-implicit-modules");
} else if (HaveModules) {
ImplicitModules = true;
// -fmodule-cache-path specifies where our implicitly-built module files
// should be written.
SmallString<128> Path;
if (Arg *A = Args.getLastArg(options::OPT_fmodules_cache_path))
Path = A->getValue();
bool HasPath = true;
if (C.isForDiagnostics()) {
// When generating crash reports, we want to emit the modules along with
// the reproduction sources, so we ignore any provided module path.
Path = Output.getFilename();
llvm::sys::path::replace_extension(Path, ".cache");
llvm::sys::path::append(Path, "modules");
} else if (Path.empty()) {
// No module path was provided: use the default.
HasPath = Driver::getDefaultModuleCachePath(Path);
}
// `HasPath` will only be false if getDefaultModuleCachePath() fails.
// That being said, that failure is unlikely and not caching is harmless.
if (HasPath) {
const char Arg[] = "-fmodules-cache-path=";
Path.insert(Path.begin(), Arg, Arg + strlen(Arg));
CmdArgs.push_back(Args.MakeArgString(Path));
}
}
if (HaveModules) {
// -fprebuilt-module-path specifies where to load the prebuilt module files.
for (const Arg *A : Args.filtered(options::OPT_fprebuilt_module_path)) {
CmdArgs.push_back(Args.MakeArgString(
std::string("-fprebuilt-module-path=") + A->getValue()));
A->claim();
}
if (Args.hasFlag(options::OPT_fprebuilt_implicit_modules,
options::OPT_fno_prebuilt_implicit_modules, false))
CmdArgs.push_back("-fprebuilt-implicit-modules");
if (Args.hasFlag(options::OPT_fmodules_validate_input_files_content,
options::OPT_fno_modules_validate_input_files_content,
false))
CmdArgs.push_back("-fvalidate-ast-input-files-content");
}
// -fmodule-name specifies the module that is currently being built (or
// used for header checking by -fmodule-maps).
Args.AddLastArg(CmdArgs, options::OPT_fmodule_name_EQ);
// -fmodule-map-file can be used to specify files containing module
// definitions.
Args.AddAllArgs(CmdArgs, options::OPT_fmodule_map_file);
// -fbuiltin-module-map can be used to load the clang
// builtin headers modulemap file.
if (Args.hasArg(options::OPT_fbuiltin_module_map)) {
SmallString<128> BuiltinModuleMap(D.ResourceDir);
llvm::sys::path::append(BuiltinModuleMap, "include");
llvm::sys::path::append(BuiltinModuleMap, "module.modulemap");
if (llvm::sys::fs::exists(BuiltinModuleMap))
CmdArgs.push_back(
Args.MakeArgString("-fmodule-map-file=" + BuiltinModuleMap));
}
// The -fmodule-file=<name>=<file> form specifies the mapping of module
// names to precompiled module files (the module is loaded only if used).
// The -fmodule-file=<file> form can be used to unconditionally load
// precompiled module files (whether used or not).
if (HaveModules)
Args.AddAllArgs(CmdArgs, options::OPT_fmodule_file);
else
Args.ClaimAllArgs(options::OPT_fmodule_file);
// When building modules and generating crashdumps, we need to dump a module
// dependency VFS alongside the output.
if (HaveClangModules && C.isForDiagnostics()) {
SmallString<128> VFSDir(Output.getFilename());
llvm::sys::path::replace_extension(VFSDir, ".cache");
// Add the cache directory as a temp so the crash diagnostics pick it up.
C.addTempFile(Args.MakeArgString(VFSDir));
llvm::sys::path::append(VFSDir, "vfs");
CmdArgs.push_back("-module-dependency-dir");
CmdArgs.push_back(Args.MakeArgString(VFSDir));
}
if (HaveClangModules)
Args.AddLastArg(CmdArgs, options::OPT_fmodules_user_build_path);
// Pass through all -fmodules-ignore-macro arguments.
Args.AddAllArgs(CmdArgs, options::OPT_fmodules_ignore_macro);
Args.AddLastArg(CmdArgs, options::OPT_fmodules_prune_interval);
Args.AddLastArg(CmdArgs, options::OPT_fmodules_prune_after);
if (HaveClangModules) {
Args.AddLastArg(CmdArgs, options::OPT_fbuild_session_timestamp);
if (Arg *A = Args.getLastArg(options::OPT_fbuild_session_file)) {
if (Args.hasArg(options::OPT_fbuild_session_timestamp))
D.Diag(diag::err_drv_argument_not_allowed_with)
<< A->getAsString(Args) << "-fbuild-session-timestamp";
llvm::sys::fs::file_status Status;
if (llvm::sys::fs::status(A->getValue(), Status))
D.Diag(diag::err_drv_no_such_file) << A->getValue();
CmdArgs.push_back(Args.MakeArgString(
"-fbuild-session-timestamp=" +
Twine((uint64_t)std::chrono::duration_cast<std::chrono::seconds>(
Status.getLastModificationTime().time_since_epoch())
.count())));
}
if (Args.getLastArg(
options::OPT_fmodules_validate_once_per_build_session)) {
if (!Args.getLastArg(options::OPT_fbuild_session_timestamp,
options::OPT_fbuild_session_file))
D.Diag(diag::err_drv_modules_validate_once_requires_timestamp);
Args.AddLastArg(CmdArgs,
options::OPT_fmodules_validate_once_per_build_session);
}
if (Args.hasFlag(options::OPT_fmodules_validate_system_headers,
options::OPT_fno_modules_validate_system_headers,
ImplicitModules))
CmdArgs.push_back("-fmodules-validate-system-headers");
Args.AddLastArg(CmdArgs,
options::OPT_fmodules_disable_diagnostic_validation);
} else {
Args.ClaimAllArgs(options::OPT_fbuild_session_timestamp);
Args.ClaimAllArgs(options::OPT_fbuild_session_file);
Args.ClaimAllArgs(options::OPT_fmodules_validate_once_per_build_session);
Args.ClaimAllArgs(options::OPT_fmodules_validate_system_headers);
Args.ClaimAllArgs(options::OPT_fno_modules_validate_system_headers);
Args.ClaimAllArgs(options::OPT_fmodules_disable_diagnostic_validation);
}
}
static void RenderCharacterOptions(const ArgList &Args, const llvm::Triple &T,
ArgStringList &CmdArgs) {
// -fsigned-char is default.
if (const Arg *A = Args.getLastArg(options::OPT_fsigned_char,
options::OPT_fno_signed_char,
options::OPT_funsigned_char,
options::OPT_fno_unsigned_char)) {
if (A->getOption().matches(options::OPT_funsigned_char) ||
A->getOption().matches(options::OPT_fno_signed_char)) {
CmdArgs.push_back("-fno-signed-char");
}
} else if (!isSignedCharDefault(T)) {
CmdArgs.push_back("-fno-signed-char");
}
// The default depends on the language standard.
Args.AddLastArg(CmdArgs, options::OPT_fchar8__t, options::OPT_fno_char8__t);
if (const Arg *A = Args.getLastArg(options::OPT_fshort_wchar,
options::OPT_fno_short_wchar)) {
if (A->getOption().matches(options::OPT_fshort_wchar)) {
CmdArgs.push_back("-fwchar-type=short");
CmdArgs.push_back("-fno-signed-wchar");
} else {
bool IsARM = T.isARM() || T.isThumb() || T.isAArch64();
CmdArgs.push_back("-fwchar-type=int");
if (T.isOSzOS() ||
(IsARM && !(T.isOSWindows() || T.isOSNetBSD() || T.isOSOpenBSD())))
CmdArgs.push_back("-fno-signed-wchar");
else
CmdArgs.push_back("-fsigned-wchar");
}
}
}
static void RenderObjCOptions(const ToolChain &TC, const Driver &D,
const llvm::Triple &T, const ArgList &Args,
ObjCRuntime &Runtime, bool InferCovariantReturns,
const InputInfo &Input, ArgStringList &CmdArgs) {
const llvm::Triple::ArchType Arch = TC.getArch();
// -fobjc-dispatch-method is only relevant with the nonfragile-abi, and legacy
// is the default. Except for deployment target of 10.5, next runtime is
// always legacy dispatch and -fno-objc-legacy-dispatch gets ignored silently.
if (Runtime.isNonFragile()) {
if (!Args.hasFlag(options::OPT_fobjc_legacy_dispatch,
options::OPT_fno_objc_legacy_dispatch,
Runtime.isLegacyDispatchDefaultForArch(Arch))) {
if (TC.UseObjCMixedDispatch())
CmdArgs.push_back("-fobjc-dispatch-method=mixed");
else
CmdArgs.push_back("-fobjc-dispatch-method=non-legacy");
}
}
// When ObjectiveC legacy runtime is in effect on MacOSX, turn on the option
// to do Array/Dictionary subscripting by default.
if (Arch == llvm::Triple::x86 && T.isMacOSX() &&
Runtime.getKind() == ObjCRuntime::FragileMacOSX && Runtime.isNeXTFamily())
CmdArgs.push_back("-fobjc-subscripting-legacy-runtime");
// Allow -fno-objc-arr to trump -fobjc-arr/-fobjc-arc.
// NOTE: This logic is duplicated in ToolChains.cpp.
if (isObjCAutoRefCount(Args)) {
TC.CheckObjCARC();
CmdArgs.push_back("-fobjc-arc");
// FIXME: It seems like this entire block, and several around it should be
// wrapped in isObjC, but for now we just use it here as this is where it
// was being used previously.
if (types::isCXX(Input.getType()) && types::isObjC(Input.getType())) {
if (TC.GetCXXStdlibType(Args) == ToolChain::CST_Libcxx)
CmdArgs.push_back("-fobjc-arc-cxxlib=libc++");
else
CmdArgs.push_back("-fobjc-arc-cxxlib=libstdc++");
}
// Allow the user to enable full exceptions code emission.
// We default off for Objective-C, on for Objective-C++.
if (Args.hasFlag(options::OPT_fobjc_arc_exceptions,
options::OPT_fno_objc_arc_exceptions,
/*Default=*/types::isCXX(Input.getType())))
CmdArgs.push_back("-fobjc-arc-exceptions");
}
// Silence warning for full exception code emission options when explicitly
// set to use no ARC.
if (Args.hasArg(options::OPT_fno_objc_arc)) {
Args.ClaimAllArgs(options::OPT_fobjc_arc_exceptions);
Args.ClaimAllArgs(options::OPT_fno_objc_arc_exceptions);
}
// Allow the user to control whether messages can be converted to runtime
// functions.
if (types::isObjC(Input.getType())) {
auto *Arg = Args.getLastArg(
options::OPT_fobjc_convert_messages_to_runtime_calls,
options::OPT_fno_objc_convert_messages_to_runtime_calls);
if (Arg &&
Arg->getOption().matches(
options::OPT_fno_objc_convert_messages_to_runtime_calls))
CmdArgs.push_back("-fno-objc-convert-messages-to-runtime-calls");
}
// -fobjc-infer-related-result-type is the default, except in the Objective-C
// rewriter.
if (InferCovariantReturns)
CmdArgs.push_back("-fno-objc-infer-related-result-type");
// Pass down -fobjc-weak or -fno-objc-weak if present.
if (types::isObjC(Input.getType())) {
auto WeakArg =
Args.getLastArg(options::OPT_fobjc_weak, options::OPT_fno_objc_weak);
if (!WeakArg) {
// nothing to do
} else if (!Runtime.allowsWeak()) {
if (WeakArg->getOption().matches(options::OPT_fobjc_weak))
D.Diag(diag::err_objc_weak_unsupported);
} else {
WeakArg->render(Args, CmdArgs);
}
}
if (Args.hasArg(options::OPT_fobjc_disable_direct_methods_for_testing))
CmdArgs.push_back("-fobjc-disable-direct-methods-for-testing");
}
static void RenderDiagnosticsOptions(const Driver &D, const ArgList &Args,
ArgStringList &CmdArgs) {
bool CaretDefault = true;
bool ColumnDefault = true;
if (const Arg *A = Args.getLastArg(options::OPT__SLASH_diagnostics_classic,
options::OPT__SLASH_diagnostics_column,
options::OPT__SLASH_diagnostics_caret)) {
switch (A->getOption().getID()) {
case options::OPT__SLASH_diagnostics_caret:
CaretDefault = true;
ColumnDefault = true;
break;
case options::OPT__SLASH_diagnostics_column:
CaretDefault = false;
ColumnDefault = true;
break;
case options::OPT__SLASH_diagnostics_classic:
CaretDefault = false;
ColumnDefault = false;
break;
}
}
// -fcaret-diagnostics is default.
if (!Args.hasFlag(options::OPT_fcaret_diagnostics,
options::OPT_fno_caret_diagnostics, CaretDefault))
CmdArgs.push_back("-fno-caret-diagnostics");
Args.addOptOutFlag(CmdArgs, options::OPT_fdiagnostics_fixit_info,
options::OPT_fno_diagnostics_fixit_info);
Args.addOptOutFlag(CmdArgs, options::OPT_fdiagnostics_show_option,
options::OPT_fno_diagnostics_show_option);
if (const Arg *A =
Args.getLastArg(options::OPT_fdiagnostics_show_category_EQ)) {
CmdArgs.push_back("-fdiagnostics-show-category");
CmdArgs.push_back(A->getValue());
}
Args.addOptInFlag(CmdArgs, options::OPT_fdiagnostics_show_hotness,
options::OPT_fno_diagnostics_show_hotness);
if (const Arg *A =
Args.getLastArg(options::OPT_fdiagnostics_hotness_threshold_EQ)) {
std::string Opt =
std::string("-fdiagnostics-hotness-threshold=") + A->getValue();
CmdArgs.push_back(Args.MakeArgString(Opt));
}
if (const Arg *A = Args.getLastArg(options::OPT_fdiagnostics_format_EQ)) {
CmdArgs.push_back("-fdiagnostics-format");
CmdArgs.push_back(A->getValue());
if (StringRef(A->getValue()) == "sarif" ||
StringRef(A->getValue()) == "SARIF")
D.Diag(diag::warn_drv_sarif_format_unstable);
}
if (const Arg *A = Args.getLastArg(
options::OPT_fdiagnostics_show_note_include_stack,
options::OPT_fno_diagnostics_show_note_include_stack)) {
const Option &O = A->getOption();
if (O.matches(options::OPT_fdiagnostics_show_note_include_stack))
CmdArgs.push_back("-fdiagnostics-show-note-include-stack");
else
CmdArgs.push_back("-fno-diagnostics-show-note-include-stack");
}
// Color diagnostics are parsed by the driver directly from argv and later
// re-parsed to construct this job; claim any possible color diagnostic here
// to avoid warn_drv_unused_argument and diagnose bad
// OPT_fdiagnostics_color_EQ values.
Args.getLastArg(options::OPT_fcolor_diagnostics,
options::OPT_fno_color_diagnostics);
if (const Arg *A = Args.getLastArg(options::OPT_fdiagnostics_color_EQ)) {
StringRef Value(A->getValue());
if (Value != "always" && Value != "never" && Value != "auto")
D.Diag(diag::err_drv_invalid_argument_to_option)
<< Value << A->getOption().getName();
}
if (D.getDiags().getDiagnosticOptions().ShowColors)
CmdArgs.push_back("-fcolor-diagnostics");
if (Args.hasArg(options::OPT_fansi_escape_codes))
CmdArgs.push_back("-fansi-escape-codes");
Args.addOptOutFlag(CmdArgs, options::OPT_fshow_source_location,
options::OPT_fno_show_source_location);
if (Args.hasArg(options::OPT_fdiagnostics_absolute_paths))
CmdArgs.push_back("-fdiagnostics-absolute-paths");
if (!Args.hasFlag(options::OPT_fshow_column, options::OPT_fno_show_column,
ColumnDefault))
CmdArgs.push_back("-fno-show-column");
Args.addOptOutFlag(CmdArgs, options::OPT_fspell_checking,
options::OPT_fno_spell_checking);
}
DwarfFissionKind tools::getDebugFissionKind(const Driver &D,
const ArgList &Args, Arg *&Arg) {
Arg = Args.getLastArg(options::OPT_gsplit_dwarf, options::OPT_gsplit_dwarf_EQ,
options::OPT_gno_split_dwarf);
if (!Arg || Arg->getOption().matches(options::OPT_gno_split_dwarf))
return DwarfFissionKind::None;
if (Arg->getOption().matches(options::OPT_gsplit_dwarf))
return DwarfFissionKind::Split;
StringRef Value = Arg->getValue();
if (Value == "split")
return DwarfFissionKind::Split;
if (Value == "single")
return DwarfFissionKind::Single;
D.Diag(diag::err_drv_unsupported_option_argument)
<< Arg->getOption().getName() << Arg->getValue();
return DwarfFissionKind::None;
}
static void renderDwarfFormat(const Driver &D, const llvm::Triple &T,
const ArgList &Args, ArgStringList &CmdArgs,
unsigned DwarfVersion) {
auto *DwarfFormatArg =
Args.getLastArg(options::OPT_gdwarf64, options::OPT_gdwarf32);
if (!DwarfFormatArg)
return;
if (DwarfFormatArg->getOption().matches(options::OPT_gdwarf64)) {
if (DwarfVersion < 3)
D.Diag(diag::err_drv_argument_only_allowed_with)
<< DwarfFormatArg->getAsString(Args) << "DWARFv3 or greater";
else if (!T.isArch64Bit())
D.Diag(diag::err_drv_argument_only_allowed_with)
<< DwarfFormatArg->getAsString(Args) << "64 bit architecture";
else if (!T.isOSBinFormatELF())
D.Diag(diag::err_drv_argument_only_allowed_with)
<< DwarfFormatArg->getAsString(Args) << "ELF platforms";
}
DwarfFormatArg->render(Args, CmdArgs);
}
static void renderDebugOptions(const ToolChain &TC, const Driver &D,
const llvm::Triple &T, const ArgList &Args,
bool EmitCodeView, bool IRInput,
ArgStringList &CmdArgs,
codegenoptions::DebugInfoKind &DebugInfoKind,
DwarfFissionKind &DwarfFission) {
if (Args.hasFlag(options::OPT_fdebug_info_for_profiling,
options::OPT_fno_debug_info_for_profiling, false) &&
checkDebugInfoOption(
Args.getLastArg(options::OPT_fdebug_info_for_profiling), Args, D, TC))
CmdArgs.push_back("-fdebug-info-for-profiling");
// The 'g' groups options involve a somewhat intricate sequence of decisions
// about what to pass from the driver to the frontend, but by the time they
// reach cc1 they've been factored into three well-defined orthogonal choices:
// * what level of debug info to generate
// * what dwarf version to write
// * what debugger tuning to use
// This avoids having to monkey around further in cc1 other than to disable
// codeview if not running in a Windows environment. Perhaps even that
// decision should be made in the driver as well though.
llvm::DebuggerKind DebuggerTuning = TC.getDefaultDebuggerTuning();
bool SplitDWARFInlining =
Args.hasFlag(options::OPT_fsplit_dwarf_inlining,
options::OPT_fno_split_dwarf_inlining, false);
// Normally -gsplit-dwarf is only useful with -gN. For IR input, Clang does
// object file generation and no IR generation, -gN should not be needed. So
// allow -gsplit-dwarf with either -gN or IR input.
if (IRInput || Args.hasArg(options::OPT_g_Group)) {
Arg *SplitDWARFArg;
DwarfFission = getDebugFissionKind(D, Args, SplitDWARFArg);
if (DwarfFission != DwarfFissionKind::None &&
!checkDebugInfoOption(SplitDWARFArg, Args, D, TC)) {
DwarfFission = DwarfFissionKind::None;
SplitDWARFInlining = false;
}
}
if (const Arg *A = Args.getLastArg(options::OPT_g_Group)) {
DebugInfoKind = codegenoptions::DebugInfoConstructor;
// If the last option explicitly specified a debug-info level, use it.
if (checkDebugInfoOption(A, Args, D, TC) &&
A->getOption().matches(options::OPT_gN_Group)) {
DebugInfoKind = DebugLevelToInfoKind(*A);
// For -g0 or -gline-tables-only, drop -gsplit-dwarf. This gets a bit more
// complicated if you've disabled inline info in the skeleton CUs
// (SplitDWARFInlining) - then there's value in composing split-dwarf and
// line-tables-only, so let those compose naturally in that case.
if (DebugInfoKind == codegenoptions::NoDebugInfo ||
DebugInfoKind == codegenoptions::DebugDirectivesOnly ||
(DebugInfoKind == codegenoptions::DebugLineTablesOnly &&
SplitDWARFInlining))
DwarfFission = DwarfFissionKind::None;
}
}
// If a debugger tuning argument appeared, remember it.
if (const Arg *A =
Args.getLastArg(options::OPT_gTune_Group, options::OPT_ggdbN_Group)) {
if (checkDebugInfoOption(A, Args, D, TC)) {
if (A->getOption().matches(options::OPT_glldb))
DebuggerTuning = llvm::DebuggerKind::LLDB;
else if (A->getOption().matches(options::OPT_gsce))
DebuggerTuning = llvm::DebuggerKind::SCE;
else if (A->getOption().matches(options::OPT_gdbx))
DebuggerTuning = llvm::DebuggerKind::DBX;
else
DebuggerTuning = llvm::DebuggerKind::GDB;
}
}
// If a -gdwarf argument appeared, remember it.
const Arg *GDwarfN = getDwarfNArg(Args);
bool EmitDwarf = false;
if (GDwarfN) {
if (checkDebugInfoOption(GDwarfN, Args, D, TC))
EmitDwarf = true;
else
GDwarfN = nullptr;
}
if (const Arg *A = Args.getLastArg(options::OPT_gcodeview)) {
if (checkDebugInfoOption(A, Args, D, TC))
EmitCodeView = true;
}
// If the user asked for debug info but did not explicitly specify -gcodeview
// or -gdwarf, ask the toolchain for the default format.
if (!EmitCodeView && !EmitDwarf &&
DebugInfoKind != codegenoptions::NoDebugInfo) {
switch (TC.getDefaultDebugFormat()) {
case codegenoptions::DIF_CodeView:
EmitCodeView = true;
break;
case codegenoptions::DIF_DWARF:
EmitDwarf = true;
break;
}
}
unsigned RequestedDWARFVersion = 0; // DWARF version requested by the user
unsigned EffectiveDWARFVersion = 0; // DWARF version TC can generate. It may
// be lower than what the user wanted.
unsigned DefaultDWARFVersion = ParseDebugDefaultVersion(TC, Args);
if (EmitDwarf) {
// Start with the platform default DWARF version
RequestedDWARFVersion = TC.GetDefaultDwarfVersion();
assert(RequestedDWARFVersion &&
"toolchain default DWARF version must be nonzero");
// If the user specified a default DWARF version, that takes precedence
// over the platform default.
if (DefaultDWARFVersion)
RequestedDWARFVersion = DefaultDWARFVersion;
// Override with a user-specified DWARF version
if (GDwarfN)
if (auto ExplicitVersion = DwarfVersionNum(GDwarfN->getSpelling()))
RequestedDWARFVersion = ExplicitVersion;
// Clamp effective DWARF version to the max supported by the toolchain.
EffectiveDWARFVersion =
std::min(RequestedDWARFVersion, TC.getMaxDwarfVersion());
}
// -gline-directives-only supported only for the DWARF debug info.
if (RequestedDWARFVersion == 0 &&
DebugInfoKind == codegenoptions::DebugDirectivesOnly)
DebugInfoKind = codegenoptions::NoDebugInfo;
// strict DWARF is set to false by default. But for DBX, we need it to be set
// as true by default.
if (const Arg *A = Args.getLastArg(options::OPT_gstrict_dwarf))
(void)checkDebugInfoOption(A, Args, D, TC);
if (Args.hasFlag(options::OPT_gstrict_dwarf, options::OPT_gno_strict_dwarf,
DebuggerTuning == llvm::DebuggerKind::DBX))
CmdArgs.push_back("-gstrict-dwarf");
// And we handle flag -grecord-gcc-switches later with DWARFDebugFlags.
Args.ClaimAllArgs(options::OPT_g_flags_Group);
// Column info is included by default for everything except SCE and
// CodeView. Clang doesn't track end columns, just starting columns, which,
// in theory, is fine for CodeView (and PDB). In practice, however, the
// Microsoft debuggers don't handle missing end columns well, and the AIX
// debugger DBX also doesn't handle the columns well, so it's better not to
// include any column info.
if (const Arg *A = Args.getLastArg(options::OPT_gcolumn_info))
(void)checkDebugInfoOption(A, Args, D, TC);
if (!Args.hasFlag(options::OPT_gcolumn_info, options::OPT_gno_column_info,
!EmitCodeView &&
(DebuggerTuning != llvm::DebuggerKind::SCE &&
DebuggerTuning != llvm::DebuggerKind::DBX)))
CmdArgs.push_back("-gno-column-info");
// FIXME: Move backend command line options to the module.
// If -gline-tables-only or -gline-directives-only is the last option it wins.
if (const Arg *A = Args.getLastArg(options::OPT_gmodules))
if (checkDebugInfoOption(A, Args, D, TC)) {
if (DebugInfoKind != codegenoptions::DebugLineTablesOnly &&
DebugInfoKind != codegenoptions::DebugDirectivesOnly) {
DebugInfoKind = codegenoptions::DebugInfoConstructor;
CmdArgs.push_back("-dwarf-ext-refs");
CmdArgs.push_back("-fmodule-format=obj");
}
}
if (T.isOSBinFormatELF() && SplitDWARFInlining)
CmdArgs.push_back("-fsplit-dwarf-inlining");
// After we've dealt with all combinations of things that could
// make DebugInfoKind be other than None or DebugLineTablesOnly,
// figure out if we need to "upgrade" it to standalone debug info.
// We parse these two '-f' options whether or not they will be used,
// to claim them even if you wrote "-fstandalone-debug -gline-tables-only"
bool NeedFullDebug = Args.hasFlag(
options::OPT_fstandalone_debug, options::OPT_fno_standalone_debug,
DebuggerTuning == llvm::DebuggerKind::LLDB ||
TC.GetDefaultStandaloneDebug());
if (const Arg *A = Args.getLastArg(options::OPT_fstandalone_debug))
(void)checkDebugInfoOption(A, Args, D, TC);
if (DebugInfoKind == codegenoptions::LimitedDebugInfo ||
DebugInfoKind == codegenoptions::DebugInfoConstructor) {
if (Args.hasFlag(options::OPT_fno_eliminate_unused_debug_types,
options::OPT_feliminate_unused_debug_types, false))
DebugInfoKind = codegenoptions::UnusedTypeInfo;
else if (NeedFullDebug)
DebugInfoKind = codegenoptions::FullDebugInfo;
}
if (Args.hasFlag(options::OPT_gembed_source, options::OPT_gno_embed_source,
false)) {
// Source embedding is a vendor extension to DWARF v5. By now we have
// checked if a DWARF version was stated explicitly, and have otherwise
// fallen back to the target default, so if this is still not at least 5
// we emit an error.
const Arg *A = Args.getLastArg(options::OPT_gembed_source);
if (RequestedDWARFVersion < 5)
D.Diag(diag::err_drv_argument_only_allowed_with)
<< A->getAsString(Args) << "-gdwarf-5";
else if (EffectiveDWARFVersion < 5)
// The toolchain has reduced allowed dwarf version, so we can't enable
// -gembed-source.
D.Diag(diag::warn_drv_dwarf_version_limited_by_target)
<< A->getAsString(Args) << TC.getTripleString() << 5
<< EffectiveDWARFVersion;
else if (checkDebugInfoOption(A, Args, D, TC))
CmdArgs.push_back("-gembed-source");
}
if (EmitCodeView) {
CmdArgs.push_back("-gcodeview");
// Emit codeview type hashes if requested.
if (Args.hasFlag(options::OPT_gcodeview_ghash,
options::OPT_gno_codeview_ghash, false)) {
CmdArgs.push_back("-gcodeview-ghash");
}
}
// Omit inline line tables if requested.
if (Args.hasFlag(options::OPT_gno_inline_line_tables,
options::OPT_ginline_line_tables, false)) {
CmdArgs.push_back("-gno-inline-line-tables");
}
// When emitting remarks, we need at least debug lines in the output.
if (willEmitRemarks(Args) &&
DebugInfoKind <= codegenoptions::DebugDirectivesOnly)
DebugInfoKind = codegenoptions::DebugLineTablesOnly;
// Adjust the debug info kind for the given toolchain.
TC.adjustDebugInfoKind(DebugInfoKind, Args);
RenderDebugEnablingArgs(Args, CmdArgs, DebugInfoKind, EffectiveDWARFVersion,
DebuggerTuning);
// -fdebug-macro turns on macro debug info generation.
if (Args.hasFlag(options::OPT_fdebug_macro, options::OPT_fno_debug_macro,
false))
if (checkDebugInfoOption(Args.getLastArg(options::OPT_fdebug_macro), Args,
D, TC))
CmdArgs.push_back("-debug-info-macro");
// -ggnu-pubnames turns on gnu style pubnames in the backend.
const auto *PubnamesArg =
Args.getLastArg(options::OPT_ggnu_pubnames, options::OPT_gno_gnu_pubnames,
options::OPT_gpubnames, options::OPT_gno_pubnames);
if (DwarfFission != DwarfFissionKind::None ||
(PubnamesArg && checkDebugInfoOption(PubnamesArg, Args, D, TC)))
if (!PubnamesArg ||
(!PubnamesArg->getOption().matches(options::OPT_gno_gnu_pubnames) &&
!PubnamesArg->getOption().matches(options::OPT_gno_pubnames)))
CmdArgs.push_back(PubnamesArg && PubnamesArg->getOption().matches(
options::OPT_gpubnames)
? "-gpubnames"
: "-ggnu-pubnames");
const auto *SimpleTemplateNamesArg =
Args.getLastArg(options::OPT_gsimple_template_names,
options::OPT_gno_simple_template_names);
bool ForwardTemplateParams = DebuggerTuning == llvm::DebuggerKind::SCE;
if (SimpleTemplateNamesArg &&
checkDebugInfoOption(SimpleTemplateNamesArg, Args, D, TC)) {
const auto &Opt = SimpleTemplateNamesArg->getOption();
if (Opt.matches(options::OPT_gsimple_template_names)) {
ForwardTemplateParams = true;
CmdArgs.push_back("-gsimple-template-names=simple");
}
}
if (const Arg *A = Args.getLastArg(options::OPT_gsrc_hash_EQ)) {
StringRef v = A->getValue();
CmdArgs.push_back(Args.MakeArgString("-gsrc-hash=" + v));
}
if (Args.hasFlag(options::OPT_fdebug_ranges_base_address,
options::OPT_fno_debug_ranges_base_address, false)) {
CmdArgs.push_back("-fdebug-ranges-base-address");
}
// -gdwarf-aranges turns on the emission of the aranges section in the
// backend.
// Always enabled for SCE tuning.
bool NeedAranges = DebuggerTuning == llvm::DebuggerKind::SCE;
if (const Arg *A = Args.getLastArg(options::OPT_gdwarf_aranges))
NeedAranges = checkDebugInfoOption(A, Args, D, TC) || NeedAranges;
if (NeedAranges) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-generate-arange-section");
}
if (Args.hasFlag(options::OPT_fforce_dwarf_frame,
options::OPT_fno_force_dwarf_frame, false))
CmdArgs.push_back("-fforce-dwarf-frame");
if (Args.hasFlag(options::OPT_fdebug_types_section,
options::OPT_fno_debug_types_section, false)) {
if (!(T.isOSBinFormatELF() || T.isOSBinFormatWasm())) {
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< Args.getLastArg(options::OPT_fdebug_types_section)
->getAsString(Args)
<< T.getTriple();
} else if (checkDebugInfoOption(
Args.getLastArg(options::OPT_fdebug_types_section), Args, D,
TC)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-generate-type-units");
}
}
// To avoid join/split of directory+filename, the integrated assembler prefers
// the directory form of .file on all DWARF versions. GNU as doesn't allow the
// form before DWARF v5.
if (!Args.hasFlag(options::OPT_fdwarf_directory_asm,
options::OPT_fno_dwarf_directory_asm,
TC.useIntegratedAs() || EffectiveDWARFVersion >= 5))
CmdArgs.push_back("-fno-dwarf-directory-asm");
// Decide how to render forward declarations of template instantiations.
// SCE wants full descriptions, others just get them in the name.
if (ForwardTemplateParams)
CmdArgs.push_back("-debug-forward-template-params");
// Do we need to explicitly import anonymous namespaces into the parent
// scope?
if (DebuggerTuning == llvm::DebuggerKind::SCE)
CmdArgs.push_back("-dwarf-explicit-import");
renderDwarfFormat(D, T, Args, CmdArgs, EffectiveDWARFVersion);
RenderDebugInfoCompressionArgs(Args, CmdArgs, D, TC);
}
static void ProcessVSRuntimeLibrary(const ArgList &Args,
ArgStringList &CmdArgs) {
unsigned RTOptionID = options::OPT__SLASH_MT;
if (Args.hasArg(options::OPT__SLASH_LDd))
// The /LDd option implies /MTd. The dependent lib part can be overridden,
// but defining _DEBUG is sticky.
RTOptionID = options::OPT__SLASH_MTd;
if (Arg *A = Args.getLastArg(options::OPT__SLASH_M_Group))
RTOptionID = A->getOption().getID();
if (Arg *A = Args.getLastArg(options::OPT_fms_runtime_lib_EQ)) {
RTOptionID = llvm::StringSwitch<unsigned>(A->getValue())
.Case("static", options::OPT__SLASH_MT)
.Case("static_dbg", options::OPT__SLASH_MTd)
.Case("dll", options::OPT__SLASH_MD)
.Case("dll_dbg", options::OPT__SLASH_MDd)
.Default(options::OPT__SLASH_MT);
}
StringRef FlagForCRT;
switch (RTOptionID) {
case options::OPT__SLASH_MD:
if (Args.hasArg(options::OPT__SLASH_LDd))
CmdArgs.push_back("-D_DEBUG");
CmdArgs.push_back("-D_MT");
CmdArgs.push_back("-D_DLL");
FlagForCRT = "--dependent-lib=msvcrt";
break;
case options::OPT__SLASH_MDd:
CmdArgs.push_back("-D_DEBUG");
CmdArgs.push_back("-D_MT");
CmdArgs.push_back("-D_DLL");
FlagForCRT = "--dependent-lib=msvcrtd";
break;
case options::OPT__SLASH_MT:
if (Args.hasArg(options::OPT__SLASH_LDd))
CmdArgs.push_back("-D_DEBUG");
CmdArgs.push_back("-D_MT");
CmdArgs.push_back("-flto-visibility-public-std");
FlagForCRT = "--dependent-lib=libcmt";
break;
case options::OPT__SLASH_MTd:
CmdArgs.push_back("-D_DEBUG");
CmdArgs.push_back("-D_MT");
CmdArgs.push_back("-flto-visibility-public-std");
FlagForCRT = "--dependent-lib=libcmtd";
break;
default:
llvm_unreachable("Unexpected option ID.");
}
if (Args.hasArg(options::OPT_fms_omit_default_lib)) {
CmdArgs.push_back("-D_VC_NODEFAULTLIB");
} else {
CmdArgs.push_back(FlagForCRT.data());
// This provides POSIX compatibility (maps 'open' to '_open'), which most
// users want. The /Za flag to cl.exe turns this off, but it's not
// implemented in clang.
CmdArgs.push_back("--dependent-lib=oldnames");
}
}
void Clang::ConstructJob(Compilation &C, const JobAction &JA,
const InputInfo &Output, const InputInfoList &Inputs,
const ArgList &Args, const char *LinkingOutput) const {
const auto &TC = getToolChain();
const llvm::Triple &RawTriple = TC.getTriple();
const llvm::Triple &Triple = TC.getEffectiveTriple();
const std::string &TripleStr = Triple.getTriple();
bool KernelOrKext =
Args.hasArg(options::OPT_mkernel, options::OPT_fapple_kext);
const Driver &D = TC.getDriver();
ArgStringList CmdArgs;
assert(Inputs.size() >= 1 && "Must have at least one input.");
// CUDA/HIP compilation may have multiple inputs (source file + results of
// device-side compilations). OpenMP device jobs also take the host IR as a
// second input. Module precompilation accepts a list of header files to
// include as part of the module. API extraction accepts a list of header
// files whose API information is emitted in the output. All other jobs are
// expected to have exactly one input.
bool IsCuda = JA.isOffloading(Action::OFK_Cuda);
bool IsCudaDevice = JA.isDeviceOffloading(Action::OFK_Cuda);
bool IsHIP = JA.isOffloading(Action::OFK_HIP);
bool IsHIPDevice = JA.isDeviceOffloading(Action::OFK_HIP);
bool IsOpenMPDevice = JA.isDeviceOffloading(Action::OFK_OpenMP);
bool IsHeaderModulePrecompile = isa<HeaderModulePrecompileJobAction>(JA);
bool IsExtractAPI = isa<ExtractAPIJobAction>(JA);
bool IsDeviceOffloadAction = !(JA.isDeviceOffloading(Action::OFK_None) ||
JA.isDeviceOffloading(Action::OFK_Host));
bool IsHostOffloadingAction =
JA.isHostOffloading(Action::OFK_OpenMP) ||
(JA.isHostOffloading(C.getActiveOffloadKinds()) &&
Args.hasFlag(options::OPT_offload_new_driver,
options::OPT_no_offload_new_driver, false));
bool IsRDCMode =
Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false);
bool IsUsingLTO = D.isUsingLTO(IsDeviceOffloadAction);
auto LTOMode = D.getLTOMode(IsDeviceOffloadAction);
// A header module compilation doesn't have a main input file, so invent a
// fake one as a placeholder.
const char *ModuleName = [&] {
auto *ModuleNameArg = Args.getLastArg(options::OPT_fmodule_name_EQ);
return ModuleNameArg ? ModuleNameArg->getValue() : "";
}();
InputInfo HeaderModuleInput(Inputs[0].getType(), ModuleName, ModuleName);
// Extract API doesn't have a main input file, so invent a fake one as a
// placeholder.
InputInfo ExtractAPIPlaceholderInput(Inputs[0].getType(), "extract-api",
"extract-api");
const InputInfo &Input = [&]() -> const InputInfo & {
if (IsHeaderModulePrecompile)
return HeaderModuleInput;
if (IsExtractAPI)
return ExtractAPIPlaceholderInput;
return Inputs[0];
}();
InputInfoList ModuleHeaderInputs;
InputInfoList ExtractAPIInputs;
InputInfoList HostOffloadingInputs;
const InputInfo *CudaDeviceInput = nullptr;
const InputInfo *OpenMPDeviceInput = nullptr;
for (const InputInfo &I : Inputs) {
if (&I == &Input || I.getType() == types::TY_Nothing) {
// This is the primary input or contains nothing.
} else if (IsHeaderModulePrecompile &&
types::getPrecompiledType(I.getType()) == types::TY_PCH) {
types::ID Expected = HeaderModuleInput.getType();
if (I.getType() != Expected) {
D.Diag(diag::err_drv_module_header_wrong_kind)
<< I.getFilename() << types::getTypeName(I.getType())
<< types::getTypeName(Expected);
}
ModuleHeaderInputs.push_back(I);
} else if (IsExtractAPI) {
auto ExpectedInputType = ExtractAPIPlaceholderInput.getType();
if (I.getType() != ExpectedInputType) {
D.Diag(diag::err_drv_extract_api_wrong_kind)
<< I.getFilename() << types::getTypeName(I.getType())
<< types::getTypeName(ExpectedInputType);
}
ExtractAPIInputs.push_back(I);
} else if (IsHostOffloadingAction) {
HostOffloadingInputs.push_back(I);
} else if ((IsCuda || IsHIP) && !CudaDeviceInput) {
CudaDeviceInput = &I;
} else if (IsOpenMPDevice && !OpenMPDeviceInput) {
OpenMPDeviceInput = &I;
} else {
llvm_unreachable("unexpectedly given multiple inputs");
}
}
const llvm::Triple *AuxTriple =
(IsCuda || IsHIP) ? TC.getAuxTriple() : nullptr;
bool IsWindowsMSVC = RawTriple.isWindowsMSVCEnvironment();
bool IsIAMCU = RawTriple.isOSIAMCU();
// Adjust IsWindowsXYZ for CUDA/HIP compilations. Even when compiling in
// device mode (i.e., getToolchain().getTriple() is NVPTX/AMDGCN, not
// Windows), we need to pass Windows-specific flags to cc1.
if (IsCuda || IsHIP)
IsWindowsMSVC |= AuxTriple && AuxTriple->isWindowsMSVCEnvironment();
// C++ is not supported for IAMCU.
if (IsIAMCU && types::isCXX(Input.getType()))
D.Diag(diag::err_drv_clang_unsupported) << "C++ for IAMCU";
// Invoke ourselves in -cc1 mode.
//
// FIXME: Implement custom jobs for internal actions.
CmdArgs.push_back("-cc1");
// Add the "effective" target triple.
CmdArgs.push_back("-triple");
CmdArgs.push_back(Args.MakeArgString(TripleStr));
if (const Arg *MJ = Args.getLastArg(options::OPT_MJ)) {
DumpCompilationDatabase(C, MJ->getValue(), TripleStr, Output, Input, Args);
Args.ClaimAllArgs(options::OPT_MJ);
} else if (const Arg *GenCDBFragment =
Args.getLastArg(options::OPT_gen_cdb_fragment_path)) {
DumpCompilationDatabaseFragmentToDir(GenCDBFragment->getValue(), C,
TripleStr, Output, Input, Args);
Args.ClaimAllArgs(options::OPT_gen_cdb_fragment_path);
}
if (IsCuda || IsHIP) {
// We have to pass the triple of the host if compiling for a CUDA/HIP device
// and vice-versa.
std::string NormalizedTriple;
if (JA.isDeviceOffloading(Action::OFK_Cuda) ||
JA.isDeviceOffloading(Action::OFK_HIP))
NormalizedTriple = C.getSingleOffloadToolChain<Action::OFK_Host>()
->getTriple()
.normalize();
else {
// Host-side compilation.
NormalizedTriple =
(IsCuda ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
: C.getSingleOffloadToolChain<Action::OFK_HIP>())
->getTriple()
.normalize();
if (IsCuda) {
// We need to figure out which CUDA version we're compiling for, as that
// determines how we load and launch GPU kernels.
auto *CTC = static_cast<const toolchains::CudaToolChain *>(
C.getSingleOffloadToolChain<Action::OFK_Cuda>());
assert(CTC && "Expected valid CUDA Toolchain.");
if (CTC && CTC->CudaInstallation.version() != CudaVersion::UNKNOWN)
CmdArgs.push_back(Args.MakeArgString(
Twine("-target-sdk-version=") +
CudaVersionToString(CTC->CudaInstallation.version())));
}
}
CmdArgs.push_back("-aux-triple");
CmdArgs.push_back(Args.MakeArgString(NormalizedTriple));
}
if (Args.hasFlag(options::OPT_fsycl, options::OPT_fno_sycl, false)) {
CmdArgs.push_back("-fsycl-is-device");
if (Arg *A = Args.getLastArg(options::OPT_sycl_std_EQ)) {
A->render(Args, CmdArgs);
} else {
// Ensure the default version in SYCL mode is 2020.
CmdArgs.push_back("-sycl-std=2020");
}
}
if (IsOpenMPDevice) {
// We have to pass the triple of the host if compiling for an OpenMP device.
std::string NormalizedTriple =
C.getSingleOffloadToolChain<Action::OFK_Host>()
->getTriple()
.normalize();
CmdArgs.push_back("-aux-triple");
CmdArgs.push_back(Args.MakeArgString(NormalizedTriple));
}
if (Triple.isOSWindows() && (Triple.getArch() == llvm::Triple::arm ||
Triple.getArch() == llvm::Triple::thumb)) {
unsigned Offset = Triple.getArch() == llvm::Triple::arm ? 4 : 6;
unsigned Version = 0;
bool Failure =
Triple.getArchName().substr(Offset).consumeInteger(10, Version);
if (Failure || Version < 7)
D.Diag(diag::err_target_unsupported_arch) << Triple.getArchName()
<< TripleStr;
}
// Push all default warning arguments that are specific to
// the given target. These come before user provided warning options
// are provided.
TC.addClangWarningOptions(CmdArgs);
// FIXME: Subclass ToolChain for SPIR and move this to addClangWarningOptions.
if (Triple.isSPIR() || Triple.isSPIRV())
CmdArgs.push_back("-Wspir-compat");
// Select the appropriate action.
RewriteKind rewriteKind = RK_None;
// If CollectArgsForIntegratedAssembler() isn't called below, claim the args
// it claims when not running an assembler. Otherwise, clang would emit
// "argument unused" warnings for assembler flags when e.g. adding "-E" to
// flags while debugging something. That'd be somewhat inconvenient, and it's
// also inconsistent with most other flags -- we don't warn on
// -ffunction-sections not being used in -E mode either for example, even
// though it's not really used either.
if (!isa<AssembleJobAction>(JA)) {
// The args claimed here should match the args used in
// CollectArgsForIntegratedAssembler().
if (TC.useIntegratedAs()) {
Args.ClaimAllArgs(options::OPT_mrelax_all);
Args.ClaimAllArgs(options::OPT_mno_relax_all);
Args.ClaimAllArgs(options::OPT_mincremental_linker_compatible);
Args.ClaimAllArgs(options::OPT_mno_incremental_linker_compatible);
switch (C.getDefaultToolChain().getArch()) {
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
Args.ClaimAllArgs(options::OPT_mimplicit_it_EQ);
break;
default:
break;
}
}
Args.ClaimAllArgs(options::OPT_Wa_COMMA);
Args.ClaimAllArgs(options::OPT_Xassembler);
Args.ClaimAllArgs(options::OPT_femit_dwarf_unwind_EQ);
}
if (isa<AnalyzeJobAction>(JA)) {
assert(JA.getType() == types::TY_Plist && "Invalid output type.");
CmdArgs.push_back("-analyze");
} else if (isa<MigrateJobAction>(JA)) {
CmdArgs.push_back("-migrate");
} else if (isa<PreprocessJobAction>(JA)) {
if (Output.getType() == types::TY_Dependencies)
CmdArgs.push_back("-Eonly");
else {
CmdArgs.push_back("-E");
if (Args.hasArg(options::OPT_rewrite_objc) &&
!Args.hasArg(options::OPT_g_Group))
CmdArgs.push_back("-P");
else if (JA.getType() == types::TY_PP_CXXHeaderUnit)
CmdArgs.push_back("-fdirectives-only");
}
} else if (isa<AssembleJobAction>(JA)) {
CmdArgs.push_back("-emit-obj");
CollectArgsForIntegratedAssembler(C, Args, CmdArgs, D);
// Also ignore explicit -force_cpusubtype_ALL option.
(void)Args.hasArg(options::OPT_force__cpusubtype__ALL);
} else if (isa<PrecompileJobAction>(JA)) {
if (JA.getType() == types::TY_Nothing)
CmdArgs.push_back("-fsyntax-only");
else if (JA.getType() == types::TY_ModuleFile)
CmdArgs.push_back(IsHeaderModulePrecompile
? "-emit-header-module"
: "-emit-module-interface");
else if (JA.getType() == types::TY_HeaderUnit)
CmdArgs.push_back("-emit-header-unit");
else
CmdArgs.push_back("-emit-pch");
} else if (isa<VerifyPCHJobAction>(JA)) {
CmdArgs.push_back("-verify-pch");
} else if (isa<ExtractAPIJobAction>(JA)) {
assert(JA.getType() == types::TY_API_INFO &&
"Extract API actions must generate a API information.");
CmdArgs.push_back("-extract-api");
if (Arg *ProductNameArg = Args.getLastArg(options::OPT_product_name_EQ))
ProductNameArg->render(Args, CmdArgs);
} else {
assert((isa<CompileJobAction>(JA) || isa<BackendJobAction>(JA)) &&
"Invalid action for clang tool.");
if (JA.getType() == types::TY_Nothing) {
CmdArgs.push_back("-fsyntax-only");
} else if (JA.getType() == types::TY_LLVM_IR ||
JA.getType() == types::TY_LTO_IR) {
CmdArgs.push_back("-emit-llvm");
} else if (JA.getType() == types::TY_LLVM_BC ||
JA.getType() == types::TY_LTO_BC) {
// Emit textual llvm IR for AMDGPU offloading for -emit-llvm -S
if (Triple.isAMDGCN() && IsOpenMPDevice && Args.hasArg(options::OPT_S) &&
Args.hasArg(options::OPT_emit_llvm)) {
CmdArgs.push_back("-emit-llvm");
} else {
CmdArgs.push_back("-emit-llvm-bc");
}
} else if (JA.getType() == types::TY_IFS ||
JA.getType() == types::TY_IFS_CPP) {
StringRef ArgStr =
Args.hasArg(options::OPT_interface_stub_version_EQ)
? Args.getLastArgValue(options::OPT_interface_stub_version_EQ)
: "ifs-v1";
CmdArgs.push_back("-emit-interface-stubs");
CmdArgs.push_back(
Args.MakeArgString(Twine("-interface-stub-version=") + ArgStr.str()));
} else if (JA.getType() == types::TY_PP_Asm) {
CmdArgs.push_back("-S");
} else if (JA.getType() == types::TY_AST) {
CmdArgs.push_back("-emit-pch");
} else if (JA.getType() == types::TY_ModuleFile) {
CmdArgs.push_back("-module-file-info");
} else if (JA.getType() == types::TY_RewrittenObjC) {
CmdArgs.push_back("-rewrite-objc");
rewriteKind = RK_NonFragile;
} else if (JA.getType() == types::TY_RewrittenLegacyObjC) {
CmdArgs.push_back("-rewrite-objc");
rewriteKind = RK_Fragile;
} else {
assert(JA.getType() == types::TY_PP_Asm && "Unexpected output type!");
}
// Preserve use-list order by default when emitting bitcode, so that
// loading the bitcode up in 'opt' or 'llc' and running passes gives the
// same result as running passes here. For LTO, we don't need to preserve
// the use-list order, since serialization to bitcode is part of the flow.
if (JA.getType() == types::TY_LLVM_BC)
CmdArgs.push_back("-emit-llvm-uselists");
if (IsUsingLTO) {
// Only AMDGPU supports device-side LTO.
if (IsDeviceOffloadAction && !JA.isDeviceOffloading(Action::OFK_OpenMP) &&
!Args.hasFlag(options::OPT_offload_new_driver,
options::OPT_no_offload_new_driver, false) &&
!Triple.isAMDGPU()) {
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< Args.getLastArg(options::OPT_foffload_lto,
options::OPT_foffload_lto_EQ)
->getAsString(Args)
<< Triple.getTriple();
} else {
assert(LTOMode == LTOK_Full || LTOMode == LTOK_Thin);
CmdArgs.push_back(Args.MakeArgString(
Twine("-flto=") + (LTOMode == LTOK_Thin ? "thin" : "full")));
CmdArgs.push_back("-flto-unit");
}
}
}
if (const Arg *A = Args.getLastArg(options::OPT_fthinlto_index_EQ)) {
if (!types::isLLVMIR(Input.getType()))
D.Diag(diag::err_drv_arg_requires_bitcode_input) << A->getAsString(Args);
Args.AddLastArg(CmdArgs, options::OPT_fthinlto_index_EQ);
}
if (Args.getLastArg(options::OPT_fthin_link_bitcode_EQ))
Args.AddLastArg(CmdArgs, options::OPT_fthin_link_bitcode_EQ);
if (Args.getLastArg(options::OPT_save_temps_EQ))
Args.AddLastArg(CmdArgs, options::OPT_save_temps_EQ);
auto *MemProfArg = Args.getLastArg(options::OPT_fmemory_profile,
options::OPT_fmemory_profile_EQ,
options::OPT_fno_memory_profile);
if (MemProfArg &&
!MemProfArg->getOption().matches(options::OPT_fno_memory_profile))
MemProfArg->render(Args, CmdArgs);
// Embed-bitcode option.
// Only white-listed flags below are allowed to be embedded.
if (C.getDriver().embedBitcodeInObject() && !IsUsingLTO &&
(isa<BackendJobAction>(JA) || isa<AssembleJobAction>(JA))) {
// Add flags implied by -fembed-bitcode.
Args.AddLastArg(CmdArgs, options::OPT_fembed_bitcode_EQ);
// Disable all llvm IR level optimizations.
CmdArgs.push_back("-disable-llvm-passes");
// Render target options.
TC.addClangTargetOptions(Args, CmdArgs, JA.getOffloadingDeviceKind());
// reject options that shouldn't be supported in bitcode
// also reject kernel/kext
static const constexpr unsigned kBitcodeOptionIgnorelist[] = {
options::OPT_mkernel,
options::OPT_fapple_kext,
options::OPT_ffunction_sections,
options::OPT_fno_function_sections,
options::OPT_fdata_sections,
options::OPT_fno_data_sections,
options::OPT_fbasic_block_sections_EQ,
options::OPT_funique_internal_linkage_names,
options::OPT_fno_unique_internal_linkage_names,
options::OPT_funique_section_names,
options::OPT_fno_unique_section_names,
options::OPT_funique_basic_block_section_names,
options::OPT_fno_unique_basic_block_section_names,
options::OPT_mrestrict_it,
options::OPT_mno_restrict_it,
options::OPT_mstackrealign,
options::OPT_mno_stackrealign,
options::OPT_mstack_alignment,
options::OPT_mcmodel_EQ,
options::OPT_mlong_calls,
options::OPT_mno_long_calls,
options::OPT_ggnu_pubnames,
options::OPT_gdwarf_aranges,
options::OPT_fdebug_types_section,
options::OPT_fno_debug_types_section,
options::OPT_fdwarf_directory_asm,
options::OPT_fno_dwarf_directory_asm,
options::OPT_mrelax_all,
options::OPT_mno_relax_all,
options::OPT_ftrap_function_EQ,
options::OPT_ffixed_r9,
options::OPT_mfix_cortex_a53_835769,
options::OPT_mno_fix_cortex_a53_835769,
options::OPT_ffixed_x18,
options::OPT_mglobal_merge,
options::OPT_mno_global_merge,
options::OPT_mred_zone,
options::OPT_mno_red_zone,
options::OPT_Wa_COMMA,
options::OPT_Xassembler,
options::OPT_mllvm,
};
for (const auto &A : Args)
if (llvm::is_contained(kBitcodeOptionIgnorelist, A->getOption().getID()))
D.Diag(diag::err_drv_unsupported_embed_bitcode) << A->getSpelling();
// Render the CodeGen options that need to be passed.
Args.addOptOutFlag(CmdArgs, options::OPT_foptimize_sibling_calls,
options::OPT_fno_optimize_sibling_calls);
RenderFloatingPointOptions(TC, D, isOptimizationLevelFast(Args), Args,
CmdArgs, JA);
// Render ABI arguments
switch (TC.getArch()) {
default: break;
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumbeb:
RenderARMABI(D, Triple, Args, CmdArgs);
break;
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32:
case llvm::Triple::aarch64_be:
RenderAArch64ABI(Triple, Args, CmdArgs);
break;
}
// Optimization level for CodeGen.
if (const Arg *A = Args.getLastArg(options::OPT_O_Group)) {
if (A->getOption().matches(options::OPT_O4)) {
CmdArgs.push_back("-O3");
D.Diag(diag::warn_O4_is_O3);
} else {
A->render(Args, CmdArgs);
}
}
// Input/Output file.
if (Output.getType() == types::TY_Dependencies) {
// Handled with other dependency code.
} else if (Output.isFilename()) {
CmdArgs.push_back("-o");
CmdArgs.push_back(Output.getFilename());
} else {
assert(Output.isNothing() && "Input output.");
}
for (const auto &II : Inputs) {
addDashXForInput(Args, II, CmdArgs);
if (II.isFilename())
CmdArgs.push_back(II.getFilename());
else
II.getInputArg().renderAsInput(Args, CmdArgs);
}
C.addCommand(std::make_unique<Command>(
JA, *this, ResponseFileSupport::AtFileUTF8(), D.getClangProgramPath(),
CmdArgs, Inputs, Output));
return;
}
if (C.getDriver().embedBitcodeMarkerOnly() && !IsUsingLTO)
CmdArgs.push_back("-fembed-bitcode=marker");
// We normally speed up the clang process a bit by skipping destructors at
// exit, but when we're generating diagnostics we can rely on some of the
// cleanup.
if (!C.isForDiagnostics())
CmdArgs.push_back("-disable-free");
CmdArgs.push_back("-clear-ast-before-backend");
#ifdef NDEBUG
const bool IsAssertBuild = false;
#else
const bool IsAssertBuild = true;
#endif
// Disable the verification pass in -asserts builds.
if (!IsAssertBuild)
CmdArgs.push_back("-disable-llvm-verifier");
// Discard value names in assert builds unless otherwise specified.
if (Args.hasFlag(options::OPT_fdiscard_value_names,
options::OPT_fno_discard_value_names, !IsAssertBuild)) {
if (Args.hasArg(options::OPT_fdiscard_value_names) &&
llvm::any_of(Inputs, [](const clang::driver::InputInfo &II) {
return types::isLLVMIR(II.getType());
})) {
D.Diag(diag::warn_ignoring_fdiscard_for_bitcode);
}
CmdArgs.push_back("-discard-value-names");
}
// Set the main file name, so that debug info works even with
// -save-temps.
CmdArgs.push_back("-main-file-name");
CmdArgs.push_back(getBaseInputName(Args, Input));
// Some flags which affect the language (via preprocessor
// defines).
if (Args.hasArg(options::OPT_static))
CmdArgs.push_back("-static-define");
if (Args.hasArg(options::OPT_municode))
CmdArgs.push_back("-DUNICODE");
if (isa<AnalyzeJobAction>(JA))
RenderAnalyzerOptions(Args, CmdArgs, Triple, Input);
if (isa<AnalyzeJobAction>(JA) ||
(isa<PreprocessJobAction>(JA) && Args.hasArg(options::OPT__analyze)))
CmdArgs.push_back("-setup-static-analyzer");
// Enable compatilibily mode to avoid analyzer-config related errors.
// Since we can't access frontend flags through hasArg, let's manually iterate
// through them.
bool FoundAnalyzerConfig = false;
for (auto *Arg : Args.filtered(options::OPT_Xclang))
if (StringRef(Arg->getValue()) == "-analyzer-config") {
FoundAnalyzerConfig = true;
break;
}
if (!FoundAnalyzerConfig)
for (auto *Arg : Args.filtered(options::OPT_Xanalyzer))
if (StringRef(Arg->getValue()) == "-analyzer-config") {
FoundAnalyzerConfig = true;
break;
}
if (FoundAnalyzerConfig)
CmdArgs.push_back("-analyzer-config-compatibility-mode=true");
CheckCodeGenerationOptions(D, Args);
unsigned FunctionAlignment = ParseFunctionAlignment(TC, Args);
assert(FunctionAlignment <= 31 && "function alignment will be truncated!");
if (FunctionAlignment) {
CmdArgs.push_back("-function-alignment");
CmdArgs.push_back(Args.MakeArgString(std::to_string(FunctionAlignment)));
}
// We support -falign-loops=N where N is a power of 2. GCC supports more
// forms.
if (const Arg *A = Args.getLastArg(options::OPT_falign_loops_EQ)) {
unsigned Value = 0;
if (StringRef(A->getValue()).getAsInteger(10, Value) || Value > 65536)
TC.getDriver().Diag(diag::err_drv_invalid_int_value)
<< A->getAsString(Args) << A->getValue();
else if (Value & (Value - 1))
TC.getDriver().Diag(diag::err_drv_alignment_not_power_of_two)
<< A->getAsString(Args) << A->getValue();
// Treat =0 as unspecified (use the target preference).
if (Value)
CmdArgs.push_back(Args.MakeArgString("-falign-loops=" +
Twine(std::min(Value, 65536u))));
}
llvm::Reloc::Model RelocationModel;
unsigned PICLevel;
bool IsPIE;
std::tie(RelocationModel, PICLevel, IsPIE) = ParsePICArgs(TC, Args);
bool IsROPI = RelocationModel == llvm::Reloc::ROPI ||
RelocationModel == llvm::Reloc::ROPI_RWPI;
bool IsRWPI = RelocationModel == llvm::Reloc::RWPI ||
RelocationModel == llvm::Reloc::ROPI_RWPI;
if (Args.hasArg(options::OPT_mcmse) &&
!Args.hasArg(options::OPT_fallow_unsupported)) {
if (IsROPI)
D.Diag(diag::err_cmse_pi_are_incompatible) << IsROPI;
if (IsRWPI)
D.Diag(diag::err_cmse_pi_are_incompatible) << !IsRWPI;
}
if (IsROPI && types::isCXX(Input.getType()) &&
!Args.hasArg(options::OPT_fallow_unsupported))
D.Diag(diag::err_drv_ropi_incompatible_with_cxx);
const char *RMName = RelocationModelName(RelocationModel);
if (RMName) {
CmdArgs.push_back("-mrelocation-model");
CmdArgs.push_back(RMName);
}
if (PICLevel > 0) {
CmdArgs.push_back("-pic-level");
CmdArgs.push_back(PICLevel == 1 ? "1" : "2");
if (IsPIE)
CmdArgs.push_back("-pic-is-pie");
}
if (RelocationModel == llvm::Reloc::ROPI ||
RelocationModel == llvm::Reloc::ROPI_RWPI)
CmdArgs.push_back("-fropi");
if (RelocationModel == llvm::Reloc::RWPI ||
RelocationModel == llvm::Reloc::ROPI_RWPI)
CmdArgs.push_back("-frwpi");
if (Arg *A = Args.getLastArg(options::OPT_meabi)) {
CmdArgs.push_back("-meabi");
CmdArgs.push_back(A->getValue());
}
// -fsemantic-interposition is forwarded to CC1: set the
// "SemanticInterposition" metadata to 1 (make some linkages interposable) and
// make default visibility external linkage definitions dso_preemptable.
//
// -fno-semantic-interposition: if the target supports .Lfoo$local local
// aliases (make default visibility external linkage definitions dso_local).
// This is the CC1 default for ELF to match COFF/Mach-O.
//
// Otherwise use Clang's traditional behavior: like
// -fno-semantic-interposition but local aliases are not used. So references
// can be interposed if not optimized out.
if (Triple.isOSBinFormatELF()) {
Arg *A = Args.getLastArg(options::OPT_fsemantic_interposition,
options::OPT_fno_semantic_interposition);
if (RelocationModel != llvm::Reloc::Static && !IsPIE) {
// The supported targets need to call AsmPrinter::getSymbolPreferLocal.
bool SupportsLocalAlias =
Triple.isAArch64() || Triple.isRISCV() || Triple.isX86();
if (!A)
CmdArgs.push_back("-fhalf-no-semantic-interposition");
else if (A->getOption().matches(options::OPT_fsemantic_interposition))
A->render(Args, CmdArgs);
else if (!SupportsLocalAlias)
CmdArgs.push_back("-fhalf-no-semantic-interposition");
}
}
{
std::string Model;
if (Arg *A = Args.getLastArg(options::OPT_mthread_model)) {
if (!TC.isThreadModelSupported(A->getValue()))
D.Diag(diag::err_drv_invalid_thread_model_for_target)
<< A->getValue() << A->getAsString(Args);
Model = A->getValue();
} else
Model = TC.getThreadModel();
if (Model != "posix") {
CmdArgs.push_back("-mthread-model");
CmdArgs.push_back(Args.MakeArgString(Model));
}
}
Args.AddLastArg(CmdArgs, options::OPT_fveclib);
if (Args.hasFlag(options::OPT_fmerge_all_constants,
options::OPT_fno_merge_all_constants, false))
CmdArgs.push_back("-fmerge-all-constants");
if (Args.hasFlag(options::OPT_fno_delete_null_pointer_checks,
options::OPT_fdelete_null_pointer_checks, false))
CmdArgs.push_back("-fno-delete-null-pointer-checks");
// LLVM Code Generator Options.
for (const Arg *A : Args.filtered(options::OPT_frewrite_map_file_EQ)) {
StringRef Map = A->getValue();
if (!llvm::sys::fs::exists(Map)) {
D.Diag(diag::err_drv_no_such_file) << Map;
} else {
A->render(Args, CmdArgs);
A->claim();
}
}
if (Arg *A = Args.getLastArg(options::OPT_mabi_EQ_vec_extabi,
options::OPT_mabi_EQ_vec_default)) {
if (!Triple.isOSAIX())
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getSpelling() << RawTriple.str();
if (A->getOption().getID() == options::OPT_mabi_EQ_vec_extabi)
CmdArgs.push_back("-mabi=vec-extabi");
else
CmdArgs.push_back("-mabi=vec-default");
}
if (Arg *A = Args.getLastArg(options::OPT_mabi_EQ_quadword_atomics)) {
if (!Triple.isOSAIX() || Triple.isPPC32())
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getSpelling() << RawTriple.str();
CmdArgs.push_back("-mabi=quadword-atomics");
}
if (Arg *A = Args.getLastArg(options::OPT_mlong_double_128)) {
// Emit the unsupported option error until the Clang's library integration
// support for 128-bit long double is available for AIX.
if (Triple.isOSAIX())
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getSpelling() << RawTriple.str();
}
if (Arg *A = Args.getLastArg(options::OPT_Wframe_larger_than_EQ)) {
StringRef v = A->getValue();
// FIXME: Validate the argument here so we don't produce meaningless errors
// about -fwarn-stack-size=.
if (v.empty())
D.Diag(diag::err_drv_missing_argument) << A->getSpelling() << 1;
else
CmdArgs.push_back(Args.MakeArgString("-fwarn-stack-size=" + v));
A->claim();
}
Args.addOptOutFlag(CmdArgs, options::OPT_fjump_tables,
options::OPT_fno_jump_tables);
Args.addOptInFlag(CmdArgs, options::OPT_fprofile_sample_accurate,
options::OPT_fno_profile_sample_accurate);
Args.addOptOutFlag(CmdArgs, options::OPT_fpreserve_as_comments,
options::OPT_fno_preserve_as_comments);
if (Arg *A = Args.getLastArg(options::OPT_mregparm_EQ)) {
CmdArgs.push_back("-mregparm");
CmdArgs.push_back(A->getValue());
}
if (Arg *A = Args.getLastArg(options::OPT_maix_struct_return,
options::OPT_msvr4_struct_return)) {
if (!TC.getTriple().isPPC32()) {
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getSpelling() << RawTriple.str();
} else if (A->getOption().matches(options::OPT_maix_struct_return)) {
CmdArgs.push_back("-maix-struct-return");
} else {
assert(A->getOption().matches(options::OPT_msvr4_struct_return));
CmdArgs.push_back("-msvr4-struct-return");
}
}
if (Arg *A = Args.getLastArg(options::OPT_fpcc_struct_return,
options::OPT_freg_struct_return)) {
if (TC.getArch() != llvm::Triple::x86) {
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getSpelling() << RawTriple.str();
} else if (A->getOption().matches(options::OPT_fpcc_struct_return)) {
CmdArgs.push_back("-fpcc-struct-return");
} else {
assert(A->getOption().matches(options::OPT_freg_struct_return));
CmdArgs.push_back("-freg-struct-return");
}
}
if (Args.hasFlag(options::OPT_mrtd, options::OPT_mno_rtd, false))
CmdArgs.push_back("-fdefault-calling-conv=stdcall");
if (Args.hasArg(options::OPT_fenable_matrix)) {
// enable-matrix is needed by both the LangOpts and by LLVM.
CmdArgs.push_back("-fenable-matrix");
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-enable-matrix");
}
CodeGenOptions::FramePointerKind FPKeepKind =
getFramePointerKind(Args, RawTriple);
const char *FPKeepKindStr = nullptr;
switch (FPKeepKind) {
case CodeGenOptions::FramePointerKind::None:
FPKeepKindStr = "-mframe-pointer=none";
break;
case CodeGenOptions::FramePointerKind::NonLeaf:
FPKeepKindStr = "-mframe-pointer=non-leaf";
break;
case CodeGenOptions::FramePointerKind::All:
FPKeepKindStr = "-mframe-pointer=all";
break;
}
assert(FPKeepKindStr && "unknown FramePointerKind");
CmdArgs.push_back(FPKeepKindStr);
Args.addOptOutFlag(CmdArgs, options::OPT_fzero_initialized_in_bss,
options::OPT_fno_zero_initialized_in_bss);
bool OFastEnabled = isOptimizationLevelFast(Args);
// If -Ofast is the optimization level, then -fstrict-aliasing should be
// enabled. This alias option is being used to simplify the hasFlag logic.
OptSpecifier StrictAliasingAliasOption =
OFastEnabled ? options::OPT_Ofast : options::OPT_fstrict_aliasing;
// We turn strict aliasing off by default if we're in CL mode, since MSVC
// doesn't do any TBAA.
bool TBAAOnByDefault = !D.IsCLMode();
if (!Args.hasFlag(options::OPT_fstrict_aliasing, StrictAliasingAliasOption,
options::OPT_fno_strict_aliasing, TBAAOnByDefault))
CmdArgs.push_back("-relaxed-aliasing");
if (!Args.hasFlag(options::OPT_fstruct_path_tbaa,
options::OPT_fno_struct_path_tbaa, true))
CmdArgs.push_back("-no-struct-path-tbaa");
Args.addOptInFlag(CmdArgs, options::OPT_fstrict_enums,
options::OPT_fno_strict_enums);
Args.addOptOutFlag(CmdArgs, options::OPT_fstrict_return,
options::OPT_fno_strict_return);
Args.addOptInFlag(CmdArgs, options::OPT_fallow_editor_placeholders,
options::OPT_fno_allow_editor_placeholders);
Args.addOptInFlag(CmdArgs, options::OPT_fstrict_vtable_pointers,
options::OPT_fno_strict_vtable_pointers);
Args.addOptInFlag(CmdArgs, options::OPT_fforce_emit_vtables,
options::OPT_fno_force_emit_vtables);
Args.addOptOutFlag(CmdArgs, options::OPT_foptimize_sibling_calls,
options::OPT_fno_optimize_sibling_calls);
Args.addOptOutFlag(CmdArgs, options::OPT_fescaping_block_tail_calls,
options::OPT_fno_escaping_block_tail_calls);
Args.AddLastArg(CmdArgs, options::OPT_ffine_grained_bitfield_accesses,
options::OPT_fno_fine_grained_bitfield_accesses);
Args.AddLastArg(CmdArgs, options::OPT_fexperimental_relative_cxx_abi_vtables,
options::OPT_fno_experimental_relative_cxx_abi_vtables);
// Handle segmented stacks.
if (Args.hasFlag(options::OPT_fsplit_stack, options::OPT_fno_split_stack,
false))
CmdArgs.push_back("-fsplit-stack");
// -fprotect-parens=0 is default.
if (Args.hasFlag(options::OPT_fprotect_parens,
options::OPT_fno_protect_parens, false))
CmdArgs.push_back("-fprotect-parens");
RenderFloatingPointOptions(TC, D, OFastEnabled, Args, CmdArgs, JA);
if (Arg *A = Args.getLastArg(options::OPT_fextend_args_EQ)) {
const llvm::Triple::ArchType Arch = TC.getArch();
if (Arch == llvm::Triple::x86 || Arch == llvm::Triple::x86_64) {
StringRef V = A->getValue();
if (V == "64")
CmdArgs.push_back("-fextend-arguments=64");
else if (V != "32")
D.Diag(diag::err_drv_invalid_argument_to_option)
<< A->getValue() << A->getOption().getName();
} else
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getOption().getName() << TripleStr;
}
if (Arg *A = Args.getLastArg(options::OPT_mdouble_EQ)) {
if (TC.getArch() == llvm::Triple::avr)
A->render(Args, CmdArgs);
else
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
}
if (Arg *A = Args.getLastArg(options::OPT_LongDouble_Group)) {
if (TC.getTriple().isX86())
A->render(Args, CmdArgs);
else if (TC.getTriple().isPPC() &&
(A->getOption().getID() != options::OPT_mlong_double_80))
A->render(Args, CmdArgs);
else
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
}
// Decide whether to use verbose asm. Verbose assembly is the default on
// toolchains which have the integrated assembler on by default.
bool IsIntegratedAssemblerDefault = TC.IsIntegratedAssemblerDefault();
if (!Args.hasFlag(options::OPT_fverbose_asm, options::OPT_fno_verbose_asm,
IsIntegratedAssemblerDefault))
CmdArgs.push_back("-fno-verbose-asm");
// Parse 'none' or '$major.$minor'. Disallow -fbinutils-version=0 because we
// use that to indicate the MC default in the backend.
if (Arg *A = Args.getLastArg(options::OPT_fbinutils_version_EQ)) {
StringRef V = A->getValue();
unsigned Num;
if (V == "none")
A->render(Args, CmdArgs);
else if (!V.consumeInteger(10, Num) && Num > 0 &&
(V.empty() || (V.consume_front(".") &&
!V.consumeInteger(10, Num) && V.empty())))
A->render(Args, CmdArgs);
else
D.Diag(diag::err_drv_invalid_argument_to_option)
<< A->getValue() << A->getOption().getName();
}
// If toolchain choose to use MCAsmParser for inline asm don't pass the
// option to disable integrated-as explictly.
if (!TC.useIntegratedAs() && !TC.parseInlineAsmUsingAsmParser())
CmdArgs.push_back("-no-integrated-as");
if (Args.hasArg(options::OPT_fdebug_pass_structure)) {
CmdArgs.push_back("-mdebug-pass");
CmdArgs.push_back("Structure");
}
if (Args.hasArg(options::OPT_fdebug_pass_arguments)) {
CmdArgs.push_back("-mdebug-pass");
CmdArgs.push_back("Arguments");
}
// Enable -mconstructor-aliases except on darwin, where we have to work around
// a linker bug (see <rdar://problem/7651567>), and CUDA device code, where
// aliases aren't supported.
if (!RawTriple.isOSDarwin() && !RawTriple.isNVPTX())
CmdArgs.push_back("-mconstructor-aliases");
// Darwin's kernel doesn't support guard variables; just die if we
// try to use them.
if (KernelOrKext && RawTriple.isOSDarwin())
CmdArgs.push_back("-fforbid-guard-variables");
if (Args.hasFlag(options::OPT_mms_bitfields, options::OPT_mno_ms_bitfields,
Triple.isWindowsGNUEnvironment())) {
CmdArgs.push_back("-mms-bitfields");
}
// Non-PIC code defaults to -fdirect-access-external-data while PIC code
// defaults to -fno-direct-access-external-data. Pass the option if different
// from the default.
if (Arg *A = Args.getLastArg(options::OPT_fdirect_access_external_data,
options::OPT_fno_direct_access_external_data))
if (A->getOption().matches(options::OPT_fdirect_access_external_data) !=
(PICLevel == 0))
A->render(Args, CmdArgs);
if (Args.hasFlag(options::OPT_fno_plt, options::OPT_fplt, false)) {
CmdArgs.push_back("-fno-plt");
}
// -fhosted is default.
// TODO: Audit uses of KernelOrKext and see where it'd be more appropriate to
// use Freestanding.
bool Freestanding =
Args.hasFlag(options::OPT_ffreestanding, options::OPT_fhosted, false) ||
KernelOrKext;
if (Freestanding)
CmdArgs.push_back("-ffreestanding");
Args.AddLastArg(CmdArgs, options::OPT_fno_knr_functions);
// This is a coarse approximation of what llvm-gcc actually does, both
// -fasynchronous-unwind-tables and -fnon-call-exceptions interact in more
// complicated ways.
auto SanitizeArgs = TC.getSanitizerArgs(Args);
auto UnwindTables = TC.getDefaultUnwindTableLevel(Args);
const bool HasSyncUnwindTables = Args.hasFlag(
options::OPT_funwind_tables, options::OPT_fno_unwind_tables, false);
if (Args.hasFlag(options::OPT_fasynchronous_unwind_tables,
options::OPT_fno_asynchronous_unwind_tables,
SanitizeArgs.needsUnwindTables()) &&
!Freestanding)
UnwindTables = ToolChain::UnwindTableLevel::Asynchronous;
else if (HasSyncUnwindTables)
UnwindTables = ToolChain::UnwindTableLevel::Synchronous;
else if (Args.hasFlag(options::OPT_fno_unwind_tables,
options::OPT_fno_asynchronous_unwind_tables,
options::OPT_funwind_tables, false) || Freestanding)
UnwindTables = ToolChain::UnwindTableLevel::None;
if (UnwindTables == ToolChain::UnwindTableLevel::Synchronous)
CmdArgs.push_back("-funwind-tables=1");
else if (UnwindTables == ToolChain::UnwindTableLevel::Asynchronous)
CmdArgs.push_back("-funwind-tables=2");
// Prepare `-aux-target-cpu` and `-aux-target-feature` unless
// `--gpu-use-aux-triple-only` is specified.
if (!Args.getLastArg(options::OPT_gpu_use_aux_triple_only) &&
(IsCudaDevice || IsHIPDevice)) {
const ArgList &HostArgs =
C.getArgsForToolChain(nullptr, StringRef(), Action::OFK_None);
std::string HostCPU =
getCPUName(D, HostArgs, *TC.getAuxTriple(), /*FromAs*/ false);
if (!HostCPU.empty()) {
CmdArgs.push_back("-aux-target-cpu");
CmdArgs.push_back(Args.MakeArgString(HostCPU));
}
getTargetFeatures(D, *TC.getAuxTriple(), HostArgs, CmdArgs,
/*ForAS*/ false, /*IsAux*/ true);
}
TC.addClangTargetOptions(Args, CmdArgs, JA.getOffloadingDeviceKind());
if (Arg *A = Args.getLastArg(options::OPT_mcmodel_EQ)) {
StringRef CM = A->getValue();
if (CM == "small" || CM == "kernel" || CM == "medium" || CM == "large" ||
CM == "tiny") {
if (Triple.isOSAIX() && CM == "medium")
CmdArgs.push_back("-mcmodel=large");
else if (Triple.isAArch64() && (CM == "kernel" || CM == "medium"))
D.Diag(diag::err_drv_invalid_argument_to_option)
<< CM << A->getOption().getName();
else
A->render(Args, CmdArgs);
} else {
D.Diag(diag::err_drv_invalid_argument_to_option)
<< CM << A->getOption().getName();
}
}
if (Arg *A = Args.getLastArg(options::OPT_mtls_size_EQ)) {
StringRef Value = A->getValue();
unsigned TLSSize = 0;
Value.getAsInteger(10, TLSSize);
if (!Triple.isAArch64() || !Triple.isOSBinFormatELF())
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getOption().getName() << TripleStr;
if (TLSSize != 12 && TLSSize != 24 && TLSSize != 32 && TLSSize != 48)
D.Diag(diag::err_drv_invalid_int_value)
<< A->getOption().getName() << Value;
Args.AddLastArg(CmdArgs, options::OPT_mtls_size_EQ);
}
// Add the target cpu
std::string CPU = getCPUName(D, Args, Triple, /*FromAs*/ false);
if (!CPU.empty()) {
CmdArgs.push_back("-target-cpu");
CmdArgs.push_back(Args.MakeArgString(CPU));
}
RenderTargetOptions(Triple, Args, KernelOrKext, CmdArgs);
// FIXME: For now we want to demote any errors to warnings, when they have
// been raised for asking the wrong question of scalable vectors, such as
// asking for the fixed number of elements. This may happen because code that
// is not yet ported to work for scalable vectors uses the wrong interfaces,
// whereas the behaviour is actually correct. Emitting a warning helps bring
// up scalable vector support in an incremental way. When scalable vector
// support is stable enough, all uses of wrong interfaces should be considered
// as errors, but until then, we can live with a warning being emitted by the
// compiler. This way, Clang can be used to compile code with scalable vectors
// and identify possible issues.
if (isa<AssembleJobAction>(JA) || isa<CompileJobAction>(JA) ||
isa<BackendJobAction>(JA)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-treat-scalable-fixed-error-as-warning");
}
// These two are potentially updated by AddClangCLArgs.
codegenoptions::DebugInfoKind DebugInfoKind = codegenoptions::NoDebugInfo;
bool EmitCodeView = false;
// Add clang-cl arguments.
types::ID InputType = Input.getType();
if (D.IsCLMode())
AddClangCLArgs(Args, InputType, CmdArgs, &DebugInfoKind, &EmitCodeView);
DwarfFissionKind DwarfFission = DwarfFissionKind::None;
renderDebugOptions(TC, D, RawTriple, Args, EmitCodeView,
types::isLLVMIR(InputType), CmdArgs, DebugInfoKind,
DwarfFission);
// This controls whether or not we perform JustMyCode instrumentation.
if (Args.hasFlag(options::OPT_fjmc, options::OPT_fno_jmc, false)) {
if (TC.getTriple().isOSBinFormatELF()) {
if (DebugInfoKind >= codegenoptions::DebugInfoConstructor)
CmdArgs.push_back("-fjmc");
else
D.Diag(clang::diag::warn_drv_jmc_requires_debuginfo) << "-fjmc"
<< "-g";
} else {
D.Diag(clang::diag::warn_drv_fjmc_for_elf_only);
}
}
// Add the split debug info name to the command lines here so we
// can propagate it to the backend.
bool SplitDWARF = (DwarfFission != DwarfFissionKind::None) &&
(TC.getTriple().isOSBinFormatELF() ||
TC.getTriple().isOSBinFormatWasm()) &&
(isa<AssembleJobAction>(JA) || isa<CompileJobAction>(JA) ||
isa<BackendJobAction>(JA));
if (SplitDWARF) {
const char *SplitDWARFOut = SplitDebugName(JA, Args, Input, Output);
CmdArgs.push_back("-split-dwarf-file");
CmdArgs.push_back(SplitDWARFOut);
if (DwarfFission == DwarfFissionKind::Split) {
CmdArgs.push_back("-split-dwarf-output");
CmdArgs.push_back(SplitDWARFOut);
}
}
// Pass the linker version in use.
if (Arg *A = Args.getLastArg(options::OPT_mlinker_version_EQ)) {
CmdArgs.push_back("-target-linker-version");
CmdArgs.push_back(A->getValue());
}
// Explicitly error on some things we know we don't support and can't just
// ignore.
if (!Args.hasArg(options::OPT_fallow_unsupported)) {
Arg *Unsupported;
if (types::isCXX(InputType) && RawTriple.isOSDarwin() &&
TC.getArch() == llvm::Triple::x86) {
if ((Unsupported = Args.getLastArg(options::OPT_fapple_kext)) ||
(Unsupported = Args.getLastArg(options::OPT_mkernel)))
D.Diag(diag::err_drv_clang_unsupported_opt_cxx_darwin_i386)
<< Unsupported->getOption().getName();
}
// The faltivec option has been superseded by the maltivec option.
if ((Unsupported = Args.getLastArg(options::OPT_faltivec)))
D.Diag(diag::err_drv_clang_unsupported_opt_faltivec)
<< Unsupported->getOption().getName()
<< "please use -maltivec and include altivec.h explicitly";
if ((Unsupported = Args.getLastArg(options::OPT_fno_altivec)))
D.Diag(diag::err_drv_clang_unsupported_opt_faltivec)
<< Unsupported->getOption().getName() << "please use -mno-altivec";
}
Args.AddAllArgs(CmdArgs, options::OPT_v);
if (Args.getLastArg(options::OPT_H)) {
CmdArgs.push_back("-H");
CmdArgs.push_back("-sys-header-deps");
}
Args.AddAllArgs(CmdArgs, options::OPT_fshow_skipped_includes);
if (D.CCPrintHeaders && !D.CCGenDiagnostics) {
CmdArgs.push_back("-header-include-file");
CmdArgs.push_back(!D.CCPrintHeadersFilename.empty()
? D.CCPrintHeadersFilename.c_str()
: "-");
CmdArgs.push_back("-sys-header-deps");
}
Args.AddLastArg(CmdArgs, options::OPT_P);
Args.AddLastArg(CmdArgs, options::OPT_print_ivar_layout);
if (D.CCLogDiagnostics && !D.CCGenDiagnostics) {
CmdArgs.push_back("-diagnostic-log-file");
CmdArgs.push_back(!D.CCLogDiagnosticsFilename.empty()
? D.CCLogDiagnosticsFilename.c_str()
: "-");
}
// Give the gen diagnostics more chances to succeed, by avoiding intentional
// crashes.
if (D.CCGenDiagnostics)
CmdArgs.push_back("-disable-pragma-debug-crash");
// Allow backend to put its diagnostic files in the same place as frontend
// crash diagnostics files.
if (Args.hasArg(options::OPT_fcrash_diagnostics_dir)) {
StringRef Dir = Args.getLastArgValue(options::OPT_fcrash_diagnostics_dir);
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(Args.MakeArgString("-crash-diagnostics-dir=" + Dir));
}
bool UseSeparateSections = isUseSeparateSections(Triple);
if (Args.hasFlag(options::OPT_ffunction_sections,
options::OPT_fno_function_sections, UseSeparateSections)) {
CmdArgs.push_back("-ffunction-sections");
}
if (Arg *A = Args.getLastArg(options::OPT_fbasic_block_sections_EQ)) {
StringRef Val = A->getValue();
if (Triple.isX86() && Triple.isOSBinFormatELF()) {
if (Val != "all" && Val != "labels" && Val != "none" &&
!Val.startswith("list="))
D.Diag(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
else
A->render(Args, CmdArgs);
} else if (Triple.isNVPTX()) {
// Do not pass the option to the GPU compilation. We still want it enabled
// for the host-side compilation, so seeing it here is not an error.
} else if (Val != "none") {
// =none is allowed everywhere. It's useful for overriding the option
// and is the same as not specifying the option.
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
}
}
bool HasDefaultDataSections = Triple.isOSBinFormatXCOFF();
if (Args.hasFlag(options::OPT_fdata_sections, options::OPT_fno_data_sections,
UseSeparateSections || HasDefaultDataSections)) {
CmdArgs.push_back("-fdata-sections");
}
Args.addOptOutFlag(CmdArgs, options::OPT_funique_section_names,
options::OPT_fno_unique_section_names);
Args.addOptInFlag(CmdArgs, options::OPT_funique_internal_linkage_names,
options::OPT_fno_unique_internal_linkage_names);
Args.addOptInFlag(CmdArgs, options::OPT_funique_basic_block_section_names,
options::OPT_fno_unique_basic_block_section_names);
if (Arg *A = Args.getLastArg(options::OPT_fsplit_machine_functions,
options::OPT_fno_split_machine_functions)) {
// This codegen pass is only available on x86-elf targets.
if (Triple.isX86() && Triple.isOSBinFormatELF()) {
if (A->getOption().matches(options::OPT_fsplit_machine_functions))
A->render(Args, CmdArgs);
} else {
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
}
}
Args.AddLastArg(CmdArgs, options::OPT_finstrument_functions,
options::OPT_finstrument_functions_after_inlining,
options::OPT_finstrument_function_entry_bare);
// NVPTX/AMDGCN doesn't support PGO or coverage. There's no runtime support
// for sampling, overhead of call arc collection is way too high and there's
// no way to collect the output.
if (!Triple.isNVPTX() && !Triple.isAMDGCN())
addPGOAndCoverageFlags(TC, C, D, Output, Args, SanitizeArgs, CmdArgs);
Args.AddLastArg(CmdArgs, options::OPT_fclang_abi_compat_EQ);
// Add runtime flag for PS4/PS5 when PGO, coverage, or sanitizers are enabled.
if (RawTriple.isPS() &&
!Args.hasArg(options::OPT_nostdlib, options::OPT_nodefaultlibs)) {
PScpu::addProfileRTArgs(TC, Args, CmdArgs);
PScpu::addSanitizerArgs(TC, Args, CmdArgs);
}
// Pass options for controlling the default header search paths.
if (Args.hasArg(options::OPT_nostdinc)) {
CmdArgs.push_back("-nostdsysteminc");
CmdArgs.push_back("-nobuiltininc");
} else {
if (Args.hasArg(options::OPT_nostdlibinc))
CmdArgs.push_back("-nostdsysteminc");
Args.AddLastArg(CmdArgs, options::OPT_nostdincxx);
Args.AddLastArg(CmdArgs, options::OPT_nobuiltininc);
}
// Pass the path to compiler resource files.
CmdArgs.push_back("-resource-dir");
CmdArgs.push_back(D.ResourceDir.c_str());
Args.AddLastArg(CmdArgs, options::OPT_working_directory);
RenderARCMigrateToolOptions(D, Args, CmdArgs);
// Add preprocessing options like -I, -D, etc. if we are using the
// preprocessor.
//
// FIXME: Support -fpreprocessed
if (types::getPreprocessedType(InputType) != types::TY_INVALID)
AddPreprocessingOptions(C, JA, D, Args, CmdArgs, Output, Inputs);
// Don't warn about "clang -c -DPIC -fPIC test.i" because libtool.m4 assumes
// that "The compiler can only warn and ignore the option if not recognized".
// When building with ccache, it will pass -D options to clang even on
// preprocessed inputs and configure concludes that -fPIC is not supported.
Args.ClaimAllArgs(options::OPT_D);
// Manually translate -O4 to -O3; let clang reject others.
if (Arg *A = Args.getLastArg(options::OPT_O_Group)) {
if (A->getOption().matches(options::OPT_O4)) {
CmdArgs.push_back("-O3");
D.Diag(diag::warn_O4_is_O3);
} else {
A->render(Args, CmdArgs);
}
}
// Warn about ignored options to clang.
for (const Arg *A :
Args.filtered(options::OPT_clang_ignored_gcc_optimization_f_Group)) {
D.Diag(diag::warn_ignored_gcc_optimization) << A->getAsString(Args);
A->claim();
}
for (const Arg *A :
Args.filtered(options::OPT_clang_ignored_legacy_options_Group)) {
D.Diag(diag::warn_ignored_clang_option) << A->getAsString(Args);
A->claim();
}
claimNoWarnArgs(Args);
Args.AddAllArgs(CmdArgs, options::OPT_R_Group);
for (const Arg *A :
Args.filtered(options::OPT_W_Group, options::OPT__SLASH_wd)) {
A->claim();
if (A->getOption().getID() == options::OPT__SLASH_wd) {
unsigned WarningNumber;
if (StringRef(A->getValue()).getAsInteger(10, WarningNumber)) {
D.Diag(diag::err_drv_invalid_int_value)
<< A->getAsString(Args) << A->getValue();
continue;
}
if (auto Group = diagGroupFromCLWarningID(WarningNumber)) {
CmdArgs.push_back(Args.MakeArgString(
"-Wno-" + DiagnosticIDs::getWarningOptionForGroup(*Group)));
}
continue;
}
A->render(Args, CmdArgs);
}
if (Args.hasFlag(options::OPT_pedantic, options::OPT_no_pedantic, false))
CmdArgs.push_back("-pedantic");
Args.AddLastArg(CmdArgs, options::OPT_pedantic_errors);
Args.AddLastArg(CmdArgs, options::OPT_w);
// Fixed point flags
if (Args.hasFlag(options::OPT_ffixed_point, options::OPT_fno_fixed_point,
/*Default=*/false))
Args.AddLastArg(CmdArgs, options::OPT_ffixed_point);
if (Arg *A = Args.getLastArg(options::OPT_fcxx_abi_EQ))
A->render(Args, CmdArgs);
Args.AddLastArg(CmdArgs, options::OPT_fexperimental_relative_cxx_abi_vtables,
options::OPT_fno_experimental_relative_cxx_abi_vtables);
if (Arg *A = Args.getLastArg(options::OPT_ffuchsia_api_level_EQ))
A->render(Args, CmdArgs);
// Handle -{std, ansi, trigraphs} -- take the last of -{std, ansi}
// (-ansi is equivalent to -std=c89 or -std=c++98).
//
// If a std is supplied, only add -trigraphs if it follows the
// option.
bool ImplyVCPPCVer = false;
bool ImplyVCPPCXXVer = false;
const Arg *Std = Args.getLastArg(options::OPT_std_EQ, options::OPT_ansi);
if (Std) {
if (Std->getOption().matches(options::OPT_ansi))
if (types::isCXX(InputType))
CmdArgs.push_back("-std=c++98");
else
CmdArgs.push_back("-std=c89");
else
Std->render(Args, CmdArgs);
// If -f(no-)trigraphs appears after the language standard flag, honor it.
if (Arg *A = Args.getLastArg(options::OPT_std_EQ, options::OPT_ansi,
options::OPT_ftrigraphs,
options::OPT_fno_trigraphs))
if (A != Std)
A->render(Args, CmdArgs);
} else {
// Honor -std-default.
//
// FIXME: Clang doesn't correctly handle -std= when the input language
// doesn't match. For the time being just ignore this for C++ inputs;
// eventually we want to do all the standard defaulting here instead of
// splitting it between the driver and clang -cc1.
if (!types::isCXX(InputType)) {
if (!Args.hasArg(options::OPT__SLASH_std)) {
Args.AddAllArgsTranslated(CmdArgs, options::OPT_std_default_EQ, "-std=",
/*Joined=*/true);
} else
ImplyVCPPCVer = true;
}
else if (IsWindowsMSVC)
ImplyVCPPCXXVer = true;
Args.AddLastArg(CmdArgs, options::OPT_ftrigraphs,
options::OPT_fno_trigraphs);
// HIP headers has minimum C++ standard requirements. Therefore set the
// default language standard.
if (IsHIP)
CmdArgs.push_back(IsWindowsMSVC ? "-std=c++14" : "-std=c++11");
}
// GCC's behavior for -Wwrite-strings is a bit strange:
// * In C, this "warning flag" changes the types of string literals from
// 'char[N]' to 'const char[N]', and thus triggers an unrelated warning
// for the discarded qualifier.
// * In C++, this is just a normal warning flag.
//
// Implementing this warning correctly in C is hard, so we follow GCC's
// behavior for now. FIXME: Directly diagnose uses of a string literal as
// a non-const char* in C, rather than using this crude hack.
if (!types::isCXX(InputType)) {
// FIXME: This should behave just like a warning flag, and thus should also
// respect -Weverything, -Wno-everything, -Werror=write-strings, and so on.
Arg *WriteStrings =
Args.getLastArg(options::OPT_Wwrite_strings,
options::OPT_Wno_write_strings, options::OPT_w);
if (WriteStrings &&
WriteStrings->getOption().matches(options::OPT_Wwrite_strings))
CmdArgs.push_back("-fconst-strings");
}
// GCC provides a macro definition '__DEPRECATED' when -Wdeprecated is active
// during C++ compilation, which it is by default. GCC keeps this define even
// in the presence of '-w', match this behavior bug-for-bug.
if (types::isCXX(InputType) &&
Args.hasFlag(options::OPT_Wdeprecated, options::OPT_Wno_deprecated,
true)) {
CmdArgs.push_back("-fdeprecated-macro");
}
// Translate GCC's misnamer '-fasm' arguments to '-fgnu-keywords'.
if (Arg *Asm = Args.getLastArg(options::OPT_fasm, options::OPT_fno_asm)) {
if (Asm->getOption().matches(options::OPT_fasm))
CmdArgs.push_back("-fgnu-keywords");
else
CmdArgs.push_back("-fno-gnu-keywords");
}
if (!ShouldEnableAutolink(Args, TC, JA))
CmdArgs.push_back("-fno-autolink");
// Add in -fdebug-compilation-dir if necessary.
const char *DebugCompilationDir =
addDebugCompDirArg(Args, CmdArgs, D.getVFS());
addDebugPrefixMapArg(D, TC, Args, CmdArgs);
if (Arg *A = Args.getLastArg(options::OPT_ftemplate_depth_,
options::OPT_ftemplate_depth_EQ)) {
CmdArgs.push_back("-ftemplate-depth");
CmdArgs.push_back(A->getValue());
}
if (Arg *A = Args.getLastArg(options::OPT_foperator_arrow_depth_EQ)) {
CmdArgs.push_back("-foperator-arrow-depth");
CmdArgs.push_back(A->getValue());
}
if (Arg *A = Args.getLastArg(options::OPT_fconstexpr_depth_EQ)) {
CmdArgs.push_back("-fconstexpr-depth");
CmdArgs.push_back(A->getValue());
}
if (Arg *A = Args.getLastArg(options::OPT_fconstexpr_steps_EQ)) {
CmdArgs.push_back("-fconstexpr-steps");
CmdArgs.push_back(A->getValue());
}
Args.AddLastArg(CmdArgs, options::OPT_fexperimental_library);
if (Args.hasArg(options::OPT_fexperimental_new_constant_interpreter))
CmdArgs.push_back("-fexperimental-new-constant-interpreter");
if (Arg *A = Args.getLastArg(options::OPT_fbracket_depth_EQ)) {
CmdArgs.push_back("-fbracket-depth");
CmdArgs.push_back(A->getValue());
}
if (Arg *A = Args.getLastArg(options::OPT_Wlarge_by_value_copy_EQ,
options::OPT_Wlarge_by_value_copy_def)) {
if (A->getNumValues()) {
StringRef bytes = A->getValue();
CmdArgs.push_back(Args.MakeArgString("-Wlarge-by-value-copy=" + bytes));
} else
CmdArgs.push_back("-Wlarge-by-value-copy=64"); // default value
}
if (Args.hasArg(options::OPT_relocatable_pch))
CmdArgs.push_back("-relocatable-pch");
if (const Arg *A = Args.getLastArg(options::OPT_fcf_runtime_abi_EQ)) {
static const char *kCFABIs[] = {
"standalone", "objc", "swift", "swift-5.0", "swift-4.2", "swift-4.1",
};
if (!llvm::is_contained(kCFABIs, StringRef(A->getValue())))
D.Diag(diag::err_drv_invalid_cf_runtime_abi) << A->getValue();
else
A->render(Args, CmdArgs);
}
if (Arg *A = Args.getLastArg(options::OPT_fconstant_string_class_EQ)) {
CmdArgs.push_back("-fconstant-string-class");
CmdArgs.push_back(A->getValue());
}
if (Arg *A = Args.getLastArg(options::OPT_ftabstop_EQ)) {
CmdArgs.push_back("-ftabstop");
CmdArgs.push_back(A->getValue());
}
Args.addOptInFlag(CmdArgs, options::OPT_fstack_size_section,
options::OPT_fno_stack_size_section);
if (Args.hasArg(options::OPT_fstack_usage)) {
CmdArgs.push_back("-stack-usage-file");
if (Arg *OutputOpt = Args.getLastArg(options::OPT_o)) {
SmallString<128> OutputFilename(OutputOpt->getValue());
llvm::sys::path::replace_extension(OutputFilename, "su");
CmdArgs.push_back(Args.MakeArgString(OutputFilename));
} else
CmdArgs.push_back(
Args.MakeArgString(Twine(getBaseInputStem(Args, Inputs)) + ".su"));
}
CmdArgs.push_back("-ferror-limit");
if (Arg *A = Args.getLastArg(options::OPT_ferror_limit_EQ))
CmdArgs.push_back(A->getValue());
else
CmdArgs.push_back("19");
if (Arg *A = Args.getLastArg(options::OPT_fmacro_backtrace_limit_EQ)) {
CmdArgs.push_back("-fmacro-backtrace-limit");
CmdArgs.push_back(A->getValue());
}
if (Arg *A = Args.getLastArg(options::OPT_ftemplate_backtrace_limit_EQ)) {
CmdArgs.push_back("-ftemplate-backtrace-limit");
CmdArgs.push_back(A->getValue());
}
if (Arg *A = Args.getLastArg(options::OPT_fconstexpr_backtrace_limit_EQ)) {
CmdArgs.push_back("-fconstexpr-backtrace-limit");
CmdArgs.push_back(A->getValue());
}
if (Arg *A = Args.getLastArg(options::OPT_fspell_checking_limit_EQ)) {
CmdArgs.push_back("-fspell-checking-limit");
CmdArgs.push_back(A->getValue());
}
// Pass -fmessage-length=.
unsigned MessageLength = 0;
if (Arg *A = Args.getLastArg(options::OPT_fmessage_length_EQ)) {
StringRef V(A->getValue());
if (V.getAsInteger(0, MessageLength))
D.Diag(diag::err_drv_invalid_argument_to_option)
<< V << A->getOption().getName();
} else {
// If -fmessage-length=N was not specified, determine whether this is a
// terminal and, if so, implicitly define -fmessage-length appropriately.
MessageLength = llvm::sys::Process::StandardErrColumns();
}
if (MessageLength != 0)
CmdArgs.push_back(
Args.MakeArgString("-fmessage-length=" + Twine(MessageLength)));
if (Arg *A = Args.getLastArg(options::OPT_frandomize_layout_seed_EQ))
CmdArgs.push_back(
Args.MakeArgString("-frandomize-layout-seed=" + Twine(A->getValue(0))));
if (Arg *A = Args.getLastArg(options::OPT_frandomize_layout_seed_file_EQ))
CmdArgs.push_back(Args.MakeArgString("-frandomize-layout-seed-file=" +
Twine(A->getValue(0))));
// -fvisibility= and -fvisibility-ms-compat are of a piece.
if (const Arg *A = Args.getLastArg(options::OPT_fvisibility_EQ,
options::OPT_fvisibility_ms_compat)) {
if (A->getOption().matches(options::OPT_fvisibility_EQ)) {
A->render(Args, CmdArgs);
} else {
assert(A->getOption().matches(options::OPT_fvisibility_ms_compat));
CmdArgs.push_back("-fvisibility=hidden");
CmdArgs.push_back("-ftype-visibility=default");
}
} else if (IsOpenMPDevice) {
// When compiling for the OpenMP device we want protected visibility by
// default. This prevents the device from accidentally preempting code on
// the host, makes the system more robust, and improves performance.
CmdArgs.push_back("-fvisibility=protected");
}
if (!RawTriple.isPS4())
if (const Arg *A =
Args.getLastArg(options::OPT_fvisibility_from_dllstorageclass,
options::OPT_fno_visibility_from_dllstorageclass)) {
if (A->getOption().matches(
options::OPT_fvisibility_from_dllstorageclass)) {
CmdArgs.push_back("-fvisibility-from-dllstorageclass");
Args.AddLastArg(CmdArgs, options::OPT_fvisibility_dllexport_EQ);
Args.AddLastArg(CmdArgs, options::OPT_fvisibility_nodllstorageclass_EQ);
Args.AddLastArg(CmdArgs, options::OPT_fvisibility_externs_dllimport_EQ);
Args.AddLastArg(CmdArgs,
options::OPT_fvisibility_externs_nodllstorageclass_EQ);
}
}
if (const Arg *A = Args.getLastArg(options::OPT_mignore_xcoff_visibility)) {
if (Triple.isOSAIX())
CmdArgs.push_back("-mignore-xcoff-visibility");
else
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
}
if (const Arg *A =
Args.getLastArg(options::OPT_mdefault_visibility_export_mapping_EQ)) {
if (Triple.isOSAIX())
A->render(Args, CmdArgs);
else
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
}
if (Args.hasFlag(options::OPT_fvisibility_inlines_hidden,
options::OPT_fno_visibility_inlines_hidden, false))
CmdArgs.push_back("-fvisibility-inlines-hidden");
Args.AddLastArg(CmdArgs, options::OPT_fvisibility_inlines_hidden_static_local_var,
options::OPT_fno_visibility_inlines_hidden_static_local_var);
Args.AddLastArg(CmdArgs, options::OPT_fvisibility_global_new_delete_hidden);
Args.AddLastArg(CmdArgs, options::OPT_ftlsmodel_EQ);
if (Args.hasFlag(options::OPT_fnew_infallible,
options::OPT_fno_new_infallible, false))
CmdArgs.push_back("-fnew-infallible");
if (Args.hasFlag(options::OPT_fno_operator_names,
options::OPT_foperator_names, false))
CmdArgs.push_back("-fno-operator-names");
// Forward -f (flag) options which we can pass directly.
Args.AddLastArg(CmdArgs, options::OPT_femit_all_decls);
Args.AddLastArg(CmdArgs, options::OPT_fheinous_gnu_extensions);
Args.AddLastArg(CmdArgs, options::OPT_fdigraphs, options::OPT_fno_digraphs);
Args.AddLastArg(CmdArgs, options::OPT_femulated_tls,
options::OPT_fno_emulated_tls);
Args.AddLastArg(CmdArgs, options::OPT_fzero_call_used_regs_EQ);
if (Arg *A = Args.getLastArg(options::OPT_fzero_call_used_regs_EQ)) {
// FIXME: There's no reason for this to be restricted to X86. The backend
// code needs to be changed to include the appropriate function calls
// automatically.
if (!Triple.isX86() && !Triple.isAArch64())
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
}
// AltiVec-like language extensions aren't relevant for assembling.
if (!isa<PreprocessJobAction>(JA) || Output.getType() != types::TY_PP_Asm)
Args.AddLastArg(CmdArgs, options::OPT_fzvector);
Args.AddLastArg(CmdArgs, options::OPT_fdiagnostics_show_template_tree);
Args.AddLastArg(CmdArgs, options::OPT_fno_elide_type);
// Forward flags for OpenMP. We don't do this if the current action is an
// device offloading action other than OpenMP.
if (Args.hasFlag(options::OPT_fopenmp, options::OPT_fopenmp_EQ,
options::OPT_fno_openmp, false) &&
(JA.isDeviceOffloading(Action::OFK_None) ||
JA.isDeviceOffloading(Action::OFK_OpenMP))) {
switch (D.getOpenMPRuntime(Args)) {
case Driver::OMPRT_OMP:
case Driver::OMPRT_IOMP5:
// Clang can generate useful OpenMP code for these two runtime libraries.
CmdArgs.push_back("-fopenmp");
// If no option regarding the use of TLS in OpenMP codegeneration is
// given, decide a default based on the target. Otherwise rely on the
// options and pass the right information to the frontend.
if (!Args.hasFlag(options::OPT_fopenmp_use_tls,
options::OPT_fnoopenmp_use_tls, /*Default=*/true))
CmdArgs.push_back("-fnoopenmp-use-tls");
Args.AddLastArg(CmdArgs, options::OPT_fopenmp_simd,
options::OPT_fno_openmp_simd);
Args.AddAllArgs(CmdArgs, options::OPT_fopenmp_enable_irbuilder);
Args.AddAllArgs(CmdArgs, options::OPT_fopenmp_version_EQ);
if (!Args.hasFlag(options::OPT_fopenmp_extensions,
options::OPT_fno_openmp_extensions, /*Default=*/true))
CmdArgs.push_back("-fno-openmp-extensions");
Args.AddAllArgs(CmdArgs, options::OPT_fopenmp_cuda_number_of_sm_EQ);
Args.AddAllArgs(CmdArgs, options::OPT_fopenmp_cuda_blocks_per_sm_EQ);
Args.AddAllArgs(CmdArgs,
options::OPT_fopenmp_cuda_teams_reduction_recs_num_EQ);
if (Args.hasFlag(options::OPT_fopenmp_optimistic_collapse,
options::OPT_fno_openmp_optimistic_collapse,
/*Default=*/false))
CmdArgs.push_back("-fopenmp-optimistic-collapse");
// When in OpenMP offloading mode with NVPTX target, forward
// cuda-mode flag
if (Args.hasFlag(options::OPT_fopenmp_cuda_mode,
options::OPT_fno_openmp_cuda_mode, /*Default=*/false))
CmdArgs.push_back("-fopenmp-cuda-mode");
// When in OpenMP offloading mode, enable debugging on the device.
Args.AddAllArgs(CmdArgs, options::OPT_fopenmp_target_debug_EQ);
if (Args.hasFlag(options::OPT_fopenmp_target_debug,
options::OPT_fno_openmp_target_debug, /*Default=*/false))
CmdArgs.push_back("-fopenmp-target-debug");
// When in OpenMP offloading mode, forward assumptions information about
// thread and team counts in the device.
if (Args.hasFlag(options::OPT_fopenmp_assume_teams_oversubscription,
options::OPT_fno_openmp_assume_teams_oversubscription,
/*Default=*/false))
CmdArgs.push_back("-fopenmp-assume-teams-oversubscription");
if (Args.hasFlag(options::OPT_fopenmp_assume_threads_oversubscription,
options::OPT_fno_openmp_assume_threads_oversubscription,
/*Default=*/false))
CmdArgs.push_back("-fopenmp-assume-threads-oversubscription");
if (Args.hasArg(options::OPT_fopenmp_assume_no_thread_state))
CmdArgs.push_back("-fopenmp-assume-no-thread-state");
if (Args.hasArg(options::OPT_fopenmp_assume_no_nested_parallelism))
CmdArgs.push_back("-fopenmp-assume-no-nested-parallelism");
if (Args.hasArg(options::OPT_fopenmp_offload_mandatory))
CmdArgs.push_back("-fopenmp-offload-mandatory");
break;
default:
// By default, if Clang doesn't know how to generate useful OpenMP code
// for a specific runtime library, we just don't pass the '-fopenmp' flag
// down to the actual compilation.
// FIXME: It would be better to have a mode which *only* omits IR
// generation based on the OpenMP support so that we get consistent
// semantic analysis, etc.
break;
}
} else {
Args.AddLastArg(CmdArgs, options::OPT_fopenmp_simd,
options::OPT_fno_openmp_simd);
Args.AddAllArgs(CmdArgs, options::OPT_fopenmp_version_EQ);
Args.addOptOutFlag(CmdArgs, options::OPT_fopenmp_extensions,
options::OPT_fno_openmp_extensions);
}
// Forward the new driver to change offloading code generation.
if (Args.hasArg(options::OPT_offload_new_driver))
CmdArgs.push_back("--offload-new-driver");
SanitizeArgs.addArgs(TC, Args, CmdArgs, InputType);
const XRayArgs &XRay = TC.getXRayArgs();
XRay.addArgs(TC, Args, CmdArgs, InputType);
for (const auto &Filename :
Args.getAllArgValues(options::OPT_fprofile_list_EQ)) {
if (D.getVFS().exists(Filename))
CmdArgs.push_back(Args.MakeArgString("-fprofile-list=" + Filename));
else
D.Diag(clang::diag::err_drv_no_such_file) << Filename;
}
if (Arg *A = Args.getLastArg(options::OPT_fpatchable_function_entry_EQ)) {
StringRef S0 = A->getValue(), S = S0;
unsigned Size, Offset = 0;
if (!Triple.isAArch64() && !Triple.isRISCV() && !Triple.isX86())
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
else if (S.consumeInteger(10, Size) ||
(!S.empty() && (!S.consume_front(",") ||
S.consumeInteger(10, Offset) || !S.empty())))
D.Diag(diag::err_drv_invalid_argument_to_option)
<< S0 << A->getOption().getName();
else if (Size < Offset)
D.Diag(diag::err_drv_unsupported_fpatchable_function_entry_argument);
else {
CmdArgs.push_back(Args.MakeArgString(A->getSpelling() + Twine(Size)));
CmdArgs.push_back(Args.MakeArgString(
"-fpatchable-function-entry-offset=" + Twine(Offset)));
}
}
Args.AddLastArg(CmdArgs, options::OPT_fms_hotpatch);
if (TC.SupportsProfiling()) {
Args.AddLastArg(CmdArgs, options::OPT_pg);
llvm::Triple::ArchType Arch = TC.getArch();
if (Arg *A = Args.getLastArg(options::OPT_mfentry)) {
if (Arch == llvm::Triple::systemz || TC.getTriple().isX86())
A->render(Args, CmdArgs);
else
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
}
if (Arg *A = Args.getLastArg(options::OPT_mnop_mcount)) {
if (Arch == llvm::Triple::systemz)
A->render(Args, CmdArgs);
else
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
}
if (Arg *A = Args.getLastArg(options::OPT_mrecord_mcount)) {
if (Arch == llvm::Triple::systemz)
A->render(Args, CmdArgs);
else
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
}
}
if (Args.getLastArg(options::OPT_fapple_kext) ||
(Args.hasArg(options::OPT_mkernel) && types::isCXX(InputType)))
CmdArgs.push_back("-fapple-kext");
Args.AddLastArg(CmdArgs, options::OPT_altivec_src_compat);
Args.AddLastArg(CmdArgs, options::OPT_flax_vector_conversions_EQ);
Args.AddLastArg(CmdArgs, options::OPT_fobjc_sender_dependent_dispatch);
Args.AddLastArg(CmdArgs, options::OPT_fdiagnostics_print_source_range_info);
Args.AddLastArg(CmdArgs, options::OPT_fdiagnostics_parseable_fixits);
Args.AddLastArg(CmdArgs, options::OPT_ftime_report);
Args.AddLastArg(CmdArgs, options::OPT_ftime_report_EQ);
Args.AddLastArg(CmdArgs, options::OPT_ftime_trace);
Args.AddLastArg(CmdArgs, options::OPT_ftime_trace_granularity_EQ);
Args.AddLastArg(CmdArgs, options::OPT_ftime_trace_EQ);
Args.AddLastArg(CmdArgs, options::OPT_ftrapv);
Args.AddLastArg(CmdArgs, options::OPT_malign_double);
Args.AddLastArg(CmdArgs, options::OPT_fno_temp_file);
if (Arg *A = Args.getLastArg(options::OPT_ftrapv_handler_EQ)) {
CmdArgs.push_back("-ftrapv-handler");
CmdArgs.push_back(A->getValue());
}
Args.AddLastArg(CmdArgs, options::OPT_ftrap_function_EQ);
// -fno-strict-overflow implies -fwrapv if it isn't disabled, but
// -fstrict-overflow won't turn off an explicitly enabled -fwrapv.
if (Arg *A = Args.getLastArg(options::OPT_fwrapv, options::OPT_fno_wrapv)) {
if (A->getOption().matches(options::OPT_fwrapv))
CmdArgs.push_back("-fwrapv");
} else if (Arg *A = Args.getLastArg(options::OPT_fstrict_overflow,
options::OPT_fno_strict_overflow)) {
if (A->getOption().matches(options::OPT_fno_strict_overflow))
CmdArgs.push_back("-fwrapv");
}
if (Arg *A = Args.getLastArg(options::OPT_freroll_loops,
options::OPT_fno_reroll_loops))
if (A->getOption().matches(options::OPT_freroll_loops))
CmdArgs.push_back("-freroll-loops");
Args.AddLastArg(CmdArgs, options::OPT_ffinite_loops,
options::OPT_fno_finite_loops);
Args.AddLastArg(CmdArgs, options::OPT_fwritable_strings);
Args.AddLastArg(CmdArgs, options::OPT_funroll_loops,
options::OPT_fno_unroll_loops);
Args.AddLastArg(CmdArgs, options::OPT_fstrict_flex_arrays_EQ);
Args.AddLastArg(CmdArgs, options::OPT_pthread);
Args.addOptInFlag(CmdArgs, options::OPT_mspeculative_load_hardening,
options::OPT_mno_speculative_load_hardening);
RenderSSPOptions(D, TC, Args, CmdArgs, KernelOrKext);
RenderSCPOptions(TC, Args, CmdArgs);
RenderTrivialAutoVarInitOptions(D, TC, Args, CmdArgs);
Args.AddLastArg(CmdArgs, options::OPT_fswift_async_fp_EQ);
Args.addOptInFlag(CmdArgs, options::OPT_mstackrealign,
options::OPT_mno_stackrealign);
if (Args.hasArg(options::OPT_mstack_alignment)) {
StringRef alignment = Args.getLastArgValue(options::OPT_mstack_alignment);
CmdArgs.push_back(Args.MakeArgString("-mstack-alignment=" + alignment));
}
if (Args.hasArg(options::OPT_mstack_probe_size)) {
StringRef Size = Args.getLastArgValue(options::OPT_mstack_probe_size);
if (!Size.empty())
CmdArgs.push_back(Args.MakeArgString("-mstack-probe-size=" + Size));
else
CmdArgs.push_back("-mstack-probe-size=0");
}
Args.addOptOutFlag(CmdArgs, options::OPT_mstack_arg_probe,
options::OPT_mno_stack_arg_probe);
if (Arg *A = Args.getLastArg(options::OPT_mrestrict_it,
options::OPT_mno_restrict_it)) {
if (A->getOption().matches(options::OPT_mrestrict_it)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-arm-restrict-it");
} else {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-arm-default-it");
}
}
// Forward -cl options to -cc1
RenderOpenCLOptions(Args, CmdArgs, InputType);
// Forward hlsl options to -cc1
RenderHLSLOptions(Args, CmdArgs, InputType);
if (IsHIP) {
if (Args.hasFlag(options::OPT_fhip_new_launch_api,
options::OPT_fno_hip_new_launch_api, true))
CmdArgs.push_back("-fhip-new-launch-api");
if (Args.hasFlag(options::OPT_fgpu_allow_device_init,
options::OPT_fno_gpu_allow_device_init, false))
CmdArgs.push_back("-fgpu-allow-device-init");
Args.addOptInFlag(CmdArgs, options::OPT_fhip_kernel_arg_name,
options::OPT_fno_hip_kernel_arg_name);
}
if (IsCuda || IsHIP) {
if (IsRDCMode)
CmdArgs.push_back("-fgpu-rdc");
if (Args.hasFlag(options::OPT_fgpu_defer_diag,
options::OPT_fno_gpu_defer_diag, false))
CmdArgs.push_back("-fgpu-defer-diag");
if (Args.hasFlag(options::OPT_fgpu_exclude_wrong_side_overloads,
options::OPT_fno_gpu_exclude_wrong_side_overloads,
false)) {
CmdArgs.push_back("-fgpu-exclude-wrong-side-overloads");
CmdArgs.push_back("-fgpu-defer-diag");
}
}
// Forward -nogpulib to -cc1.
if (Args.hasArg(options::OPT_nogpulib))
CmdArgs.push_back("-nogpulib");
if (Arg *A = Args.getLastArg(options::OPT_fcf_protection_EQ)) {
CmdArgs.push_back(
Args.MakeArgString(Twine("-fcf-protection=") + A->getValue()));
}
if (IsUsingLTO)
Args.AddLastArg(CmdArgs, options::OPT_mibt_seal);
if (Arg *A = Args.getLastArg(options::OPT_mfunction_return_EQ))
CmdArgs.push_back(
Args.MakeArgString(Twine("-mfunction-return=") + A->getValue()));
Args.AddLastArg(CmdArgs, options::OPT_mindirect_branch_cs_prefix);
// Forward -f options with positive and negative forms; we translate these by
// hand. Do not propagate PGO options to the GPU-side compilations as the
// profile info is for the host-side compilation only.
if (!(IsCudaDevice || IsHIPDevice)) {
if (Arg *A = getLastProfileSampleUseArg(Args)) {
auto *PGOArg = Args.getLastArg(
options::OPT_fprofile_generate, options::OPT_fprofile_generate_EQ,
options::OPT_fcs_profile_generate,
options::OPT_fcs_profile_generate_EQ, options::OPT_fprofile_use,
options::OPT_fprofile_use_EQ);
if (PGOArg)
D.Diag(diag::err_drv_argument_not_allowed_with)
<< "SampleUse with PGO options";
StringRef fname = A->getValue();
if (!llvm::sys::fs::exists(fname))
D.Diag(diag::err_drv_no_such_file) << fname;
else
A->render(Args, CmdArgs);
}
Args.AddLastArg(CmdArgs, options::OPT_fprofile_remapping_file_EQ);
if (Args.hasFlag(options::OPT_fpseudo_probe_for_profiling,
options::OPT_fno_pseudo_probe_for_profiling, false)) {
CmdArgs.push_back("-fpseudo-probe-for-profiling");
// Enforce -funique-internal-linkage-names if it's not explicitly turned
// off.
if (Args.hasFlag(options::OPT_funique_internal_linkage_names,
options::OPT_fno_unique_internal_linkage_names, true))
CmdArgs.push_back("-funique-internal-linkage-names");
}
}
RenderBuiltinOptions(TC, RawTriple, Args, CmdArgs);
Args.addOptOutFlag(CmdArgs, options::OPT_fassume_sane_operator_new,
options::OPT_fno_assume_sane_operator_new);
// -fblocks=0 is default.
if (Args.hasFlag(options::OPT_fblocks, options::OPT_fno_blocks,
TC.IsBlocksDefault()) ||
(Args.hasArg(options::OPT_fgnu_runtime) &&
Args.hasArg(options::OPT_fobjc_nonfragile_abi) &&
!Args.hasArg(options::OPT_fno_blocks))) {
CmdArgs.push_back("-fblocks");
if (!Args.hasArg(options::OPT_fgnu_runtime) && !TC.hasBlocksRuntime())
CmdArgs.push_back("-fblocks-runtime-optional");
}
// -fencode-extended-block-signature=1 is default.
if (TC.IsEncodeExtendedBlockSignatureDefault())
CmdArgs.push_back("-fencode-extended-block-signature");
if (Args.hasFlag(options::OPT_fcoroutines_ts, options::OPT_fno_coroutines_ts,
false) &&
types::isCXX(InputType)) {
CmdArgs.push_back("-fcoroutines-ts");
}
if (Args.hasFlag(options::OPT_fcoro_aligned_allocation,
options::OPT_fno_coro_aligned_allocation, false) &&
types::isCXX(InputType))
CmdArgs.push_back("-fcoro-aligned-allocation");
Args.AddLastArg(CmdArgs, options::OPT_fdouble_square_bracket_attributes,
options::OPT_fno_double_square_bracket_attributes);
Args.addOptOutFlag(CmdArgs, options::OPT_faccess_control,
options::OPT_fno_access_control);
Args.addOptOutFlag(CmdArgs, options::OPT_felide_constructors,
options::OPT_fno_elide_constructors);
ToolChain::RTTIMode RTTIMode = TC.getRTTIMode();
if (KernelOrKext || (types::isCXX(InputType) &&
(RTTIMode == ToolChain::RM_Disabled)))
CmdArgs.push_back("-fno-rtti");
// -fshort-enums=0 is default for all architectures except Hexagon and z/OS.
if (Args.hasFlag(options::OPT_fshort_enums, options::OPT_fno_short_enums,
TC.getArch() == llvm::Triple::hexagon || Triple.isOSzOS()))
CmdArgs.push_back("-fshort-enums");
RenderCharacterOptions(Args, AuxTriple ? *AuxTriple : RawTriple, CmdArgs);
// -fuse-cxa-atexit is default.
if (!Args.hasFlag(
options::OPT_fuse_cxa_atexit, options::OPT_fno_use_cxa_atexit,
!RawTriple.isOSAIX() && !RawTriple.isOSWindows() &&
((RawTriple.getVendor() != llvm::Triple::MipsTechnologies) ||
RawTriple.hasEnvironment())) ||
KernelOrKext)
CmdArgs.push_back("-fno-use-cxa-atexit");
if (Args.hasFlag(options::OPT_fregister_global_dtors_with_atexit,
options::OPT_fno_register_global_dtors_with_atexit,
RawTriple.isOSDarwin() && !KernelOrKext))
CmdArgs.push_back("-fregister-global-dtors-with-atexit");
Args.addOptInFlag(CmdArgs, options::OPT_fuse_line_directives,
options::OPT_fno_use_line_directives);
// -fno-minimize-whitespace is default.
if (Args.hasFlag(options::OPT_fminimize_whitespace,
options::OPT_fno_minimize_whitespace, false)) {
types::ID InputType = Inputs[0].getType();
if (!isDerivedFromC(InputType))
D.Diag(diag::err_drv_minws_unsupported_input_type)
<< types::getTypeName(InputType);
CmdArgs.push_back("-fminimize-whitespace");
}
// -fms-extensions=0 is default.
if (Args.hasFlag(options::OPT_fms_extensions, options::OPT_fno_ms_extensions,
IsWindowsMSVC))
CmdArgs.push_back("-fms-extensions");
// -fms-compatibility=0 is default.
bool IsMSVCCompat = Args.hasFlag(
options::OPT_fms_compatibility, options::OPT_fno_ms_compatibility,
(IsWindowsMSVC && Args.hasFlag(options::OPT_fms_extensions,
options::OPT_fno_ms_extensions, true)));
if (IsMSVCCompat)
CmdArgs.push_back("-fms-compatibility");
if (Triple.isWindowsMSVCEnvironment() && !D.IsCLMode() &&
Args.hasArg(options::OPT_fms_runtime_lib_EQ))
ProcessVSRuntimeLibrary(Args, CmdArgs);
// Handle -fgcc-version, if present.
VersionTuple GNUCVer;
if (Arg *A = Args.getLastArg(options::OPT_fgnuc_version_EQ)) {
// Check that the version has 1 to 3 components and the minor and patch
// versions fit in two decimal digits.
StringRef Val = A->getValue();
Val = Val.empty() ? "0" : Val; // Treat "" as 0 or disable.
bool Invalid = GNUCVer.tryParse(Val);
unsigned Minor = GNUCVer.getMinor().value_or(0);
unsigned Patch = GNUCVer.getSubminor().value_or(0);
if (Invalid || GNUCVer.getBuild() || Minor >= 100 || Patch >= 100) {
D.Diag(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
}
} else if (!IsMSVCCompat) {
// Imitate GCC 4.2.1 by default if -fms-compatibility is not in effect.
GNUCVer = VersionTuple(4, 2, 1);
}
if (!GNUCVer.empty()) {
CmdArgs.push_back(
Args.MakeArgString("-fgnuc-version=" + GNUCVer.getAsString()));
}
VersionTuple MSVT = TC.computeMSVCVersion(&D, Args);
if (!MSVT.empty())
CmdArgs.push_back(
Args.MakeArgString("-fms-compatibility-version=" + MSVT.getAsString()));
bool IsMSVC2015Compatible = MSVT.getMajor() >= 19;
if (ImplyVCPPCVer) {
StringRef LanguageStandard;
if (const Arg *StdArg = Args.getLastArg(options::OPT__SLASH_std)) {
Std = StdArg;
LanguageStandard = llvm::StringSwitch<StringRef>(StdArg->getValue())
.Case("c11", "-std=c11")
.Case("c17", "-std=c17")
.Default("");
if (LanguageStandard.empty())
D.Diag(clang::diag::warn_drv_unused_argument)
<< StdArg->getAsString(Args);
}
CmdArgs.push_back(LanguageStandard.data());
}
if (ImplyVCPPCXXVer) {
StringRef LanguageStandard;
if (const Arg *StdArg = Args.getLastArg(options::OPT__SLASH_std)) {
Std = StdArg;
LanguageStandard = llvm::StringSwitch<StringRef>(StdArg->getValue())
.Case("c++14", "-std=c++14")
.Case("c++17", "-std=c++17")
.Case("c++20", "-std=c++20")
.Case("c++latest", "-std=c++2b")
.Default("");
if (LanguageStandard.empty())
D.Diag(clang::diag::warn_drv_unused_argument)
<< StdArg->getAsString(Args);
}
if (LanguageStandard.empty()) {
if (IsMSVC2015Compatible)
LanguageStandard = "-std=c++14";
else
LanguageStandard = "-std=c++11";
}
CmdArgs.push_back(LanguageStandard.data());
}
Args.addOptInFlag(CmdArgs, options::OPT_fborland_extensions,
options::OPT_fno_borland_extensions);
// -fno-declspec is default, except for PS4/PS5.
if (Args.hasFlag(options::OPT_fdeclspec, options::OPT_fno_declspec,
RawTriple.isPS()))
CmdArgs.push_back("-fdeclspec");
else if (Args.hasArg(options::OPT_fno_declspec))
CmdArgs.push_back("-fno-declspec"); // Explicitly disabling __declspec.
// -fthreadsafe-static is default, except for MSVC compatibility versions less
// than 19.
if (!Args.hasFlag(options::OPT_fthreadsafe_statics,
options::OPT_fno_threadsafe_statics,
!types::isOpenCL(InputType) &&
(!IsWindowsMSVC || IsMSVC2015Compatible)))
CmdArgs.push_back("-fno-threadsafe-statics");
// -fno-delayed-template-parsing is default, except when targeting MSVC.
// Many old Windows SDK versions require this to parse.
// FIXME: MSVC introduced /Zc:twoPhase- to disable this behavior in their
// compiler. We should be able to disable this by default at some point.
if (Args.hasFlag(options::OPT_fdelayed_template_parsing,
options::OPT_fno_delayed_template_parsing, IsWindowsMSVC))
CmdArgs.push_back("-fdelayed-template-parsing");
// -fgnu-keywords default varies depending on language; only pass if
// specified.
Args.AddLastArg(CmdArgs, options::OPT_fgnu_keywords,
options::OPT_fno_gnu_keywords);
Args.addOptInFlag(CmdArgs, options::OPT_fgnu89_inline,
options::OPT_fno_gnu89_inline);
const Arg *InlineArg = Args.getLastArg(options::OPT_finline_functions,
options::OPT_finline_hint_functions,
options::OPT_fno_inline_functions);
if (Arg *A = Args.getLastArg(options::OPT_finline, options::OPT_fno_inline)) {
if (A->getOption().matches(options::OPT_fno_inline))
A->render(Args, CmdArgs);
} else if (InlineArg) {
InlineArg->render(Args, CmdArgs);
}
Args.AddLastArg(CmdArgs, options::OPT_finline_max_stacksize_EQ);
// FIXME: Find a better way to determine whether the language has modules
// support by default, or just assume that all languages do.
bool HaveModules =
Std && (Std->containsValue("c++2a") || Std->containsValue("c++20") ||
Std->containsValue("c++2b") || Std->containsValue("c++latest"));
RenderModulesOptions(C, D, Args, Input, Output, CmdArgs, HaveModules);
if (Args.hasFlag(options::OPT_fpch_validate_input_files_content,
options::OPT_fno_pch_validate_input_files_content, false))
CmdArgs.push_back("-fvalidate-ast-input-files-content");
if (Args.hasFlag(options::OPT_fpch_instantiate_templates,
options::OPT_fno_pch_instantiate_templates, false))
CmdArgs.push_back("-fpch-instantiate-templates");
if (Args.hasFlag(options::OPT_fpch_codegen, options::OPT_fno_pch_codegen,
false))
CmdArgs.push_back("-fmodules-codegen");
if (Args.hasFlag(options::OPT_fpch_debuginfo, options::OPT_fno_pch_debuginfo,
false))
CmdArgs.push_back("-fmodules-debuginfo");
if (!CLANG_ENABLE_OPAQUE_POINTERS_INTERNAL)
CmdArgs.push_back("-no-opaque-pointers");
ObjCRuntime Runtime = AddObjCRuntimeArgs(Args, Inputs, CmdArgs, rewriteKind);
RenderObjCOptions(TC, D, RawTriple, Args, Runtime, rewriteKind != RK_None,
Input, CmdArgs);
if (types::isObjC(Input.getType()) &&
Args.hasFlag(options::OPT_fobjc_encode_cxx_class_template_spec,
options::OPT_fno_objc_encode_cxx_class_template_spec,
!Runtime.isNeXTFamily()))
CmdArgs.push_back("-fobjc-encode-cxx-class-template-spec");
if (Args.hasFlag(options::OPT_fapplication_extension,
options::OPT_fno_application_extension, false))
CmdArgs.push_back("-fapplication-extension");
// Handle GCC-style exception args.
bool EH = false;
if (!C.getDriver().IsCLMode())
EH = addExceptionArgs(Args, InputType, TC, KernelOrKext, Runtime, CmdArgs);
// Handle exception personalities
Arg *A = Args.getLastArg(
options::OPT_fsjlj_exceptions, options::OPT_fseh_exceptions,
options::OPT_fdwarf_exceptions, options::OPT_fwasm_exceptions);
if (A) {
const Option &Opt = A->getOption();
if (Opt.matches(options::OPT_fsjlj_exceptions))
CmdArgs.push_back("-exception-model=sjlj");
if (Opt.matches(options::OPT_fseh_exceptions))
CmdArgs.push_back("-exception-model=seh");
if (Opt.matches(options::OPT_fdwarf_exceptions))
CmdArgs.push_back("-exception-model=dwarf");
if (Opt.matches(options::OPT_fwasm_exceptions))
CmdArgs.push_back("-exception-model=wasm");
} else {
switch (TC.GetExceptionModel(Args)) {
default:
break;
case llvm::ExceptionHandling::DwarfCFI:
CmdArgs.push_back("-exception-model=dwarf");
break;
case llvm::ExceptionHandling::SjLj:
CmdArgs.push_back("-exception-model=sjlj");
break;
case llvm::ExceptionHandling::WinEH:
CmdArgs.push_back("-exception-model=seh");
break;
}
}
// C++ "sane" operator new.
Args.addOptOutFlag(CmdArgs, options::OPT_fassume_sane_operator_new,
options::OPT_fno_assume_sane_operator_new);
// -frelaxed-template-template-args is off by default, as it is a severe
// breaking change until a corresponding change to template partial ordering
// is provided.
Args.addOptInFlag(CmdArgs, options::OPT_frelaxed_template_template_args,
options::OPT_fno_relaxed_template_template_args);
// -fsized-deallocation is off by default, as it is an ABI-breaking change for
// most platforms.
Args.addOptInFlag(CmdArgs, options::OPT_fsized_deallocation,
options::OPT_fno_sized_deallocation);
// -faligned-allocation is on by default in C++17 onwards and otherwise off
// by default.
if (Arg *A = Args.getLastArg(options::OPT_faligned_allocation,
options::OPT_fno_aligned_allocation,
options::OPT_faligned_new_EQ)) {
if (A->getOption().matches(options::OPT_fno_aligned_allocation))
CmdArgs.push_back("-fno-aligned-allocation");
else
CmdArgs.push_back("-faligned-allocation");
}
// The default new alignment can be specified using a dedicated option or via
// a GCC-compatible option that also turns on aligned allocation.
if (Arg *A = Args.getLastArg(options::OPT_fnew_alignment_EQ,
options::OPT_faligned_new_EQ))
CmdArgs.push_back(
Args.MakeArgString(Twine("-fnew-alignment=") + A->getValue()));
// -fconstant-cfstrings is default, and may be subject to argument translation
// on Darwin.
if (!Args.hasFlag(options::OPT_fconstant_cfstrings,
options::OPT_fno_constant_cfstrings, true) ||
!Args.hasFlag(options::OPT_mconstant_cfstrings,
options::OPT_mno_constant_cfstrings, true))
CmdArgs.push_back("-fno-constant-cfstrings");
Args.addOptInFlag(CmdArgs, options::OPT_fpascal_strings,
options::OPT_fno_pascal_strings);
// Honor -fpack-struct= and -fpack-struct, if given. Note that
// -fno-pack-struct doesn't apply to -fpack-struct=.
if (Arg *A = Args.getLastArg(options::OPT_fpack_struct_EQ)) {
std::string PackStructStr = "-fpack-struct=";
PackStructStr += A->getValue();
CmdArgs.push_back(Args.MakeArgString(PackStructStr));
} else if (Args.hasFlag(options::OPT_fpack_struct,
options::OPT_fno_pack_struct, false)) {
CmdArgs.push_back("-fpack-struct=1");
}
// Handle -fmax-type-align=N and -fno-type-align
bool SkipMaxTypeAlign = Args.hasArg(options::OPT_fno_max_type_align);
if (Arg *A = Args.getLastArg(options::OPT_fmax_type_align_EQ)) {
if (!SkipMaxTypeAlign) {
std::string MaxTypeAlignStr = "-fmax-type-align=";
MaxTypeAlignStr += A->getValue();
CmdArgs.push_back(Args.MakeArgString(MaxTypeAlignStr));
}
} else if (RawTriple.isOSDarwin()) {
if (!SkipMaxTypeAlign) {
std::string MaxTypeAlignStr = "-fmax-type-align=16";
CmdArgs.push_back(Args.MakeArgString(MaxTypeAlignStr));
}
}
if (!Args.hasFlag(options::OPT_Qy, options::OPT_Qn, true))
CmdArgs.push_back("-Qn");
// -fno-common is the default, set -fcommon only when that flag is set.
Args.addOptInFlag(CmdArgs, options::OPT_fcommon, options::OPT_fno_common);
// -fsigned-bitfields is default, and clang doesn't yet support
// -funsigned-bitfields.
if (!Args.hasFlag(options::OPT_fsigned_bitfields,
options::OPT_funsigned_bitfields, true))
D.Diag(diag::warn_drv_clang_unsupported)
<< Args.getLastArg(options::OPT_funsigned_bitfields)->getAsString(Args);
// -fsigned-bitfields is default, and clang doesn't support -fno-for-scope.
if (!Args.hasFlag(options::OPT_ffor_scope, options::OPT_fno_for_scope, true))
D.Diag(diag::err_drv_clang_unsupported)
<< Args.getLastArg(options::OPT_fno_for_scope)->getAsString(Args);
// -finput_charset=UTF-8 is default. Reject others
if (Arg *inputCharset = Args.getLastArg(options::OPT_finput_charset_EQ)) {
StringRef value = inputCharset->getValue();
if (!value.equals_insensitive("utf-8"))
D.Diag(diag::err_drv_invalid_value) << inputCharset->getAsString(Args)
<< value;
}
// -fexec_charset=UTF-8 is default. Reject others
if (Arg *execCharset = Args.getLastArg(options::OPT_fexec_charset_EQ)) {
StringRef value = execCharset->getValue();
if (!value.equals_insensitive("utf-8"))
D.Diag(diag::err_drv_invalid_value) << execCharset->getAsString(Args)
<< value;
}
RenderDiagnosticsOptions(D, Args, CmdArgs);
Args.addOptInFlag(CmdArgs, options::OPT_fasm_blocks,
options::OPT_fno_asm_blocks);
Args.addOptOutFlag(CmdArgs, options::OPT_fgnu_inline_asm,
options::OPT_fno_gnu_inline_asm);
// Enable vectorization per default according to the optimization level
// selected. For optimization levels that want vectorization we use the alias
// option to simplify the hasFlag logic.
bool EnableVec = shouldEnableVectorizerAtOLevel(Args, false);
OptSpecifier VectorizeAliasOption =
EnableVec ? options::OPT_O_Group : options::OPT_fvectorize;
if (Args.hasFlag(options::OPT_fvectorize, VectorizeAliasOption,
options::OPT_fno_vectorize, EnableVec))
CmdArgs.push_back("-vectorize-loops");
// -fslp-vectorize is enabled based on the optimization level selected.
bool EnableSLPVec = shouldEnableVectorizerAtOLevel(Args, true);
OptSpecifier SLPVectAliasOption =
EnableSLPVec ? options::OPT_O_Group : options::OPT_fslp_vectorize;
if (Args.hasFlag(options::OPT_fslp_vectorize, SLPVectAliasOption,
options::OPT_fno_slp_vectorize, EnableSLPVec))
CmdArgs.push_back("-vectorize-slp");
ParseMPreferVectorWidth(D, Args, CmdArgs);
Args.AddLastArg(CmdArgs, options::OPT_fshow_overloads_EQ);
Args.AddLastArg(CmdArgs,
options::OPT_fsanitize_undefined_strip_path_components_EQ);
// -fdollars-in-identifiers default varies depending on platform and
// language; only pass if specified.
if (Arg *A = Args.getLastArg(options::OPT_fdollars_in_identifiers,
options::OPT_fno_dollars_in_identifiers)) {
if (A->getOption().matches(options::OPT_fdollars_in_identifiers))
CmdArgs.push_back("-fdollars-in-identifiers");
else
CmdArgs.push_back("-fno-dollars-in-identifiers");
}
Args.addOptInFlag(CmdArgs, options::OPT_fapple_pragma_pack,
options::OPT_fno_apple_pragma_pack);
if (Args.hasFlag(options::OPT_fxl_pragma_pack,
options::OPT_fno_xl_pragma_pack, RawTriple.isOSAIX()))
CmdArgs.push_back("-fxl-pragma-pack");
// Remarks can be enabled with any of the `-f.*optimization-record.*` flags.
if (willEmitRemarks(Args) && checkRemarksOptions(D, Args, Triple))
renderRemarksOptions(Args, CmdArgs, Triple, Input, Output, JA);
bool RewriteImports = Args.hasFlag(options::OPT_frewrite_imports,
options::OPT_fno_rewrite_imports, false);
if (RewriteImports)
CmdArgs.push_back("-frewrite-imports");
Args.addOptInFlag(CmdArgs, options::OPT_fdirectives_only,
options::OPT_fno_directives_only);
// Enable rewrite includes if the user's asked for it or if we're generating
// diagnostics.
// TODO: Once -module-dependency-dir works with -frewrite-includes it'd be
// nice to enable this when doing a crashdump for modules as well.
if (Args.hasFlag(options::OPT_frewrite_includes,
options::OPT_fno_rewrite_includes, false) ||
(C.isForDiagnostics() && !HaveModules))
CmdArgs.push_back("-frewrite-includes");
// Only allow -traditional or -traditional-cpp outside in preprocessing modes.
if (Arg *A = Args.getLastArg(options::OPT_traditional,
options::OPT_traditional_cpp)) {
if (isa<PreprocessJobAction>(JA))
CmdArgs.push_back("-traditional-cpp");
else
D.Diag(diag::err_drv_clang_unsupported) << A->getAsString(Args);
}
Args.AddLastArg(CmdArgs, options::OPT_dM);
Args.AddLastArg(CmdArgs, options::OPT_dD);
Args.AddLastArg(CmdArgs, options::OPT_dI);
Args.AddLastArg(CmdArgs, options::OPT_fmax_tokens_EQ);
// Handle serialized diagnostics.
if (Arg *A = Args.getLastArg(options::OPT__serialize_diags)) {
CmdArgs.push_back("-serialize-diagnostic-file");
CmdArgs.push_back(Args.MakeArgString(A->getValue()));
}
if (Args.hasArg(options::OPT_fretain_comments_from_system_headers))
CmdArgs.push_back("-fretain-comments-from-system-headers");
// Forward -fcomment-block-commands to -cc1.
Args.AddAllArgs(CmdArgs, options::OPT_fcomment_block_commands);
// Forward -fparse-all-comments to -cc1.
Args.AddAllArgs(CmdArgs, options::OPT_fparse_all_comments);
// Turn -fplugin=name.so into -load name.so
for (const Arg *A : Args.filtered(options::OPT_fplugin_EQ)) {
CmdArgs.push_back("-load");
CmdArgs.push_back(A->getValue());
A->claim();
}
// Turn -fplugin-arg-pluginname-key=value into
// -plugin-arg-pluginname key=value
// GCC has an actual plugin_argument struct with key/value pairs that it
// passes to its plugins, but we don't, so just pass it on as-is.
//
// The syntax for -fplugin-arg- is ambiguous if both plugin name and
// argument key are allowed to contain dashes. GCC therefore only
// allows dashes in the key. We do the same.
for (const Arg *A : Args.filtered(options::OPT_fplugin_arg)) {
auto ArgValue = StringRef(A->getValue());
auto FirstDashIndex = ArgValue.find('-');
StringRef PluginName = ArgValue.substr(0, FirstDashIndex);
StringRef Arg = ArgValue.substr(FirstDashIndex + 1);
A->claim();
if (FirstDashIndex == StringRef::npos || Arg.empty()) {
if (PluginName.empty()) {
D.Diag(diag::warn_drv_missing_plugin_name) << A->getAsString(Args);
} else {
D.Diag(diag::warn_drv_missing_plugin_arg)
<< PluginName << A->getAsString(Args);
}
continue;
}
CmdArgs.push_back(Args.MakeArgString(Twine("-plugin-arg-") + PluginName));
CmdArgs.push_back(Args.MakeArgString(Arg));
}
// Forward -fpass-plugin=name.so to -cc1.
for (const Arg *A : Args.filtered(options::OPT_fpass_plugin_EQ)) {
CmdArgs.push_back(
Args.MakeArgString(Twine("-fpass-plugin=") + A->getValue()));
A->claim();
}
// Setup statistics file output.
SmallString<128> StatsFile = getStatsFileName(Args, Output, Input, D);
if (!StatsFile.empty())
CmdArgs.push_back(Args.MakeArgString(Twine("-stats-file=") + StatsFile));
// Forward -Xclang arguments to -cc1, and -mllvm arguments to the LLVM option
// parser.
// -finclude-default-header flag is for preprocessor,
// do not pass it to other cc1 commands when save-temps is enabled
if (C.getDriver().isSaveTempsEnabled() &&
!isa<PreprocessJobAction>(JA)) {
for (auto *Arg : Args.filtered(options::OPT_Xclang)) {
Arg->claim();
if (StringRef(Arg->getValue()) != "-finclude-default-header")
CmdArgs.push_back(Arg->getValue());
}
}
else {
Args.AddAllArgValues(CmdArgs, options::OPT_Xclang);
}
for (const Arg *A : Args.filtered(options::OPT_mllvm)) {
A->claim();
// We translate this by hand to the -cc1 argument, since nightly test uses
// it and developers have been trained to spell it with -mllvm. Both
// spellings are now deprecated and should be removed.
if (StringRef(A->getValue(0)) == "-disable-llvm-optzns") {
CmdArgs.push_back("-disable-llvm-optzns");
} else {
A->render(Args, CmdArgs);
}
}
// With -save-temps, we want to save the unoptimized bitcode output from the
// CompileJobAction, use -disable-llvm-passes to get pristine IR generated
// by the frontend.
// When -fembed-bitcode is enabled, optimized bitcode is emitted because it
// has slightly different breakdown between stages.
// FIXME: -fembed-bitcode -save-temps will save optimized bitcode instead of
// pristine IR generated by the frontend. Ideally, a new compile action should
// be added so both IR can be captured.
if ((C.getDriver().isSaveTempsEnabled() ||
JA.isHostOffloading(Action::OFK_OpenMP)) &&
!(C.getDriver().embedBitcodeInObject() && !IsUsingLTO) &&
isa<CompileJobAction>(JA))
CmdArgs.push_back("-disable-llvm-passes");
Args.AddAllArgs(CmdArgs, options::OPT_undef);
const char *Exec = D.getClangProgramPath();
// Optionally embed the -cc1 level arguments into the debug info or a
// section, for build analysis.
// Also record command line arguments into the debug info if
// -grecord-gcc-switches options is set on.
// By default, -gno-record-gcc-switches is set on and no recording.
auto GRecordSwitches =
Args.hasFlag(options::OPT_grecord_command_line,
options::OPT_gno_record_command_line, false);
auto FRecordSwitches =
Args.hasFlag(options::OPT_frecord_command_line,
options::OPT_fno_record_command_line, false);
if (FRecordSwitches && !Triple.isOSBinFormatELF())
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< Args.getLastArg(options::OPT_frecord_command_line)->getAsString(Args)
<< TripleStr;
if (TC.UseDwarfDebugFlags() || GRecordSwitches || FRecordSwitches) {
ArgStringList OriginalArgs;
for (const auto &Arg : Args)
Arg->render(Args, OriginalArgs);
SmallString<256> Flags;
EscapeSpacesAndBackslashes(Exec, Flags);
for (const char *OriginalArg : OriginalArgs) {
SmallString<128> EscapedArg;
EscapeSpacesAndBackslashes(OriginalArg, EscapedArg);
Flags += " ";
Flags += EscapedArg;
}
auto FlagsArgString = Args.MakeArgString(Flags);
if (TC.UseDwarfDebugFlags() || GRecordSwitches) {
CmdArgs.push_back("-dwarf-debug-flags");
CmdArgs.push_back(FlagsArgString);
}
if (FRecordSwitches) {
CmdArgs.push_back("-record-command-line");
CmdArgs.push_back(FlagsArgString);
}
}
// Host-side offloading compilation receives all device-side outputs. Include
// them in the host compilation depending on the target. If the host inputs
// are not empty we use the new-driver scheme, otherwise use the old scheme.
if ((IsCuda || IsHIP) && CudaDeviceInput) {
CmdArgs.push_back("-fcuda-include-gpubinary");
CmdArgs.push_back(CudaDeviceInput->getFilename());
} else if (!HostOffloadingInputs.empty()) {
if ((IsCuda || IsHIP) && !IsRDCMode) {
assert(HostOffloadingInputs.size() == 1 && "Only one input expected");
CmdArgs.push_back("-fcuda-include-gpubinary");
CmdArgs.push_back(HostOffloadingInputs.front().getFilename());
} else {
for (const InputInfo Input : HostOffloadingInputs)
CmdArgs.push_back(Args.MakeArgString("-fembed-offload-object=" +
TC.getInputFilename(Input)));
}
}
if (IsCuda) {
if (Args.hasFlag(options::OPT_fcuda_short_ptr,
options::OPT_fno_cuda_short_ptr, false))
CmdArgs.push_back("-fcuda-short-ptr");
}
if (IsCuda || IsHIP) {
// Determine the original source input.
const Action *SourceAction = &JA;
while (SourceAction->getKind() != Action::InputClass) {
assert(!SourceAction->getInputs().empty() && "unexpected root action!");
SourceAction = SourceAction->getInputs()[0];
}
auto CUID = cast<InputAction>(SourceAction)->getId();
if (!CUID.empty())
CmdArgs.push_back(Args.MakeArgString(Twine("-cuid=") + Twine(CUID)));
}
if (IsHIP) {
CmdArgs.push_back("-fcuda-allow-variadic-functions");
Args.AddLastArg(CmdArgs, options::OPT_fgpu_default_stream_EQ);
}
if (IsCudaDevice || IsHIPDevice) {
StringRef InlineThresh =
Args.getLastArgValue(options::OPT_fgpu_inline_threshold_EQ);
if (!InlineThresh.empty()) {
std::string ArgStr =
std::string("-inline-threshold=") + InlineThresh.str();
CmdArgs.append({"-mllvm", Args.MakeArgStringRef(ArgStr)});
}
}
// OpenMP offloading device jobs take the argument -fopenmp-host-ir-file-path
// to specify the result of the compile phase on the host, so the meaningful
// device declarations can be identified. Also, -fopenmp-is-device is passed
// along to tell the frontend that it is generating code for a device, so that
// only the relevant declarations are emitted.
if (IsOpenMPDevice) {
CmdArgs.push_back("-fopenmp-is-device");
if (OpenMPDeviceInput) {
CmdArgs.push_back("-fopenmp-host-ir-file-path");
CmdArgs.push_back(Args.MakeArgString(OpenMPDeviceInput->getFilename()));
}
}
if (Triple.isAMDGPU()) {
handleAMDGPUCodeObjectVersionOptions(D, Args, CmdArgs);
Args.addOptInFlag(CmdArgs, options::OPT_munsafe_fp_atomics,
options::OPT_mno_unsafe_fp_atomics);
}
// For all the host OpenMP offloading compile jobs we need to pass the targets
// information using -fopenmp-targets= option.
if (JA.isHostOffloading(Action::OFK_OpenMP)) {
SmallString<128> Targets("-fopenmp-targets=");
SmallVector<std::string, 4> Triples;
auto TCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
std::transform(TCRange.first, TCRange.second, std::back_inserter(Triples),
[](auto TC) { return TC.second->getTripleString(); });
CmdArgs.push_back(Args.MakeArgString(Targets + llvm::join(Triples, ",")));
}
bool VirtualFunctionElimination =
Args.hasFlag(options::OPT_fvirtual_function_elimination,
options::OPT_fno_virtual_function_elimination, false);
if (VirtualFunctionElimination) {
// VFE requires full LTO (currently, this might be relaxed to allow ThinLTO
// in the future).
if (LTOMode != LTOK_Full)
D.Diag(diag::err_drv_argument_only_allowed_with)
<< "-fvirtual-function-elimination"
<< "-flto=full";
CmdArgs.push_back("-fvirtual-function-elimination");
}
// VFE requires whole-program-vtables, and enables it by default.
bool WholeProgramVTables = Args.hasFlag(
options::OPT_fwhole_program_vtables,
options::OPT_fno_whole_program_vtables, VirtualFunctionElimination);
if (VirtualFunctionElimination && !WholeProgramVTables) {
D.Diag(diag::err_drv_argument_not_allowed_with)
<< "-fno-whole-program-vtables"
<< "-fvirtual-function-elimination";
}
if (WholeProgramVTables) {
// Propagate -fwhole-program-vtables if this is an LTO compile.
if (IsUsingLTO)
CmdArgs.push_back("-fwhole-program-vtables");
// Check if we passed LTO options but they were suppressed because this is a
// device offloading action, or we passed device offload LTO options which
// were suppressed because this is not the device offload action.
// Otherwise, issue an error.
else if (!D.isUsingLTO(!IsDeviceOffloadAction))
D.Diag(diag::err_drv_argument_only_allowed_with)
<< "-fwhole-program-vtables"
<< "-flto";
}
bool DefaultsSplitLTOUnit =
(WholeProgramVTables || SanitizeArgs.needsLTO()) &&
(LTOMode == LTOK_Full || TC.canSplitThinLTOUnit());
bool SplitLTOUnit =
Args.hasFlag(options::OPT_fsplit_lto_unit,
options::OPT_fno_split_lto_unit, DefaultsSplitLTOUnit);
if (SanitizeArgs.needsLTO() && !SplitLTOUnit)
D.Diag(diag::err_drv_argument_not_allowed_with) << "-fno-split-lto-unit"
<< "-fsanitize=cfi";
if (SplitLTOUnit)
CmdArgs.push_back("-fsplit-lto-unit");
if (Arg *A = Args.getLastArg(options::OPT_fglobal_isel,
options::OPT_fno_global_isel)) {
CmdArgs.push_back("-mllvm");
if (A->getOption().matches(options::OPT_fglobal_isel)) {
CmdArgs.push_back("-global-isel=1");
// GISel is on by default on AArch64 -O0, so don't bother adding
// the fallback remarks for it. Other combinations will add a warning of
// some kind.
bool IsArchSupported = Triple.getArch() == llvm::Triple::aarch64;
bool IsOptLevelSupported = false;
Arg *A = Args.getLastArg(options::OPT_O_Group);
if (Triple.getArch() == llvm::Triple::aarch64) {
if (!A || A->getOption().matches(options::OPT_O0))
IsOptLevelSupported = true;
}
if (!IsArchSupported || !IsOptLevelSupported) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-global-isel-abort=2");
if (!IsArchSupported)
D.Diag(diag::warn_drv_global_isel_incomplete) << Triple.getArchName();
else
D.Diag(diag::warn_drv_global_isel_incomplete_opt);
}
} else {
CmdArgs.push_back("-global-isel=0");
}
}
if (Args.hasArg(options::OPT_forder_file_instrumentation)) {
CmdArgs.push_back("-forder-file-instrumentation");
// Enable order file instrumentation when ThinLTO is not on. When ThinLTO is
// on, we need to pass these flags as linker flags and that will be handled
// outside of the compiler.
if (!IsUsingLTO) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-enable-order-file-instrumentation");
}
}
if (Arg *A = Args.getLastArg(options::OPT_fforce_enable_int128,
options::OPT_fno_force_enable_int128)) {
if (A->getOption().matches(options::OPT_fforce_enable_int128))
CmdArgs.push_back("-fforce-enable-int128");
}
Args.addOptInFlag(CmdArgs, options::OPT_fkeep_static_consts,
options::OPT_fno_keep_static_consts);
Args.addOptInFlag(CmdArgs, options::OPT_fcomplete_member_pointers,
options::OPT_fno_complete_member_pointers);
Args.addOptOutFlag(CmdArgs, options::OPT_fcxx_static_destructors,
options::OPT_fno_cxx_static_destructors);
addMachineOutlinerArgs(D, Args, CmdArgs, Triple, /*IsLTO=*/false);
if (Arg *A = Args.getLastArg(options::OPT_moutline_atomics,
options::OPT_mno_outline_atomics)) {
// Option -moutline-atomics supported for AArch64 target only.
if (!Triple.isAArch64()) {
D.Diag(diag::warn_drv_moutline_atomics_unsupported_opt)
<< Triple.getArchName() << A->getOption().getName();
} else {
if (A->getOption().matches(options::OPT_moutline_atomics)) {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back("+outline-atomics");
} else {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back("-outline-atomics");
}
}
} else if (Triple.isAArch64() &&
getToolChain().IsAArch64OutlineAtomicsDefault(Args)) {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back("+outline-atomics");
}
if (Args.hasFlag(options::OPT_faddrsig, options::OPT_fno_addrsig,
(TC.getTriple().isOSBinFormatELF() ||
TC.getTriple().isOSBinFormatCOFF()) &&
!TC.getTriple().isPS4() && !TC.getTriple().isVE() &&
!TC.getTriple().isOSNetBSD() &&
!Distro(D.getVFS(), TC.getTriple()).IsGentoo() &&
!TC.getTriple().isAndroid() && TC.useIntegratedAs()))
CmdArgs.push_back("-faddrsig");
if ((Triple.isOSBinFormatELF() || Triple.isOSBinFormatMachO()) &&
(EH || UnwindTables != ToolChain::UnwindTableLevel::None ||
DebugInfoKind != codegenoptions::NoDebugInfo))
CmdArgs.push_back("-D__GCC_HAVE_DWARF2_CFI_ASM=1");
if (Arg *A = Args.getLastArg(options::OPT_fsymbol_partition_EQ)) {
std::string Str = A->getAsString(Args);
if (!TC.getTriple().isOSBinFormatELF())
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< Str << TC.getTripleString();
CmdArgs.push_back(Args.MakeArgString(Str));
}
// Add the output path to the object file for CodeView debug infos.
if (EmitCodeView && Output.isFilename())
addDebugObjectName(Args, CmdArgs, DebugCompilationDir,
Output.getFilename());
// Add the "-o out -x type src.c" flags last. This is done primarily to make
// the -cc1 command easier to edit when reproducing compiler crashes.
if (Output.getType() == types::TY_Dependencies) {
// Handled with other dependency code.
} else if (Output.isFilename()) {
if (Output.getType() == clang::driver::types::TY_IFS_CPP ||
Output.getType() == clang::driver::types::TY_IFS) {
SmallString<128> OutputFilename(Output.getFilename());
llvm::sys::path::replace_extension(OutputFilename, "ifs");
CmdArgs.push_back("-o");
CmdArgs.push_back(Args.MakeArgString(OutputFilename));
} else {
CmdArgs.push_back("-o");
CmdArgs.push_back(Output.getFilename());
}
} else {
assert(Output.isNothing() && "Invalid output.");
}
addDashXForInput(Args, Input, CmdArgs);
ArrayRef<InputInfo> FrontendInputs = Input;
if (IsHeaderModulePrecompile)
FrontendInputs = ModuleHeaderInputs;
else if (IsExtractAPI)
FrontendInputs = ExtractAPIInputs;
else if (Input.isNothing())
FrontendInputs = {};
for (const InputInfo &Input : FrontendInputs) {
if (Input.isFilename())
CmdArgs.push_back(Input.getFilename());
else
Input.getInputArg().renderAsInput(Args, CmdArgs);
}
if (D.CC1Main && !D.CCGenDiagnostics) {
// Invoke the CC1 directly in this process
C.addCommand(std::make_unique<CC1Command>(JA, *this,
ResponseFileSupport::AtFileUTF8(),
Exec, CmdArgs, Inputs, Output));
} else {
C.addCommand(std::make_unique<Command>(JA, *this,
ResponseFileSupport::AtFileUTF8(),
Exec, CmdArgs, Inputs, Output));
}
// Make the compile command echo its inputs for /showFilenames.
if (Output.getType() == types::TY_Object &&
Args.hasFlag(options::OPT__SLASH_showFilenames,
options::OPT__SLASH_showFilenames_, false)) {
C.getJobs().getJobs().back()->PrintInputFilenames = true;
}
if (Arg *A = Args.getLastArg(options::OPT_pg))
if (FPKeepKind == CodeGenOptions::FramePointerKind::None &&
!Args.hasArg(options::OPT_mfentry))
D.Diag(diag::err_drv_argument_not_allowed_with) << "-fomit-frame-pointer"
<< A->getAsString(Args);
// Claim some arguments which clang supports automatically.
// -fpch-preprocess is used with gcc to add a special marker in the output to
// include the PCH file.
Args.ClaimAllArgs(options::OPT_fpch_preprocess);
// Claim some arguments which clang doesn't support, but we don't
// care to warn the user about.
Args.ClaimAllArgs(options::OPT_clang_ignored_f_Group);
Args.ClaimAllArgs(options::OPT_clang_ignored_m_Group);
// Disable warnings for clang -E -emit-llvm foo.c
Args.ClaimAllArgs(options::OPT_emit_llvm);
}
Clang::Clang(const ToolChain &TC, bool HasIntegratedBackend)
// CAUTION! The first constructor argument ("clang") is not arbitrary,
// as it is for other tools. Some operations on a Tool actually test
// whether that tool is Clang based on the Tool's Name as a string.
: Tool("clang", "clang frontend", TC), HasBackend(HasIntegratedBackend) {}
Clang::~Clang() {}
/// Add options related to the Objective-C runtime/ABI.
///
/// Returns true if the runtime is non-fragile.
ObjCRuntime Clang::AddObjCRuntimeArgs(const ArgList &args,
const InputInfoList &inputs,
ArgStringList &cmdArgs,
RewriteKind rewriteKind) const {
// Look for the controlling runtime option.
Arg *runtimeArg =
args.getLastArg(options::OPT_fnext_runtime, options::OPT_fgnu_runtime,
options::OPT_fobjc_runtime_EQ);
// Just forward -fobjc-runtime= to the frontend. This supercedes
// options about fragility.
if (runtimeArg &&
runtimeArg->getOption().matches(options::OPT_fobjc_runtime_EQ)) {
ObjCRuntime runtime;
StringRef value = runtimeArg->getValue();
if (runtime.tryParse(value)) {
getToolChain().getDriver().Diag(diag::err_drv_unknown_objc_runtime)
<< value;
}
if ((runtime.getKind() == ObjCRuntime::GNUstep) &&
(runtime.getVersion() >= VersionTuple(2, 0)))
if (!getToolChain().getTriple().isOSBinFormatELF() &&
!getToolChain().getTriple().isOSBinFormatCOFF()) {
getToolChain().getDriver().Diag(
diag::err_drv_gnustep_objc_runtime_incompatible_binary)
<< runtime.getVersion().getMajor();
}
runtimeArg->render(args, cmdArgs);
return runtime;
}
// Otherwise, we'll need the ABI "version". Version numbers are
// slightly confusing for historical reasons:
// 1 - Traditional "fragile" ABI
// 2 - Non-fragile ABI, version 1
// 3 - Non-fragile ABI, version 2
unsigned objcABIVersion = 1;
// If -fobjc-abi-version= is present, use that to set the version.
if (Arg *abiArg = args.getLastArg(options::OPT_fobjc_abi_version_EQ)) {
StringRef value = abiArg->getValue();
if (value == "1")
objcABIVersion = 1;
else if (value == "2")
objcABIVersion = 2;
else if (value == "3")
objcABIVersion = 3;
else
getToolChain().getDriver().Diag(diag::err_drv_clang_unsupported) << value;
} else {
// Otherwise, determine if we are using the non-fragile ABI.
bool nonFragileABIIsDefault =
(rewriteKind == RK_NonFragile ||
(rewriteKind == RK_None &&
getToolChain().IsObjCNonFragileABIDefault()));
if (args.hasFlag(options::OPT_fobjc_nonfragile_abi,
options::OPT_fno_objc_nonfragile_abi,
nonFragileABIIsDefault)) {
// Determine the non-fragile ABI version to use.
#ifdef DISABLE_DEFAULT_NONFRAGILEABI_TWO
unsigned nonFragileABIVersion = 1;
#else
unsigned nonFragileABIVersion = 2;
#endif
if (Arg *abiArg =
args.getLastArg(options::OPT_fobjc_nonfragile_abi_version_EQ)) {
StringRef value = abiArg->getValue();
if (value == "1")
nonFragileABIVersion = 1;
else if (value == "2")
nonFragileABIVersion = 2;
else
getToolChain().getDriver().Diag(diag::err_drv_clang_unsupported)
<< value;
}
objcABIVersion = 1 + nonFragileABIVersion;
} else {
objcABIVersion = 1;
}
}
// We don't actually care about the ABI version other than whether
// it's non-fragile.
bool isNonFragile = objcABIVersion != 1;
// If we have no runtime argument, ask the toolchain for its default runtime.
// However, the rewriter only really supports the Mac runtime, so assume that.
ObjCRuntime runtime;
if (!runtimeArg) {
switch (rewriteKind) {
case RK_None:
runtime = getToolChain().getDefaultObjCRuntime(isNonFragile);
break;
case RK_Fragile:
runtime = ObjCRuntime(ObjCRuntime::FragileMacOSX, VersionTuple());
break;
case RK_NonFragile:
runtime = ObjCRuntime(ObjCRuntime::MacOSX, VersionTuple());
break;
}
// -fnext-runtime
} else if (runtimeArg->getOption().matches(options::OPT_fnext_runtime)) {
// On Darwin, make this use the default behavior for the toolchain.
if (getToolChain().getTriple().isOSDarwin()) {
runtime = getToolChain().getDefaultObjCRuntime(isNonFragile);
// Otherwise, build for a generic macosx port.
} else {
runtime = ObjCRuntime(ObjCRuntime::MacOSX, VersionTuple());
}
// -fgnu-runtime
} else {
assert(runtimeArg->getOption().matches(options::OPT_fgnu_runtime));
// Legacy behaviour is to target the gnustep runtime if we are in
// non-fragile mode or the GCC runtime in fragile mode.
if (isNonFragile)
runtime = ObjCRuntime(ObjCRuntime::GNUstep, VersionTuple(2, 0));
else
runtime = ObjCRuntime(ObjCRuntime::GCC, VersionTuple());
}
if (llvm::any_of(inputs, [](const InputInfo &input) {
return types::isObjC(input.getType());
}))
cmdArgs.push_back(
args.MakeArgString("-fobjc-runtime=" + runtime.getAsString()));
return runtime;
}
static bool maybeConsumeDash(const std::string &EH, size_t &I) {
bool HaveDash = (I + 1 < EH.size() && EH[I + 1] == '-');
I += HaveDash;
return !HaveDash;
}
namespace {
struct EHFlags {
bool Synch = false;
bool Asynch = false;
bool NoUnwindC = false;
};
} // end anonymous namespace
/// /EH controls whether to run destructor cleanups when exceptions are
/// thrown. There are three modifiers:
/// - s: Cleanup after "synchronous" exceptions, aka C++ exceptions.
/// - a: Cleanup after "asynchronous" exceptions, aka structured exceptions.
/// The 'a' modifier is unimplemented and fundamentally hard in LLVM IR.
/// - c: Assume that extern "C" functions are implicitly nounwind.
/// The default is /EHs-c-, meaning cleanups are disabled.
static EHFlags parseClangCLEHFlags(const Driver &D, const ArgList &Args) {
EHFlags EH;
std::vector<std::string> EHArgs =
Args.getAllArgValues(options::OPT__SLASH_EH);
for (auto EHVal : EHArgs) {
for (size_t I = 0, E = EHVal.size(); I != E; ++I) {
switch (EHVal[I]) {
case 'a':
EH.Asynch = maybeConsumeDash(EHVal, I);
if (EH.Asynch)
EH.Synch = false;
continue;
case 'c':
EH.NoUnwindC = maybeConsumeDash(EHVal, I);
continue;
case 's':
EH.Synch = maybeConsumeDash(EHVal, I);
if (EH.Synch)
EH.Asynch = false;
continue;
default:
break;
}
D.Diag(clang::diag::err_drv_invalid_value) << "/EH" << EHVal;
break;
}
}
// The /GX, /GX- flags are only processed if there are not /EH flags.
// The default is that /GX is not specified.
if (EHArgs.empty() &&
Args.hasFlag(options::OPT__SLASH_GX, options::OPT__SLASH_GX_,
/*Default=*/false)) {
EH.Synch = true;
EH.NoUnwindC = true;
}
if (Args.hasArg(options::OPT__SLASH_kernel)) {
EH.Synch = false;
EH.NoUnwindC = false;
EH.Asynch = false;
}
return EH;
}
void Clang::AddClangCLArgs(const ArgList &Args, types::ID InputType,
ArgStringList &CmdArgs,
codegenoptions::DebugInfoKind *DebugInfoKind,
bool *EmitCodeView) const {
bool isNVPTX = getToolChain().getTriple().isNVPTX();
ProcessVSRuntimeLibrary(Args, CmdArgs);
if (Arg *ShowIncludes =
Args.getLastArg(options::OPT__SLASH_showIncludes,
options::OPT__SLASH_showIncludes_user)) {
CmdArgs.push_back("--show-includes");
if (ShowIncludes->getOption().matches(options::OPT__SLASH_showIncludes))
CmdArgs.push_back("-sys-header-deps");
}
// This controls whether or not we emit RTTI data for polymorphic types.
if (Args.hasFlag(options::OPT__SLASH_GR_, options::OPT__SLASH_GR,
/*Default=*/false))
CmdArgs.push_back("-fno-rtti-data");
// This controls whether or not we emit stack-protector instrumentation.
// In MSVC, Buffer Security Check (/GS) is on by default.
if (!isNVPTX && Args.hasFlag(options::OPT__SLASH_GS, options::OPT__SLASH_GS_,
/*Default=*/true)) {
CmdArgs.push_back("-stack-protector");
CmdArgs.push_back(Args.MakeArgString(Twine(LangOptions::SSPStrong)));
}
// Emit CodeView if -Z7 or -gline-tables-only are present.
if (Arg *DebugInfoArg = Args.getLastArg(options::OPT__SLASH_Z7,
options::OPT_gline_tables_only)) {
*EmitCodeView = true;
if (DebugInfoArg->getOption().matches(options::OPT__SLASH_Z7))
*DebugInfoKind = codegenoptions::DebugInfoConstructor;
else
*DebugInfoKind = codegenoptions::DebugLineTablesOnly;
} else {
*EmitCodeView = false;
}
const Driver &D = getToolChain().getDriver();
// This controls whether or not we perform JustMyCode instrumentation.
if (Args.hasFlag(options::OPT__SLASH_JMC, options::OPT__SLASH_JMC_,
/*Default=*/false)) {
if (*EmitCodeView && *DebugInfoKind >= codegenoptions::DebugInfoConstructor)
CmdArgs.push_back("-fjmc");
else
D.Diag(clang::diag::warn_drv_jmc_requires_debuginfo) << "/JMC"
<< "'/Zi', '/Z7'";
}
EHFlags EH = parseClangCLEHFlags(D, Args);
if (!isNVPTX && (EH.Synch || EH.Asynch)) {
if (types::isCXX(InputType))
CmdArgs.push_back("-fcxx-exceptions");
CmdArgs.push_back("-fexceptions");
}
if (types::isCXX(InputType) && EH.Synch && EH.NoUnwindC)
CmdArgs.push_back("-fexternc-nounwind");
// /EP should expand to -E -P.
if (Args.hasArg(options::OPT__SLASH_EP)) {
CmdArgs.push_back("-E");
CmdArgs.push_back("-P");
}
unsigned VolatileOptionID;
if (getToolChain().getTriple().isX86())
VolatileOptionID = options::OPT__SLASH_volatile_ms;
else
VolatileOptionID = options::OPT__SLASH_volatile_iso;
if (Arg *A = Args.getLastArg(options::OPT__SLASH_volatile_Group))
VolatileOptionID = A->getOption().getID();
if (VolatileOptionID == options::OPT__SLASH_volatile_ms)
CmdArgs.push_back("-fms-volatile");
if (Args.hasFlag(options::OPT__SLASH_Zc_dllexportInlines_,
options::OPT__SLASH_Zc_dllexportInlines,
false)) {
CmdArgs.push_back("-fno-dllexport-inlines");
}
if (Args.hasFlag(options::OPT__SLASH_Zc_wchar_t_,
options::OPT__SLASH_Zc_wchar_t, false)) {
CmdArgs.push_back("-fno-wchar");
}
if (Args.hasArg(options::OPT__SLASH_kernel)) {
llvm::Triple::ArchType Arch = getToolChain().getArch();
std::vector<std::string> Values =
Args.getAllArgValues(options::OPT__SLASH_arch);
if (!Values.empty()) {
llvm::SmallSet<std::string, 4> SupportedArches;
if (Arch == llvm::Triple::x86)
SupportedArches.insert("IA32");
for (auto &V : Values)
if (!SupportedArches.contains(V))
D.Diag(diag::err_drv_argument_not_allowed_with)
<< std::string("/arch:").append(V) << "/kernel";
}
CmdArgs.push_back("-fno-rtti");
if (Args.hasFlag(options::OPT__SLASH_GR, options::OPT__SLASH_GR_, false))
D.Diag(diag::err_drv_argument_not_allowed_with) << "/GR"
<< "/kernel";
}
Arg *MostGeneralArg = Args.getLastArg(options::OPT__SLASH_vmg);
Arg *BestCaseArg = Args.getLastArg(options::OPT__SLASH_vmb);
if (MostGeneralArg && BestCaseArg)
D.Diag(clang::diag::err_drv_argument_not_allowed_with)
<< MostGeneralArg->getAsString(Args) << BestCaseArg->getAsString(Args);
if (MostGeneralArg) {
Arg *SingleArg = Args.getLastArg(options::OPT__SLASH_vms);
Arg *MultipleArg = Args.getLastArg(options::OPT__SLASH_vmm);
Arg *VirtualArg = Args.getLastArg(options::OPT__SLASH_vmv);
Arg *FirstConflict = SingleArg ? SingleArg : MultipleArg;
Arg *SecondConflict = VirtualArg ? VirtualArg : MultipleArg;
if (FirstConflict && SecondConflict && FirstConflict != SecondConflict)
D.Diag(clang::diag::err_drv_argument_not_allowed_with)
<< FirstConflict->getAsString(Args)
<< SecondConflict->getAsString(Args);
if (SingleArg)
CmdArgs.push_back("-fms-memptr-rep=single");
else if (MultipleArg)
CmdArgs.push_back("-fms-memptr-rep=multiple");
else
CmdArgs.push_back("-fms-memptr-rep=virtual");
}
// Parse the default calling convention options.
if (Arg *CCArg =
Args.getLastArg(options::OPT__SLASH_Gd, options::OPT__SLASH_Gr,
options::OPT__SLASH_Gz, options::OPT__SLASH_Gv,
options::OPT__SLASH_Gregcall)) {
unsigned DCCOptId = CCArg->getOption().getID();
const char *DCCFlag = nullptr;
bool ArchSupported = !isNVPTX;
llvm::Triple::ArchType Arch = getToolChain().getArch();
switch (DCCOptId) {
case options::OPT__SLASH_Gd:
DCCFlag = "-fdefault-calling-conv=cdecl";
break;
case options::OPT__SLASH_Gr:
ArchSupported = Arch == llvm::Triple::x86;
DCCFlag = "-fdefault-calling-conv=fastcall";
break;
case options::OPT__SLASH_Gz:
ArchSupported = Arch == llvm::Triple::x86;
DCCFlag = "-fdefault-calling-conv=stdcall";
break;
case options::OPT__SLASH_Gv:
ArchSupported = Arch == llvm::Triple::x86 || Arch == llvm::Triple::x86_64;
DCCFlag = "-fdefault-calling-conv=vectorcall";
break;
case options::OPT__SLASH_Gregcall:
ArchSupported = Arch == llvm::Triple::x86 || Arch == llvm::Triple::x86_64;
DCCFlag = "-fdefault-calling-conv=regcall";
break;
}
// MSVC doesn't warn if /Gr or /Gz is used on x64, so we don't either.
if (ArchSupported && DCCFlag)
CmdArgs.push_back(DCCFlag);
}
Args.AddLastArg(CmdArgs, options::OPT_vtordisp_mode_EQ);
if (!Args.hasArg(options::OPT_fdiagnostics_format_EQ)) {
CmdArgs.push_back("-fdiagnostics-format");
CmdArgs.push_back("msvc");
}
if (Args.hasArg(options::OPT__SLASH_kernel))
CmdArgs.push_back("-fms-kernel");
if (Arg *A = Args.getLastArg(options::OPT__SLASH_guard)) {
StringRef GuardArgs = A->getValue();
// The only valid options are "cf", "cf,nochecks", "cf-", "ehcont" and
// "ehcont-".
if (GuardArgs.equals_insensitive("cf")) {
// Emit CFG instrumentation and the table of address-taken functions.
CmdArgs.push_back("-cfguard");
} else if (GuardArgs.equals_insensitive("cf,nochecks")) {
// Emit only the table of address-taken functions.
CmdArgs.push_back("-cfguard-no-checks");
} else if (GuardArgs.equals_insensitive("ehcont")) {
// Emit EH continuation table.
CmdArgs.push_back("-ehcontguard");
} else if (GuardArgs.equals_insensitive("cf-") ||
GuardArgs.equals_insensitive("ehcont-")) {
// Do nothing, but we might want to emit a security warning in future.
} else {
D.Diag(diag::err_drv_invalid_value) << A->getSpelling() << GuardArgs;
}
}
}
const char *Clang::getBaseInputName(const ArgList &Args,
const InputInfo &Input) {
return Args.MakeArgString(llvm::sys::path::filename(Input.getBaseInput()));
}
const char *Clang::getBaseInputStem(const ArgList &Args,
const InputInfoList &Inputs) {
const char *Str = getBaseInputName(Args, Inputs[0]);
if (const char *End = strrchr(Str, '.'))
return Args.MakeArgString(std::string(Str, End));
return Str;
}
const char *Clang::getDependencyFileName(const ArgList &Args,
const InputInfoList &Inputs) {
// FIXME: Think about this more.
if (Arg *OutputOpt = Args.getLastArg(options::OPT_o)) {
SmallString<128> OutputFilename(OutputOpt->getValue());
llvm::sys::path::replace_extension(OutputFilename, llvm::Twine('d'));
return Args.MakeArgString(OutputFilename);
}
return Args.MakeArgString(Twine(getBaseInputStem(Args, Inputs)) + ".d");
}
// Begin ClangAs
void ClangAs::AddMIPSTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
StringRef CPUName;
StringRef ABIName;
const llvm::Triple &Triple = getToolChain().getTriple();
mips::getMipsCPUAndABI(Args, Triple, CPUName, ABIName);
CmdArgs.push_back("-target-abi");
CmdArgs.push_back(ABIName.data());
}
void ClangAs::AddX86TargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
addX86AlignBranchArgs(getToolChain().getDriver(), Args, CmdArgs,
/*IsLTO=*/false);
if (Arg *A = Args.getLastArg(options::OPT_masm_EQ)) {
StringRef Value = A->getValue();
if (Value == "intel" || Value == "att") {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(Args.MakeArgString("-x86-asm-syntax=" + Value));
} else {
getToolChain().getDriver().Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Value;
}
}
}
void ClangAs::AddRISCVTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
const llvm::Triple &Triple = getToolChain().getTriple();
StringRef ABIName = riscv::getRISCVABI(Args, Triple);
CmdArgs.push_back("-target-abi");
CmdArgs.push_back(ABIName.data());
}
void ClangAs::ConstructJob(Compilation &C, const JobAction &JA,
const InputInfo &Output, const InputInfoList &Inputs,
const ArgList &Args,
const char *LinkingOutput) const {
ArgStringList CmdArgs;
assert(Inputs.size() == 1 && "Unexpected number of inputs.");
const InputInfo &Input = Inputs[0];
const llvm::Triple &Triple = getToolChain().getEffectiveTriple();
const std::string &TripleStr = Triple.getTriple();
const Optional<llvm::Triple> TargetVariantTriple =
getToolChain().getTargetVariantTriple();
const auto &D = getToolChain().getDriver();
// Don't warn about "clang -w -c foo.s"
Args.ClaimAllArgs(options::OPT_w);
// and "clang -emit-llvm -c foo.s"
Args.ClaimAllArgs(options::OPT_emit_llvm);
claimNoWarnArgs(Args);
// Invoke ourselves in -cc1as mode.
//
// FIXME: Implement custom jobs for internal actions.
CmdArgs.push_back("-cc1as");
// Add the "effective" target triple.
CmdArgs.push_back("-triple");
CmdArgs.push_back(Args.MakeArgString(TripleStr));
if (TargetVariantTriple) {
CmdArgs.push_back("-darwin-target-variant-triple");
CmdArgs.push_back(Args.MakeArgString(TargetVariantTriple->getTriple()));
}
// Set the output mode, we currently only expect to be used as a real
// assembler.
CmdArgs.push_back("-filetype");
CmdArgs.push_back("obj");
// Set the main file name, so that debug info works even with
// -save-temps or preprocessed assembly.
CmdArgs.push_back("-main-file-name");
CmdArgs.push_back(Clang::getBaseInputName(Args, Input));
// Add the target cpu
std::string CPU = getCPUName(D, Args, Triple, /*FromAs*/ true);
if (!CPU.empty()) {
CmdArgs.push_back("-target-cpu");
CmdArgs.push_back(Args.MakeArgString(CPU));
}
// Add the target features
getTargetFeatures(D, Triple, Args, CmdArgs, true);
// Ignore explicit -force_cpusubtype_ALL option.
(void)Args.hasArg(options::OPT_force__cpusubtype__ALL);
// Pass along any -I options so we get proper .include search paths.
Args.AddAllArgs(CmdArgs, options::OPT_I_Group);
// Determine the original source input.
auto FindSource = [](const Action *S) -> const Action * {
while (S->getKind() != Action::InputClass) {
assert(!S->getInputs().empty() && "unexpected root action!");
S = S->getInputs()[0];
}
return S;
};
const Action *SourceAction = FindSource(&JA);
// Forward -g and handle debug info related flags, assuming we are dealing
// with an actual assembly file.
bool WantDebug = false;
Args.ClaimAllArgs(options::OPT_g_Group);
if (Arg *A = Args.getLastArg(options::OPT_g_Group))
WantDebug = !A->getOption().matches(options::OPT_g0) &&
!A->getOption().matches(options::OPT_ggdb0);
unsigned DwarfVersion = ParseDebugDefaultVersion(getToolChain(), Args);
if (const Arg *GDwarfN = getDwarfNArg(Args))
DwarfVersion = DwarfVersionNum(GDwarfN->getSpelling());
if (DwarfVersion == 0)
DwarfVersion = getToolChain().GetDefaultDwarfVersion();
codegenoptions::DebugInfoKind DebugInfoKind = codegenoptions::NoDebugInfo;
// Add the -fdebug-compilation-dir flag if needed.
const char *DebugCompilationDir =
addDebugCompDirArg(Args, CmdArgs, C.getDriver().getVFS());
if (SourceAction->getType() == types::TY_Asm ||
SourceAction->getType() == types::TY_PP_Asm) {
// You might think that it would be ok to set DebugInfoKind outside of
// the guard for source type, however there is a test which asserts
// that some assembler invocation receives no -debug-info-kind,
// and it's not clear whether that test is just overly restrictive.
DebugInfoKind = (WantDebug ? codegenoptions::DebugInfoConstructor
: codegenoptions::NoDebugInfo);
addDebugPrefixMapArg(getToolChain().getDriver(), getToolChain(), Args,
CmdArgs);
// Set the AT_producer to the clang version when using the integrated
// assembler on assembly source files.
CmdArgs.push_back("-dwarf-debug-producer");
CmdArgs.push_back(Args.MakeArgString(getClangFullVersion()));
// And pass along -I options
Args.AddAllArgs(CmdArgs, options::OPT_I);
}
RenderDebugEnablingArgs(Args, CmdArgs, DebugInfoKind, DwarfVersion,
llvm::DebuggerKind::Default);
renderDwarfFormat(D, Triple, Args, CmdArgs, DwarfVersion);
RenderDebugInfoCompressionArgs(Args, CmdArgs, D, getToolChain());
// Handle -fPIC et al -- the relocation-model affects the assembler
// for some targets.
llvm::Reloc::Model RelocationModel;
unsigned PICLevel;
bool IsPIE;
std::tie(RelocationModel, PICLevel, IsPIE) =
ParsePICArgs(getToolChain(), Args);
const char *RMName = RelocationModelName(RelocationModel);
if (RMName) {
CmdArgs.push_back("-mrelocation-model");
CmdArgs.push_back(RMName);
}
// Optionally embed the -cc1as level arguments into the debug info, for build
// analysis.
if (getToolChain().UseDwarfDebugFlags()) {
ArgStringList OriginalArgs;
for (const auto &Arg : Args)
Arg->render(Args, OriginalArgs);
SmallString<256> Flags;
const char *Exec = getToolChain().getDriver().getClangProgramPath();
EscapeSpacesAndBackslashes(Exec, Flags);
for (const char *OriginalArg : OriginalArgs) {
SmallString<128> EscapedArg;
EscapeSpacesAndBackslashes(OriginalArg, EscapedArg);
Flags += " ";
Flags += EscapedArg;
}
CmdArgs.push_back("-dwarf-debug-flags");
CmdArgs.push_back(Args.MakeArgString(Flags));
}
// FIXME: Add -static support, once we have it.
// Add target specific flags.
switch (getToolChain().getArch()) {
default:
break;
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
AddMIPSTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::x86:
case llvm::Triple::x86_64:
AddX86TargetArgs(Args, CmdArgs);
break;
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
// This isn't in AddARMTargetArgs because we want to do this for assembly
// only, not C/C++.
if (Args.hasFlag(options::OPT_mdefault_build_attributes,
options::OPT_mno_default_build_attributes, true)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-arm-add-build-attributes");
}
break;
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32:
case llvm::Triple::aarch64_be:
if (Args.hasArg(options::OPT_mmark_bti_property)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-aarch64-mark-bti-property");
}
break;
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
AddRISCVTargetArgs(Args, CmdArgs);
break;
}
// Consume all the warning flags. Usually this would be handled more
// gracefully by -cc1 (warning about unknown warning flags, etc) but -cc1as
// doesn't handle that so rather than warning about unused flags that are
// actually used, we'll lie by omission instead.
// FIXME: Stop lying and consume only the appropriate driver flags
Args.ClaimAllArgs(options::OPT_W_Group);
CollectArgsForIntegratedAssembler(C, Args, CmdArgs,
getToolChain().getDriver());
Args.AddAllArgs(CmdArgs, options::OPT_mllvm);
if (DebugInfoKind > codegenoptions::NoDebugInfo && Output.isFilename())
addDebugObjectName(Args, CmdArgs, DebugCompilationDir,
Output.getFilename());
// Fixup any previous commands that use -object-file-name because when we
// generated them, the final .obj name wasn't yet known.
for (Command &J : C.getJobs()) {
if (SourceAction != FindSource(&J.getSource()))
continue;
auto &JArgs = J.getArguments();
for (unsigned I = 0; I < JArgs.size(); ++I) {
if (StringRef(JArgs[I]).startswith("-object-file-name=") &&
Output.isFilename()) {
ArgStringList NewArgs(JArgs.begin(), JArgs.begin() + I);
addDebugObjectName(Args, NewArgs, DebugCompilationDir,
Output.getFilename());
NewArgs.append(JArgs.begin() + I + 1, JArgs.end());
J.replaceArguments(NewArgs);
break;
}
}
}
assert(Output.isFilename() && "Unexpected lipo output.");
CmdArgs.push_back("-o");
CmdArgs.push_back(Output.getFilename());
const llvm::Triple &T = getToolChain().getTriple();
Arg *A;
if (getDebugFissionKind(D, Args, A) == DwarfFissionKind::Split &&
T.isOSBinFormatELF()) {
CmdArgs.push_back("-split-dwarf-output");
CmdArgs.push_back(SplitDebugName(JA, Args, Input, Output));
}
if (Triple.isAMDGPU())
handleAMDGPUCodeObjectVersionOptions(D, Args, CmdArgs, /*IsCC1As=*/true);
assert(Input.isFilename() && "Invalid input.");
CmdArgs.push_back(Input.getFilename());
const char *Exec = getToolChain().getDriver().getClangProgramPath();
if (D.CC1Main && !D.CCGenDiagnostics) {
// Invoke cc1as directly in this process.
C.addCommand(std::make_unique<CC1Command>(JA, *this,
ResponseFileSupport::AtFileUTF8(),
Exec, CmdArgs, Inputs, Output));
} else {
C.addCommand(std::make_unique<Command>(JA, *this,
ResponseFileSupport::AtFileUTF8(),
Exec, CmdArgs, Inputs, Output));
}
}
// Begin OffloadBundler
void OffloadBundler::ConstructJob(Compilation &C, const JobAction &JA,
const InputInfo &Output,
const InputInfoList &Inputs,
const llvm::opt::ArgList &TCArgs,
const char *LinkingOutput) const {
// The version with only one output is expected to refer to a bundling job.
assert(isa<OffloadBundlingJobAction>(JA) && "Expecting bundling job!");
// The bundling command looks like this:
// clang-offload-bundler -type=bc
// -targets=host-triple,openmp-triple1,openmp-triple2
// -output=output_file
// -input=unbundle_file_host
// -input=unbundle_file_tgt1
// -input=unbundle_file_tgt2
ArgStringList CmdArgs;
// Get the type.
CmdArgs.push_back(TCArgs.MakeArgString(
Twine("-type=") + types::getTypeTempSuffix(Output.getType())));
assert(JA.getInputs().size() == Inputs.size() &&
"Not have inputs for all dependence actions??");
// Get the targets.
SmallString<128> Triples;
Triples += "-targets=";
for (unsigned I = 0; I < Inputs.size(); ++I) {
if (I)
Triples += ',';
// Find ToolChain for this input.
Action::OffloadKind CurKind = Action::OFK_Host;
const ToolChain *CurTC = &getToolChain();
const Action *CurDep = JA.getInputs()[I];
if (const auto *OA = dyn_cast<OffloadAction>(CurDep)) {
CurTC = nullptr;
OA->doOnEachDependence([&](Action *A, const ToolChain *TC, const char *) {
assert(CurTC == nullptr && "Expected one dependence!");
CurKind = A->getOffloadingDeviceKind();
CurTC = TC;
});
}
Triples += Action::GetOffloadKindName(CurKind);
Triples += '-';
Triples += CurTC->getTriple().normalize();
if ((CurKind == Action::OFK_HIP || CurKind == Action::OFK_Cuda) &&
!StringRef(CurDep->getOffloadingArch()).empty()) {
Triples += '-';
Triples += CurDep->getOffloadingArch();
}
// TODO: Replace parsing of -march flag. Can be done by storing GPUArch
// with each toolchain.
StringRef GPUArchName;
if (CurKind == Action::OFK_OpenMP) {
// Extract GPUArch from -march argument in TC argument list.
for (unsigned ArgIndex = 0; ArgIndex < TCArgs.size(); ArgIndex++) {
auto ArchStr = StringRef(TCArgs.getArgString(ArgIndex));
auto Arch = ArchStr.startswith_insensitive("-march=");
if (Arch) {
GPUArchName = ArchStr.substr(7);
Triples += "-";
break;
}
}
Triples += GPUArchName.str();
}
}
CmdArgs.push_back(TCArgs.MakeArgString(Triples));
// Get bundled file command.
CmdArgs.push_back(
TCArgs.MakeArgString(Twine("-output=") + Output.getFilename()));
// Get unbundled files command.
for (unsigned I = 0; I < Inputs.size(); ++I) {
SmallString<128> UB;
UB += "-input=";
// Find ToolChain for this input.
const ToolChain *CurTC = &getToolChain();
if (const auto *OA = dyn_cast<OffloadAction>(JA.getInputs()[I])) {
CurTC = nullptr;
OA->doOnEachDependence([&](Action *, const ToolChain *TC, const char *) {
assert(CurTC == nullptr && "Expected one dependence!");
CurTC = TC;
});
UB += C.addTempFile(
C.getArgs().MakeArgString(CurTC->getInputFilename(Inputs[I])));
} else {
UB += CurTC->getInputFilename(Inputs[I]);
}
CmdArgs.push_back(TCArgs.MakeArgString(UB));
}
// All the inputs are encoded as commands.
C.addCommand(std::make_unique<Command>(
JA, *this, ResponseFileSupport::None(),
TCArgs.MakeArgString(getToolChain().GetProgramPath(getShortName())),
CmdArgs, None, Output));
}
void OffloadBundler::ConstructJobMultipleOutputs(
Compilation &C, const JobAction &JA, const InputInfoList &Outputs,
const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs,
const char *LinkingOutput) const {
// The version with multiple outputs is expected to refer to a unbundling job.
auto &UA = cast<OffloadUnbundlingJobAction>(JA);
// The unbundling command looks like this:
// clang-offload-bundler -type=bc
// -targets=host-triple,openmp-triple1,openmp-triple2
// -input=input_file
// -output=unbundle_file_host
// -output=unbundle_file_tgt1
// -output=unbundle_file_tgt2
// -unbundle
ArgStringList CmdArgs;
assert(Inputs.size() == 1 && "Expecting to unbundle a single file!");
InputInfo Input = Inputs.front();
// Get the type.
CmdArgs.push_back(TCArgs.MakeArgString(
Twine("-type=") + types::getTypeTempSuffix(Input.getType())));
// Get the targets.
SmallString<128> Triples;
Triples += "-targets=";
auto DepInfo = UA.getDependentActionsInfo();
for (unsigned I = 0; I < DepInfo.size(); ++I) {
if (I)
Triples += ',';
auto &Dep = DepInfo[I];
Triples += Action::GetOffloadKindName(Dep.DependentOffloadKind);
Triples += '-';
Triples += Dep.DependentToolChain->getTriple().normalize();
if ((Dep.DependentOffloadKind == Action::OFK_HIP ||
Dep.DependentOffloadKind == Action::OFK_Cuda) &&
!Dep.DependentBoundArch.empty()) {
Triples += '-';
Triples += Dep.DependentBoundArch;
}
// TODO: Replace parsing of -march flag. Can be done by storing GPUArch
// with each toolchain.
StringRef GPUArchName;
if (Dep.DependentOffloadKind == Action::OFK_OpenMP) {
// Extract GPUArch from -march argument in TC argument list.
for (unsigned ArgIndex = 0; ArgIndex < TCArgs.size(); ArgIndex++) {
StringRef ArchStr = StringRef(TCArgs.getArgString(ArgIndex));
auto Arch = ArchStr.startswith_insensitive("-march=");
if (Arch) {
GPUArchName = ArchStr.substr(7);
Triples += "-";
break;
}
}
Triples += GPUArchName.str();
}
}
CmdArgs.push_back(TCArgs.MakeArgString(Triples));
// Get bundled file command.
CmdArgs.push_back(
TCArgs.MakeArgString(Twine("-input=") + Input.getFilename()));
// Get unbundled files command.
for (unsigned I = 0; I < Outputs.size(); ++I) {
SmallString<128> UB;
UB += "-output=";
UB += DepInfo[I].DependentToolChain->getInputFilename(Outputs[I]);
CmdArgs.push_back(TCArgs.MakeArgString(UB));
}
CmdArgs.push_back("-unbundle");
CmdArgs.push_back("-allow-missing-bundles");
// All the inputs are encoded as commands.
C.addCommand(std::make_unique<Command>(
JA, *this, ResponseFileSupport::None(),
TCArgs.MakeArgString(getToolChain().GetProgramPath(getShortName())),
CmdArgs, None, Outputs));
}
void OffloadPackager::ConstructJob(Compilation &C, const JobAction &JA,
const InputInfo &Output,
const InputInfoList &Inputs,
const llvm::opt::ArgList &Args,
const char *LinkingOutput) const {
ArgStringList CmdArgs;
// Add the output file name.
assert(Output.isFilename() && "Invalid output.");
CmdArgs.push_back("-o");
CmdArgs.push_back(Output.getFilename());
// Create the inputs to bundle the needed metadata.
for (const InputInfo &Input : Inputs) {
const Action *OffloadAction = Input.getAction();
const ToolChain *TC = OffloadAction->getOffloadingToolChain();
const ArgList &TCArgs =
C.getArgsForToolChain(TC, OffloadAction->getOffloadingArch(),
OffloadAction->getOffloadingDeviceKind());
StringRef File = C.getArgs().MakeArgString(TC->getInputFilename(Input));
StringRef Arch = (OffloadAction->getOffloadingArch())
? OffloadAction->getOffloadingArch()
: TCArgs.getLastArgValue(options::OPT_march_EQ);
StringRef Kind =
Action::GetOffloadKindName(OffloadAction->getOffloadingDeviceKind());
ArgStringList Features;
SmallVector<StringRef> FeatureArgs;
getTargetFeatures(TC->getDriver(), TC->getTriple(), TCArgs, Features,
false);
llvm::copy_if(Features, std::back_inserter(FeatureArgs),
[](StringRef Arg) { return !Arg.startswith("-target"); });
SmallVector<std::string> Parts{
"file=" + File.str(),
"triple=" + TC->getTripleString(),
"arch=" + Arch.str(),
"kind=" + Kind.str(),
};
if (TC->getDriver().isUsingLTO(/* IsOffload */ true))
for (StringRef Feature : FeatureArgs)
Parts.emplace_back("feature=" + Feature.str());
CmdArgs.push_back(Args.MakeArgString("--image=" + llvm::join(Parts, ",")));
}
C.addCommand(std::make_unique<Command>(
JA, *this, ResponseFileSupport::None(),
Args.MakeArgString(getToolChain().GetProgramPath(getShortName())),
CmdArgs, Inputs, Output));
}
void LinkerWrapper::ConstructJob(Compilation &C, const JobAction &JA,
const InputInfo &Output,
const InputInfoList &Inputs,
const ArgList &Args,
const char *LinkingOutput) const {
const Driver &D = getToolChain().getDriver();
const llvm::Triple TheTriple = getToolChain().getTriple();
ArgStringList CmdArgs;
// Pass the CUDA path to the linker wrapper tool.
for (Action::OffloadKind Kind : {Action::OFK_Cuda, Action::OFK_OpenMP}) {
auto TCRange = C.getOffloadToolChains(Kind);
for (auto &I : llvm::make_range(TCRange.first, TCRange.second)) {
const ToolChain *TC = I.second;
if (TC->getTriple().isNVPTX()) {
CudaInstallationDetector CudaInstallation(D, TheTriple, Args);
if (CudaInstallation.isValid())
CmdArgs.push_back(Args.MakeArgString(
"--cuda-path=" + CudaInstallation.getInstallPath()));
break;
}
}
}
if (D.isUsingLTO(/* IsOffload */ true)) {
// Pass in the optimization level to use for LTO.
if (const Arg *A = Args.getLastArg(options::OPT_O_Group)) {
StringRef OOpt;
if (A->getOption().matches(options::OPT_O4) ||
A->getOption().matches(options::OPT_Ofast))
OOpt = "3";
else if (A->getOption().matches(options::OPT_O)) {
OOpt = A->getValue();
if (OOpt == "g")
OOpt = "1";
else if (OOpt == "s" || OOpt == "z")
OOpt = "2";
} else if (A->getOption().matches(options::OPT_O0))
OOpt = "0";
if (!OOpt.empty())
CmdArgs.push_back(Args.MakeArgString(Twine("--opt-level=O") + OOpt));
}
}
CmdArgs.push_back(
Args.MakeArgString("--host-triple=" + TheTriple.getTriple()));
if (Args.hasArg(options::OPT_v))
CmdArgs.push_back("--wrapper-verbose");
if (const Arg *A = Args.getLastArg(options::OPT_g_Group)) {
if (!A->getOption().matches(options::OPT_g0))
CmdArgs.push_back("--device-debug");
}
for (const auto &A : Args.getAllArgValues(options::OPT_Xcuda_ptxas))
CmdArgs.push_back(Args.MakeArgString("--ptxas-args=" + A));
// Forward remarks passes to the LLVM backend in the wrapper.
if (const Arg *A = Args.getLastArg(options::OPT_Rpass_EQ))
CmdArgs.push_back(Args.MakeArgString(Twine("--offload-opt=-pass-remarks=") +
A->getValue()));
if (const Arg *A = Args.getLastArg(options::OPT_Rpass_missed_EQ))
CmdArgs.push_back(Args.MakeArgString(
Twine("--offload-opt=-pass-remarks-missed=") + A->getValue()));
if (const Arg *A = Args.getLastArg(options::OPT_Rpass_analysis_EQ))
CmdArgs.push_back(Args.MakeArgString(
Twine("--offload-opt=-pass-remarks-analysis=") + A->getValue()));
if (Args.getLastArg(options::OPT_save_temps_EQ))
CmdArgs.push_back("--save-temps");
// Construct the link job so we can wrap around it.
Linker->ConstructJob(C, JA, Output, Inputs, Args, LinkingOutput);
const auto &LinkCommand = C.getJobs().getJobs().back();
// Forward -Xoffload-linker<-triple> arguments to the device link job.
for (Arg *A : Args.filtered(options::OPT_Xoffload_linker)) {
StringRef Val = A->getValue(0);
if (Val.empty())
CmdArgs.push_back(
Args.MakeArgString(Twine("--device-linker=") + A->getValue(1)));
else
CmdArgs.push_back(Args.MakeArgString(
"--device-linker=" +
ToolChain::getOpenMPTriple(Val.drop_front()).getTriple() + "=" +
A->getValue(1)));
}
Args.ClaimAllArgs(options::OPT_Xoffload_linker);
// Forward `-mllvm` arguments to the LLVM invocations if present.
for (Arg *A : Args.filtered(options::OPT_mllvm)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(A->getValue());
A->claim();
}
// Add the linker arguments to be forwarded by the wrapper.
CmdArgs.push_back(Args.MakeArgString(Twine("--linker-path=") +
LinkCommand->getExecutable()));
CmdArgs.push_back("--");
for (const char *LinkArg : LinkCommand->getArguments())
CmdArgs.push_back(LinkArg);
const char *Exec =
Args.MakeArgString(getToolChain().GetProgramPath("clang-linker-wrapper"));
// Replace the executable and arguments of the link job with the
// wrapper.
LinkCommand->replaceExecutable(Exec);
LinkCommand->replaceArguments(CmdArgs);
}