
createCast in MergeFunctions did not consider ArrayTypes, which results in the creation of a bitcast between ArrayTypes in the thunk function, leading to an assertion failure in the provided test case. The version of createCast in GlobalMergeFunctions does handle ArrayTypes, so this common code has been factored out into the IRBuilder.
1066 lines
39 KiB
C++
1066 lines
39 KiB
C++
//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass looks for equivalent functions that are mergable and folds them.
|
|
//
|
|
// Order relation is defined on set of functions. It was made through
|
|
// special function comparison procedure that returns
|
|
// 0 when functions are equal,
|
|
// -1 when Left function is less than right function, and
|
|
// 1 for opposite case. We need total-ordering, so we need to maintain
|
|
// four properties on the functions set:
|
|
// a <= a (reflexivity)
|
|
// if a <= b and b <= a then a = b (antisymmetry)
|
|
// if a <= b and b <= c then a <= c (transitivity).
|
|
// for all a and b: a <= b or b <= a (totality).
|
|
//
|
|
// Comparison iterates through each instruction in each basic block.
|
|
// Functions are kept on binary tree. For each new function F we perform
|
|
// lookup in binary tree.
|
|
// In practice it works the following way:
|
|
// -- We define Function* container class with custom "operator<" (FunctionPtr).
|
|
// -- "FunctionPtr" instances are stored in std::set collection, so every
|
|
// std::set::insert operation will give you result in log(N) time.
|
|
//
|
|
// As an optimization, a hash of the function structure is calculated first, and
|
|
// two functions are only compared if they have the same hash. This hash is
|
|
// cheap to compute, and has the property that if function F == G according to
|
|
// the comparison function, then hash(F) == hash(G). This consistency property
|
|
// is critical to ensuring all possible merging opportunities are exploited.
|
|
// Collisions in the hash affect the speed of the pass but not the correctness
|
|
// or determinism of the resulting transformation.
|
|
//
|
|
// When a match is found the functions are folded. If both functions are
|
|
// overridable, we move the functionality into a new internal function and
|
|
// leave two overridable thunks to it.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Future work:
|
|
//
|
|
// * virtual functions.
|
|
//
|
|
// Many functions have their address taken by the virtual function table for
|
|
// the object they belong to. However, as long as it's only used for a lookup
|
|
// and call, this is irrelevant, and we'd like to fold such functions.
|
|
//
|
|
// * be smarter about bitcasts.
|
|
//
|
|
// In order to fold functions, we will sometimes add either bitcast instructions
|
|
// or bitcast constant expressions. Unfortunately, this can confound further
|
|
// analysis since the two functions differ where one has a bitcast and the
|
|
// other doesn't. We should learn to look through bitcasts.
|
|
//
|
|
// * Compare complex types with pointer types inside.
|
|
// * Compare cross-reference cases.
|
|
// * Compare complex expressions.
|
|
//
|
|
// All the three issues above could be described as ability to prove that
|
|
// fA == fB == fC == fE == fF == fG in example below:
|
|
//
|
|
// void fA() {
|
|
// fB();
|
|
// }
|
|
// void fB() {
|
|
// fA();
|
|
// }
|
|
//
|
|
// void fE() {
|
|
// fF();
|
|
// }
|
|
// void fF() {
|
|
// fG();
|
|
// }
|
|
// void fG() {
|
|
// fE();
|
|
// }
|
|
//
|
|
// Simplest cross-reference case (fA <--> fB) was implemented in previous
|
|
// versions of MergeFunctions, though it presented only in two function pairs
|
|
// in test-suite (that counts >50k functions)
|
|
// Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A)
|
|
// could cover much more cases.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/MergeFunctions.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/StructuralHash.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/Utils/FunctionComparator.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <iterator>
|
|
#include <set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "mergefunc"
|
|
|
|
STATISTIC(NumFunctionsMerged, "Number of functions merged");
|
|
STATISTIC(NumThunksWritten, "Number of thunks generated");
|
|
STATISTIC(NumAliasesWritten, "Number of aliases generated");
|
|
STATISTIC(NumDoubleWeak, "Number of new functions created");
|
|
|
|
static cl::opt<unsigned> NumFunctionsForVerificationCheck(
|
|
"mergefunc-verify",
|
|
cl::desc("How many functions in a module could be used for "
|
|
"MergeFunctions to pass a basic correctness check. "
|
|
"'0' disables this check. Works only with '-debug' key."),
|
|
cl::init(0), cl::Hidden);
|
|
|
|
// Under option -mergefunc-preserve-debug-info we:
|
|
// - Do not create a new function for a thunk.
|
|
// - Retain the debug info for a thunk's parameters (and associated
|
|
// instructions for the debug info) from the entry block.
|
|
// Note: -debug will display the algorithm at work.
|
|
// - Create debug-info for the call (to the shared implementation) made by
|
|
// a thunk and its return value.
|
|
// - Erase the rest of the function, retaining the (minimally sized) entry
|
|
// block to create a thunk.
|
|
// - Preserve a thunk's call site to point to the thunk even when both occur
|
|
// within the same translation unit, to aid debugability. Note that this
|
|
// behaviour differs from the underlying -mergefunc implementation which
|
|
// modifies the thunk's call site to point to the shared implementation
|
|
// when both occur within the same translation unit.
|
|
static cl::opt<bool>
|
|
MergeFunctionsPDI("mergefunc-preserve-debug-info", cl::Hidden,
|
|
cl::init(false),
|
|
cl::desc("Preserve debug info in thunk when mergefunc "
|
|
"transformations are made."));
|
|
|
|
static cl::opt<bool>
|
|
MergeFunctionsAliases("mergefunc-use-aliases", cl::Hidden,
|
|
cl::init(false),
|
|
cl::desc("Allow mergefunc to create aliases"));
|
|
|
|
namespace {
|
|
|
|
class FunctionNode {
|
|
mutable AssertingVH<Function> F;
|
|
stable_hash Hash;
|
|
|
|
public:
|
|
// Note the hash is recalculated potentially multiple times, but it is cheap.
|
|
FunctionNode(Function *F) : F(F), Hash(StructuralHash(*F)) {}
|
|
|
|
Function *getFunc() const { return F; }
|
|
stable_hash getHash() const { return Hash; }
|
|
|
|
/// Replace the reference to the function F by the function G, assuming their
|
|
/// implementations are equal.
|
|
void replaceBy(Function *G) const {
|
|
F = G;
|
|
}
|
|
};
|
|
|
|
/// MergeFunctions finds functions which will generate identical machine code,
|
|
/// by considering all pointer types to be equivalent. Once identified,
|
|
/// MergeFunctions will fold them by replacing a call to one to a call to a
|
|
/// bitcast of the other.
|
|
class MergeFunctions {
|
|
public:
|
|
MergeFunctions() : FnTree(FunctionNodeCmp(&GlobalNumbers)) {
|
|
}
|
|
|
|
template <typename FuncContainer> bool run(FuncContainer &Functions);
|
|
DenseMap<Function *, Function *> runOnFunctions(ArrayRef<Function *> F);
|
|
|
|
SmallPtrSet<GlobalValue *, 4> &getUsed();
|
|
|
|
private:
|
|
// The function comparison operator is provided here so that FunctionNodes do
|
|
// not need to become larger with another pointer.
|
|
class FunctionNodeCmp {
|
|
GlobalNumberState* GlobalNumbers;
|
|
|
|
public:
|
|
FunctionNodeCmp(GlobalNumberState* GN) : GlobalNumbers(GN) {}
|
|
|
|
bool operator()(const FunctionNode &LHS, const FunctionNode &RHS) const {
|
|
// Order first by hashes, then full function comparison.
|
|
if (LHS.getHash() != RHS.getHash())
|
|
return LHS.getHash() < RHS.getHash();
|
|
FunctionComparator FCmp(LHS.getFunc(), RHS.getFunc(), GlobalNumbers);
|
|
return FCmp.compare() < 0;
|
|
}
|
|
};
|
|
using FnTreeType = std::set<FunctionNode, FunctionNodeCmp>;
|
|
|
|
GlobalNumberState GlobalNumbers;
|
|
|
|
/// A work queue of functions that may have been modified and should be
|
|
/// analyzed again.
|
|
std::vector<WeakTrackingVH> Deferred;
|
|
|
|
/// Set of values marked as used in llvm.used and llvm.compiler.used.
|
|
SmallPtrSet<GlobalValue *, 4> Used;
|
|
|
|
#ifndef NDEBUG
|
|
/// Checks the rules of order relation introduced among functions set.
|
|
/// Returns true, if check has been passed, and false if failed.
|
|
bool doFunctionalCheck(std::vector<WeakTrackingVH> &Worklist);
|
|
#endif
|
|
|
|
/// Insert a ComparableFunction into the FnTree, or merge it away if it's
|
|
/// equal to one that's already present.
|
|
bool insert(Function *NewFunction);
|
|
|
|
/// Remove a Function from the FnTree and queue it up for a second sweep of
|
|
/// analysis.
|
|
void remove(Function *F);
|
|
|
|
/// Find the functions that use this Value and remove them from FnTree and
|
|
/// queue the functions.
|
|
void removeUsers(Value *V);
|
|
|
|
/// Replace all direct calls of Old with calls of New. Will bitcast New if
|
|
/// necessary to make types match.
|
|
void replaceDirectCallers(Function *Old, Function *New);
|
|
|
|
/// Merge two equivalent functions. Upon completion, G may be deleted, or may
|
|
/// be converted into a thunk. In either case, it should never be visited
|
|
/// again.
|
|
void mergeTwoFunctions(Function *F, Function *G);
|
|
|
|
/// Fill PDIUnrelatedWL with instructions from the entry block that are
|
|
/// unrelated to parameter related debug info.
|
|
/// \param PDVRUnrelatedWL The equivalent non-intrinsic debug records.
|
|
void
|
|
filterInstsUnrelatedToPDI(BasicBlock *GEntryBlock,
|
|
std::vector<Instruction *> &PDIUnrelatedWL,
|
|
std::vector<DbgVariableRecord *> &PDVRUnrelatedWL);
|
|
|
|
/// Erase the rest of the CFG (i.e. barring the entry block).
|
|
void eraseTail(Function *G);
|
|
|
|
/// Erase the instructions in PDIUnrelatedWL as they are unrelated to the
|
|
/// parameter debug info, from the entry block.
|
|
/// \param PDVRUnrelatedWL contains the equivalent set of non-instruction
|
|
/// debug-info records.
|
|
void
|
|
eraseInstsUnrelatedToPDI(std::vector<Instruction *> &PDIUnrelatedWL,
|
|
std::vector<DbgVariableRecord *> &PDVRUnrelatedWL);
|
|
|
|
/// Replace G with a simple tail call to bitcast(F). Also (unless
|
|
/// MergeFunctionsPDI holds) replace direct uses of G with bitcast(F),
|
|
/// delete G.
|
|
void writeThunk(Function *F, Function *G);
|
|
|
|
// Replace G with an alias to F (deleting function G)
|
|
void writeAlias(Function *F, Function *G);
|
|
|
|
// If needed, replace G with an alias to F if possible, or a thunk to F if
|
|
// profitable. Returns false if neither is the case. If \p G is not needed
|
|
// (i.e. it is discardable and not used), \p G is removed directly.
|
|
bool writeThunkOrAliasIfNeeded(Function *F, Function *G);
|
|
|
|
/// Replace function F with function G in the function tree.
|
|
void replaceFunctionInTree(const FunctionNode &FN, Function *G);
|
|
|
|
/// The set of all distinct functions. Use the insert() and remove() methods
|
|
/// to modify it. The map allows efficient lookup and deferring of Functions.
|
|
FnTreeType FnTree;
|
|
|
|
// Map functions to the iterators of the FunctionNode which contains them
|
|
// in the FnTree. This must be updated carefully whenever the FnTree is
|
|
// modified, i.e. in insert(), remove(), and replaceFunctionInTree(), to avoid
|
|
// dangling iterators into FnTree. The invariant that preserves this is that
|
|
// there is exactly one mapping F -> FN for each FunctionNode FN in FnTree.
|
|
DenseMap<AssertingVH<Function>, FnTreeType::iterator> FNodesInTree;
|
|
|
|
/// Deleted-New functions mapping
|
|
DenseMap<Function *, Function *> DelToNewMap;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
PreservedAnalyses MergeFunctionsPass::run(Module &M,
|
|
ModuleAnalysisManager &AM) {
|
|
if (!MergeFunctionsPass::runOnModule(M))
|
|
return PreservedAnalyses::all();
|
|
return PreservedAnalyses::none();
|
|
}
|
|
|
|
SmallPtrSet<GlobalValue *, 4> &MergeFunctions::getUsed() { return Used; }
|
|
|
|
bool MergeFunctionsPass::runOnModule(Module &M) {
|
|
MergeFunctions MF;
|
|
SmallVector<GlobalValue *, 4> UsedV;
|
|
collectUsedGlobalVariables(M, UsedV, /*CompilerUsed=*/false);
|
|
collectUsedGlobalVariables(M, UsedV, /*CompilerUsed=*/true);
|
|
MF.getUsed().insert_range(UsedV);
|
|
return MF.run(M);
|
|
}
|
|
|
|
DenseMap<Function *, Function *>
|
|
MergeFunctionsPass::runOnFunctions(ArrayRef<Function *> F) {
|
|
MergeFunctions MF;
|
|
return MF.runOnFunctions(F);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
bool MergeFunctions::doFunctionalCheck(std::vector<WeakTrackingVH> &Worklist) {
|
|
if (const unsigned Max = NumFunctionsForVerificationCheck) {
|
|
unsigned TripleNumber = 0;
|
|
bool Valid = true;
|
|
|
|
dbgs() << "MERGEFUNC-VERIFY: Started for first " << Max << " functions.\n";
|
|
|
|
unsigned i = 0;
|
|
for (std::vector<WeakTrackingVH>::iterator I = Worklist.begin(),
|
|
E = Worklist.end();
|
|
I != E && i < Max; ++I, ++i) {
|
|
unsigned j = i;
|
|
for (std::vector<WeakTrackingVH>::iterator J = I; J != E && j < Max;
|
|
++J, ++j) {
|
|
Function *F1 = cast<Function>(*I);
|
|
Function *F2 = cast<Function>(*J);
|
|
int Res1 = FunctionComparator(F1, F2, &GlobalNumbers).compare();
|
|
int Res2 = FunctionComparator(F2, F1, &GlobalNumbers).compare();
|
|
|
|
// If F1 <= F2, then F2 >= F1, otherwise report failure.
|
|
if (Res1 != -Res2) {
|
|
dbgs() << "MERGEFUNC-VERIFY: Non-symmetric; triple: " << TripleNumber
|
|
<< "\n";
|
|
dbgs() << *F1 << '\n' << *F2 << '\n';
|
|
Valid = false;
|
|
}
|
|
|
|
if (Res1 == 0)
|
|
continue;
|
|
|
|
unsigned k = j;
|
|
for (std::vector<WeakTrackingVH>::iterator K = J; K != E && k < Max;
|
|
++k, ++K, ++TripleNumber) {
|
|
if (K == J)
|
|
continue;
|
|
|
|
Function *F3 = cast<Function>(*K);
|
|
int Res3 = FunctionComparator(F1, F3, &GlobalNumbers).compare();
|
|
int Res4 = FunctionComparator(F2, F3, &GlobalNumbers).compare();
|
|
|
|
bool Transitive = true;
|
|
|
|
if (Res1 != 0 && Res1 == Res4) {
|
|
// F1 > F2, F2 > F3 => F1 > F3
|
|
Transitive = Res3 == Res1;
|
|
} else if (Res3 != 0 && Res3 == -Res4) {
|
|
// F1 > F3, F3 > F2 => F1 > F2
|
|
Transitive = Res3 == Res1;
|
|
} else if (Res4 != 0 && -Res3 == Res4) {
|
|
// F2 > F3, F3 > F1 => F2 > F1
|
|
Transitive = Res4 == -Res1;
|
|
}
|
|
|
|
if (!Transitive) {
|
|
dbgs() << "MERGEFUNC-VERIFY: Non-transitive; triple: "
|
|
<< TripleNumber << "\n";
|
|
dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", "
|
|
<< Res4 << "\n";
|
|
dbgs() << *F1 << '\n' << *F2 << '\n' << *F3 << '\n';
|
|
Valid = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
dbgs() << "MERGEFUNC-VERIFY: " << (Valid ? "Passed." : "Failed.") << "\n";
|
|
return Valid;
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
/// Check whether \p F has an intrinsic which references
|
|
/// distinct metadata as an operand. The most common
|
|
/// instance of this would be CFI checks for function-local types.
|
|
static bool hasDistinctMetadataIntrinsic(const Function &F) {
|
|
for (const BasicBlock &BB : F) {
|
|
for (const Instruction &I : BB.instructionsWithoutDebug()) {
|
|
if (!isa<IntrinsicInst>(&I))
|
|
continue;
|
|
|
|
for (Value *Op : I.operands()) {
|
|
auto *MDL = dyn_cast<MetadataAsValue>(Op);
|
|
if (!MDL)
|
|
continue;
|
|
if (MDNode *N = dyn_cast<MDNode>(MDL->getMetadata()))
|
|
if (N->isDistinct())
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Check whether \p F is eligible for function merging.
|
|
static bool isEligibleForMerging(Function &F) {
|
|
return !F.isDeclaration() && !F.hasAvailableExternallyLinkage() &&
|
|
!hasDistinctMetadataIntrinsic(F);
|
|
}
|
|
|
|
inline Function *asPtr(Function *Fn) { return Fn; }
|
|
inline Function *asPtr(Function &Fn) { return &Fn; }
|
|
|
|
template <typename FuncContainer> bool MergeFunctions::run(FuncContainer &M) {
|
|
bool Changed = false;
|
|
|
|
// All functions in the module, ordered by hash. Functions with a unique
|
|
// hash value are easily eliminated.
|
|
std::vector<std::pair<stable_hash, Function *>> HashedFuncs;
|
|
for (auto &Func : M) {
|
|
Function *FuncPtr = asPtr(Func);
|
|
if (isEligibleForMerging(*FuncPtr)) {
|
|
HashedFuncs.push_back({StructuralHash(*FuncPtr), FuncPtr});
|
|
}
|
|
}
|
|
|
|
llvm::stable_sort(HashedFuncs, less_first());
|
|
|
|
auto S = HashedFuncs.begin();
|
|
for (auto I = HashedFuncs.begin(), IE = HashedFuncs.end(); I != IE; ++I) {
|
|
// If the hash value matches the previous value or the next one, we must
|
|
// consider merging it. Otherwise it is dropped and never considered again.
|
|
if ((I != S && std::prev(I)->first == I->first) ||
|
|
(std::next(I) != IE && std::next(I)->first == I->first)) {
|
|
Deferred.push_back(WeakTrackingVH(I->second));
|
|
}
|
|
}
|
|
|
|
do {
|
|
std::vector<WeakTrackingVH> Worklist;
|
|
Deferred.swap(Worklist);
|
|
|
|
LLVM_DEBUG(doFunctionalCheck(Worklist));
|
|
|
|
LLVM_DEBUG(dbgs() << "size of module: " << M.size() << '\n');
|
|
LLVM_DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
|
|
|
|
// Insert functions and merge them.
|
|
for (WeakTrackingVH &I : Worklist) {
|
|
if (!I)
|
|
continue;
|
|
Function *F = cast<Function>(I);
|
|
if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage()) {
|
|
Changed |= insert(F);
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n');
|
|
} while (!Deferred.empty());
|
|
|
|
FnTree.clear();
|
|
FNodesInTree.clear();
|
|
GlobalNumbers.clear();
|
|
Used.clear();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
DenseMap<Function *, Function *>
|
|
MergeFunctions::runOnFunctions(ArrayRef<Function *> F) {
|
|
[[maybe_unused]] bool MergeResult = this->run(F);
|
|
assert(MergeResult == !DelToNewMap.empty());
|
|
return this->DelToNewMap;
|
|
}
|
|
|
|
// Replace direct callers of Old with New.
|
|
void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
|
|
for (Use &U : make_early_inc_range(Old->uses())) {
|
|
CallBase *CB = dyn_cast<CallBase>(U.getUser());
|
|
if (CB && CB->isCallee(&U)) {
|
|
// Do not copy attributes from the called function to the call-site.
|
|
// Function comparison ensures that the attributes are the same up to
|
|
// type congruences in byval(), in which case we need to keep the byval
|
|
// type of the call-site, not the callee function.
|
|
remove(CB->getFunction());
|
|
U.set(New);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Erase the instructions in PDIUnrelatedWL as they are unrelated to the
|
|
// parameter debug info, from the entry block.
|
|
void MergeFunctions::eraseInstsUnrelatedToPDI(
|
|
std::vector<Instruction *> &PDIUnrelatedWL,
|
|
std::vector<DbgVariableRecord *> &PDVRUnrelatedWL) {
|
|
LLVM_DEBUG(
|
|
dbgs() << " Erasing instructions (in reverse order of appearance in "
|
|
"entry block) unrelated to parameter debug info from entry "
|
|
"block: {\n");
|
|
while (!PDIUnrelatedWL.empty()) {
|
|
Instruction *I = PDIUnrelatedWL.back();
|
|
LLVM_DEBUG(dbgs() << " Deleting Instruction: ");
|
|
LLVM_DEBUG(I->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
I->eraseFromParent();
|
|
PDIUnrelatedWL.pop_back();
|
|
}
|
|
|
|
while (!PDVRUnrelatedWL.empty()) {
|
|
DbgVariableRecord *DVR = PDVRUnrelatedWL.back();
|
|
LLVM_DEBUG(dbgs() << " Deleting DbgVariableRecord ");
|
|
LLVM_DEBUG(DVR->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
DVR->eraseFromParent();
|
|
PDVRUnrelatedWL.pop_back();
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << " } // Done erasing instructions unrelated to parameter "
|
|
"debug info from entry block. \n");
|
|
}
|
|
|
|
// Reduce G to its entry block.
|
|
void MergeFunctions::eraseTail(Function *G) {
|
|
std::vector<BasicBlock *> WorklistBB;
|
|
for (BasicBlock &BB : drop_begin(*G)) {
|
|
BB.dropAllReferences();
|
|
WorklistBB.push_back(&BB);
|
|
}
|
|
while (!WorklistBB.empty()) {
|
|
BasicBlock *BB = WorklistBB.back();
|
|
BB->eraseFromParent();
|
|
WorklistBB.pop_back();
|
|
}
|
|
}
|
|
|
|
// We are interested in the following instructions from the entry block as being
|
|
// related to parameter debug info:
|
|
// - @llvm.dbg.declare
|
|
// - stores from the incoming parameters to locations on the stack-frame
|
|
// - allocas that create these locations on the stack-frame
|
|
// - @llvm.dbg.value
|
|
// - the entry block's terminator
|
|
// The rest are unrelated to debug info for the parameters; fill up
|
|
// PDIUnrelatedWL with such instructions.
|
|
void MergeFunctions::filterInstsUnrelatedToPDI(
|
|
BasicBlock *GEntryBlock, std::vector<Instruction *> &PDIUnrelatedWL,
|
|
std::vector<DbgVariableRecord *> &PDVRUnrelatedWL) {
|
|
std::set<Instruction *> PDIRelated;
|
|
std::set<DbgVariableRecord *> PDVRRelated;
|
|
|
|
// Work out whether a dbg.value intrinsic or an equivalent DbgVariableRecord
|
|
// is a parameter to be preserved.
|
|
auto ExamineDbgValue = [](auto *DbgVal, auto &Container) {
|
|
LLVM_DEBUG(dbgs() << " Deciding: ");
|
|
LLVM_DEBUG(DbgVal->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
DILocalVariable *DILocVar = DbgVal->getVariable();
|
|
if (DILocVar->isParameter()) {
|
|
LLVM_DEBUG(dbgs() << " Include (parameter): ");
|
|
LLVM_DEBUG(DbgVal->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
Container.insert(DbgVal);
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << " Delete (!parameter): ");
|
|
LLVM_DEBUG(DbgVal->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
}
|
|
};
|
|
|
|
auto ExamineDbgDeclare = [&PDIRelated](auto *DbgDecl, auto &Container) {
|
|
LLVM_DEBUG(dbgs() << " Deciding: ");
|
|
LLVM_DEBUG(DbgDecl->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
DILocalVariable *DILocVar = DbgDecl->getVariable();
|
|
if (DILocVar->isParameter()) {
|
|
LLVM_DEBUG(dbgs() << " Parameter: ");
|
|
LLVM_DEBUG(DILocVar->print(dbgs()));
|
|
AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DbgDecl->getAddress());
|
|
if (AI) {
|
|
LLVM_DEBUG(dbgs() << " Processing alloca users: ");
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
for (User *U : AI->users()) {
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
|
|
if (Value *Arg = SI->getValueOperand()) {
|
|
if (isa<Argument>(Arg)) {
|
|
LLVM_DEBUG(dbgs() << " Include: ");
|
|
LLVM_DEBUG(AI->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
PDIRelated.insert(AI);
|
|
LLVM_DEBUG(dbgs() << " Include (parameter): ");
|
|
LLVM_DEBUG(SI->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
PDIRelated.insert(SI);
|
|
LLVM_DEBUG(dbgs() << " Include: ");
|
|
LLVM_DEBUG(DbgDecl->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
Container.insert(DbgDecl);
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << " Delete (!parameter): ");
|
|
LLVM_DEBUG(SI->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
}
|
|
}
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << " Defer: ");
|
|
LLVM_DEBUG(U->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
}
|
|
}
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << " Delete (alloca NULL): ");
|
|
LLVM_DEBUG(DbgDecl->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
}
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << " Delete (!parameter): ");
|
|
LLVM_DEBUG(DbgDecl->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
}
|
|
};
|
|
|
|
for (BasicBlock::iterator BI = GEntryBlock->begin(), BIE = GEntryBlock->end();
|
|
BI != BIE; ++BI) {
|
|
// Examine DbgVariableRecords as they happen "before" the instruction. Are
|
|
// they connected to parameters?
|
|
for (DbgVariableRecord &DVR : filterDbgVars(BI->getDbgRecordRange())) {
|
|
if (DVR.isDbgValue() || DVR.isDbgAssign()) {
|
|
ExamineDbgValue(&DVR, PDVRRelated);
|
|
} else {
|
|
assert(DVR.isDbgDeclare());
|
|
ExamineDbgDeclare(&DVR, PDVRRelated);
|
|
}
|
|
}
|
|
|
|
if (auto *DVI = dyn_cast<DbgValueInst>(&*BI)) {
|
|
ExamineDbgValue(DVI, PDIRelated);
|
|
} else if (auto *DDI = dyn_cast<DbgDeclareInst>(&*BI)) {
|
|
ExamineDbgDeclare(DDI, PDIRelated);
|
|
} else if (BI->isTerminator() && &*BI == GEntryBlock->getTerminator()) {
|
|
LLVM_DEBUG(dbgs() << " Will Include Terminator: ");
|
|
LLVM_DEBUG(BI->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
PDIRelated.insert(&*BI);
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << " Defer: ");
|
|
LLVM_DEBUG(BI->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
}
|
|
}
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< " Report parameter debug info related/related instructions: {\n");
|
|
|
|
auto IsPDIRelated = [](auto *Rec, auto &Container, auto &UnrelatedCont) {
|
|
if (Container.find(Rec) == Container.end()) {
|
|
LLVM_DEBUG(dbgs() << " !PDIRelated: ");
|
|
LLVM_DEBUG(Rec->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
UnrelatedCont.push_back(Rec);
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << " PDIRelated: ");
|
|
LLVM_DEBUG(Rec->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
}
|
|
};
|
|
|
|
// Collect the set of unrelated instructions and debug records.
|
|
for (Instruction &I : *GEntryBlock) {
|
|
for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
|
|
IsPDIRelated(&DVR, PDVRRelated, PDVRUnrelatedWL);
|
|
IsPDIRelated(&I, PDIRelated, PDIUnrelatedWL);
|
|
}
|
|
LLVM_DEBUG(dbgs() << " }\n");
|
|
}
|
|
|
|
/// Whether this function may be replaced by a forwarding thunk.
|
|
static bool canCreateThunkFor(Function *F) {
|
|
if (F->isVarArg())
|
|
return false;
|
|
|
|
// Don't merge tiny functions using a thunk, since it can just end up
|
|
// making the function larger.
|
|
if (F->size() == 1) {
|
|
if (F->front().sizeWithoutDebug() < 2) {
|
|
LLVM_DEBUG(dbgs() << "canCreateThunkFor: " << F->getName()
|
|
<< " is too small to bother creating a thunk for\n");
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Copy all metadata of a specific kind from one function to another.
|
|
static void copyMetadataIfPresent(Function *From, Function *To,
|
|
StringRef Kind) {
|
|
SmallVector<MDNode *, 4> MDs;
|
|
From->getMetadata(Kind, MDs);
|
|
for (MDNode *MD : MDs)
|
|
To->addMetadata(Kind, *MD);
|
|
}
|
|
|
|
// Replace G with a simple tail call to bitcast(F). Also (unless
|
|
// MergeFunctionsPDI holds) replace direct uses of G with bitcast(F),
|
|
// delete G. Under MergeFunctionsPDI, we use G itself for creating
|
|
// the thunk as we preserve the debug info (and associated instructions)
|
|
// from G's entry block pertaining to G's incoming arguments which are
|
|
// passed on as corresponding arguments in the call that G makes to F.
|
|
// For better debugability, under MergeFunctionsPDI, we do not modify G's
|
|
// call sites to point to F even when within the same translation unit.
|
|
void MergeFunctions::writeThunk(Function *F, Function *G) {
|
|
BasicBlock *GEntryBlock = nullptr;
|
|
std::vector<Instruction *> PDIUnrelatedWL;
|
|
std::vector<DbgVariableRecord *> PDVRUnrelatedWL;
|
|
BasicBlock *BB = nullptr;
|
|
Function *NewG = nullptr;
|
|
if (MergeFunctionsPDI) {
|
|
LLVM_DEBUG(dbgs() << "writeThunk: (MergeFunctionsPDI) Do not create a new "
|
|
"function as thunk; retain original: "
|
|
<< G->getName() << "()\n");
|
|
GEntryBlock = &G->getEntryBlock();
|
|
LLVM_DEBUG(
|
|
dbgs() << "writeThunk: (MergeFunctionsPDI) filter parameter related "
|
|
"debug info for "
|
|
<< G->getName() << "() {\n");
|
|
filterInstsUnrelatedToPDI(GEntryBlock, PDIUnrelatedWL, PDVRUnrelatedWL);
|
|
GEntryBlock->getTerminator()->eraseFromParent();
|
|
BB = GEntryBlock;
|
|
} else {
|
|
NewG = Function::Create(G->getFunctionType(), G->getLinkage(),
|
|
G->getAddressSpace(), "", G->getParent());
|
|
NewG->setComdat(G->getComdat());
|
|
NewG->IsNewDbgInfoFormat = G->IsNewDbgInfoFormat;
|
|
BB = BasicBlock::Create(F->getContext(), "", NewG);
|
|
}
|
|
|
|
IRBuilder<> Builder(BB);
|
|
Function *H = MergeFunctionsPDI ? G : NewG;
|
|
SmallVector<Value *, 16> Args;
|
|
unsigned i = 0;
|
|
FunctionType *FFTy = F->getFunctionType();
|
|
for (Argument &AI : H->args()) {
|
|
Args.push_back(Builder.CreateAggregateCast(&AI, FFTy->getParamType(i)));
|
|
++i;
|
|
}
|
|
|
|
CallInst *CI = Builder.CreateCall(F, Args);
|
|
ReturnInst *RI = nullptr;
|
|
bool isSwiftTailCall = F->getCallingConv() == CallingConv::SwiftTail &&
|
|
G->getCallingConv() == CallingConv::SwiftTail;
|
|
CI->setTailCallKind(isSwiftTailCall ? CallInst::TCK_MustTail
|
|
: CallInst::TCK_Tail);
|
|
CI->setCallingConv(F->getCallingConv());
|
|
CI->setAttributes(F->getAttributes());
|
|
if (H->getReturnType()->isVoidTy()) {
|
|
RI = Builder.CreateRetVoid();
|
|
} else {
|
|
RI = Builder.CreateRet(Builder.CreateAggregateCast(CI, H->getReturnType()));
|
|
}
|
|
|
|
if (MergeFunctionsPDI) {
|
|
DISubprogram *DIS = G->getSubprogram();
|
|
if (DIS) {
|
|
DebugLoc CIDbgLoc =
|
|
DILocation::get(DIS->getContext(), DIS->getScopeLine(), 0, DIS);
|
|
DebugLoc RIDbgLoc =
|
|
DILocation::get(DIS->getContext(), DIS->getScopeLine(), 0, DIS);
|
|
CI->setDebugLoc(CIDbgLoc);
|
|
RI->setDebugLoc(RIDbgLoc);
|
|
} else {
|
|
LLVM_DEBUG(
|
|
dbgs() << "writeThunk: (MergeFunctionsPDI) No DISubprogram for "
|
|
<< G->getName() << "()\n");
|
|
}
|
|
eraseTail(G);
|
|
eraseInstsUnrelatedToPDI(PDIUnrelatedWL, PDVRUnrelatedWL);
|
|
LLVM_DEBUG(
|
|
dbgs() << "} // End of parameter related debug info filtering for: "
|
|
<< G->getName() << "()\n");
|
|
} else {
|
|
NewG->copyAttributesFrom(G);
|
|
NewG->takeName(G);
|
|
// Ensure CFI type metadata is propagated to the new function.
|
|
copyMetadataIfPresent(G, NewG, "type");
|
|
copyMetadataIfPresent(G, NewG, "kcfi_type");
|
|
removeUsers(G);
|
|
G->replaceAllUsesWith(NewG);
|
|
G->eraseFromParent();
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "writeThunk: " << H->getName() << '\n');
|
|
++NumThunksWritten;
|
|
}
|
|
|
|
// Whether this function may be replaced by an alias
|
|
static bool canCreateAliasFor(Function *F) {
|
|
if (!MergeFunctionsAliases || !F->hasGlobalUnnamedAddr())
|
|
return false;
|
|
|
|
// We should only see linkages supported by aliases here
|
|
assert(F->hasLocalLinkage() || F->hasExternalLinkage()
|
|
|| F->hasWeakLinkage() || F->hasLinkOnceLinkage());
|
|
return true;
|
|
}
|
|
|
|
// Replace G with an alias to F (deleting function G)
|
|
void MergeFunctions::writeAlias(Function *F, Function *G) {
|
|
PointerType *PtrType = G->getType();
|
|
auto *GA = GlobalAlias::create(G->getValueType(), PtrType->getAddressSpace(),
|
|
G->getLinkage(), "", F, G->getParent());
|
|
|
|
const MaybeAlign FAlign = F->getAlign();
|
|
const MaybeAlign GAlign = G->getAlign();
|
|
if (FAlign || GAlign)
|
|
F->setAlignment(std::max(FAlign.valueOrOne(), GAlign.valueOrOne()));
|
|
else
|
|
F->setAlignment(std::nullopt);
|
|
GA->takeName(G);
|
|
GA->setVisibility(G->getVisibility());
|
|
GA->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
|
|
|
|
removeUsers(G);
|
|
G->replaceAllUsesWith(GA);
|
|
G->eraseFromParent();
|
|
|
|
LLVM_DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
|
|
++NumAliasesWritten;
|
|
}
|
|
|
|
// If needed, replace G with an alias to F if possible, or a thunk to F if
|
|
// profitable. Returns false if neither is the case. If \p G is not needed (i.e.
|
|
// it is discardable and unused), \p G is removed directly.
|
|
bool MergeFunctions::writeThunkOrAliasIfNeeded(Function *F, Function *G) {
|
|
if (G->isDiscardableIfUnused() && G->use_empty() && !MergeFunctionsPDI) {
|
|
G->eraseFromParent();
|
|
return true;
|
|
}
|
|
if (canCreateAliasFor(G)) {
|
|
writeAlias(F, G);
|
|
return true;
|
|
}
|
|
if (canCreateThunkFor(F)) {
|
|
writeThunk(F, G);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if \p F is either weak_odr or linkonce_odr.
|
|
static bool isODR(const Function *F) {
|
|
return F->hasWeakODRLinkage() || F->hasLinkOnceODRLinkage();
|
|
}
|
|
|
|
// Merge two equivalent functions. Upon completion, Function G is deleted.
|
|
void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
|
|
|
|
// Create a new thunk that both F and G can call, if F cannot call G directly.
|
|
// That is the case if F is either interposable or if G is either weak_odr or
|
|
// linkonce_odr.
|
|
if (F->isInterposable() || (isODR(F) && isODR(G))) {
|
|
assert((!isODR(G) || isODR(F)) &&
|
|
"if G is ODR, F must also be ODR due to ordering");
|
|
|
|
// Both writeThunkOrAliasIfNeeded() calls below must succeed, either because
|
|
// we can create aliases for G and NewF, or because a thunk for F is
|
|
// profitable. F here has the same signature as NewF below, so that's what
|
|
// we check.
|
|
if (!canCreateThunkFor(F) &&
|
|
(!canCreateAliasFor(F) || !canCreateAliasFor(G)))
|
|
return;
|
|
|
|
// Make them both thunks to the same internal function.
|
|
Function *NewF = Function::Create(F->getFunctionType(), F->getLinkage(),
|
|
F->getAddressSpace(), "", F->getParent());
|
|
NewF->copyAttributesFrom(F);
|
|
NewF->takeName(F);
|
|
NewF->setComdat(F->getComdat());
|
|
F->setComdat(nullptr);
|
|
NewF->IsNewDbgInfoFormat = F->IsNewDbgInfoFormat;
|
|
// Ensure CFI type metadata is propagated to the new function.
|
|
copyMetadataIfPresent(F, NewF, "type");
|
|
copyMetadataIfPresent(F, NewF, "kcfi_type");
|
|
removeUsers(F);
|
|
F->replaceAllUsesWith(NewF);
|
|
|
|
// If G or NewF are (weak|linkonce)_odr, update all callers to call the
|
|
// thunk.
|
|
if (isODR(G))
|
|
replaceDirectCallers(G, F);
|
|
if (isODR(F))
|
|
replaceDirectCallers(NewF, F);
|
|
|
|
// We collect alignment before writeThunkOrAliasIfNeeded that overwrites
|
|
// NewF and G's content.
|
|
const MaybeAlign NewFAlign = NewF->getAlign();
|
|
const MaybeAlign GAlign = G->getAlign();
|
|
|
|
writeThunkOrAliasIfNeeded(F, G);
|
|
writeThunkOrAliasIfNeeded(F, NewF);
|
|
|
|
if (NewFAlign || GAlign)
|
|
F->setAlignment(std::max(NewFAlign.valueOrOne(), GAlign.valueOrOne()));
|
|
else
|
|
F->setAlignment(std::nullopt);
|
|
F->setLinkage(GlobalValue::PrivateLinkage);
|
|
++NumDoubleWeak;
|
|
++NumFunctionsMerged;
|
|
} else {
|
|
// For better debugability, under MergeFunctionsPDI, we do not modify G's
|
|
// call sites to point to F even when within the same translation unit.
|
|
if (!G->isInterposable() && !MergeFunctionsPDI) {
|
|
// Functions referred to by llvm.used/llvm.compiler.used are special:
|
|
// there are uses of the symbol name that are not visible to LLVM,
|
|
// usually from inline asm.
|
|
if (G->hasGlobalUnnamedAddr() && !Used.contains(G)) {
|
|
// G might have been a key in our GlobalNumberState, and it's illegal
|
|
// to replace a key in ValueMap<GlobalValue *> with a non-global.
|
|
GlobalNumbers.erase(G);
|
|
// If G's address is not significant, replace it entirely.
|
|
removeUsers(G);
|
|
G->replaceAllUsesWith(F);
|
|
} else {
|
|
// Redirect direct callers of G to F. (See note on MergeFunctionsPDI
|
|
// above).
|
|
replaceDirectCallers(G, F);
|
|
}
|
|
}
|
|
|
|
// If G was internal then we may have replaced all uses of G with F. If so,
|
|
// stop here and delete G. There's no need for a thunk. (See note on
|
|
// MergeFunctionsPDI above).
|
|
if (G->isDiscardableIfUnused() && G->use_empty() && !MergeFunctionsPDI) {
|
|
G->eraseFromParent();
|
|
++NumFunctionsMerged;
|
|
return;
|
|
}
|
|
|
|
if (writeThunkOrAliasIfNeeded(F, G)) {
|
|
++NumFunctionsMerged;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Replace function F by function G.
|
|
void MergeFunctions::replaceFunctionInTree(const FunctionNode &FN,
|
|
Function *G) {
|
|
Function *F = FN.getFunc();
|
|
assert(FunctionComparator(F, G, &GlobalNumbers).compare() == 0 &&
|
|
"The two functions must be equal");
|
|
|
|
auto I = FNodesInTree.find(F);
|
|
assert(I != FNodesInTree.end() && "F should be in FNodesInTree");
|
|
assert(FNodesInTree.count(G) == 0 && "FNodesInTree should not contain G");
|
|
|
|
FnTreeType::iterator IterToFNInFnTree = I->second;
|
|
assert(&(*IterToFNInFnTree) == &FN && "F should map to FN in FNodesInTree.");
|
|
// Remove F -> FN and insert G -> FN
|
|
FNodesInTree.erase(I);
|
|
FNodesInTree.insert({G, IterToFNInFnTree});
|
|
// Replace F with G in FN, which is stored inside the FnTree.
|
|
FN.replaceBy(G);
|
|
}
|
|
|
|
// Ordering for functions that are equal under FunctionComparator
|
|
static bool isFuncOrderCorrect(const Function *F, const Function *G) {
|
|
if (isODR(F) != isODR(G)) {
|
|
// ODR functions before non-ODR functions. A ODR function can call a non-ODR
|
|
// function if it is not interposable, but not the other way around.
|
|
return isODR(G);
|
|
}
|
|
|
|
if (F->isInterposable() != G->isInterposable()) {
|
|
// Strong before weak, because the weak function may call the strong
|
|
// one, but not the other way around.
|
|
return !F->isInterposable();
|
|
}
|
|
|
|
if (F->hasLocalLinkage() != G->hasLocalLinkage()) {
|
|
// External before local, because we definitely have to keep the external
|
|
// function, but may be able to drop the local one.
|
|
return !F->hasLocalLinkage();
|
|
}
|
|
|
|
// Impose a total order (by name) on the replacement of functions. This is
|
|
// important when operating on more than one module independently to prevent
|
|
// cycles of thunks calling each other when the modules are linked together.
|
|
return F->getName() <= G->getName();
|
|
}
|
|
|
|
// Insert a ComparableFunction into the FnTree, or merge it away if equal to one
|
|
// that was already inserted.
|
|
bool MergeFunctions::insert(Function *NewFunction) {
|
|
std::pair<FnTreeType::iterator, bool> Result =
|
|
FnTree.insert(FunctionNode(NewFunction));
|
|
|
|
if (Result.second) {
|
|
assert(FNodesInTree.count(NewFunction) == 0);
|
|
FNodesInTree.insert({NewFunction, Result.first});
|
|
LLVM_DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName()
|
|
<< '\n');
|
|
return false;
|
|
}
|
|
|
|
const FunctionNode &OldF = *Result.first;
|
|
|
|
if (!isFuncOrderCorrect(OldF.getFunc(), NewFunction)) {
|
|
// Swap the two functions.
|
|
Function *F = OldF.getFunc();
|
|
replaceFunctionInTree(*Result.first, NewFunction);
|
|
NewFunction = F;
|
|
assert(OldF.getFunc() != F && "Must have swapped the functions.");
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << " " << OldF.getFunc()->getName()
|
|
<< " == " << NewFunction->getName() << '\n');
|
|
|
|
Function *DeleteF = NewFunction;
|
|
mergeTwoFunctions(OldF.getFunc(), DeleteF);
|
|
this->DelToNewMap.insert({DeleteF, OldF.getFunc()});
|
|
return true;
|
|
}
|
|
|
|
// Remove a function from FnTree. If it was already in FnTree, add
|
|
// it to Deferred so that we'll look at it in the next round.
|
|
void MergeFunctions::remove(Function *F) {
|
|
auto I = FNodesInTree.find(F);
|
|
if (I != FNodesInTree.end()) {
|
|
LLVM_DEBUG(dbgs() << "Deferred " << F->getName() << ".\n");
|
|
FnTree.erase(I->second);
|
|
// I->second has been invalidated, remove it from the FNodesInTree map to
|
|
// preserve the invariant.
|
|
FNodesInTree.erase(I);
|
|
Deferred.emplace_back(F);
|
|
}
|
|
}
|
|
|
|
// For each instruction used by the value, remove() the function that contains
|
|
// the instruction. This should happen right before a call to RAUW.
|
|
void MergeFunctions::removeUsers(Value *V) {
|
|
for (User *U : V->users())
|
|
if (auto *I = dyn_cast<Instruction>(U))
|
|
remove(I->getFunction());
|
|
}
|