llvm-project/libcxx/test/support/min_allocator.h
Peng Liu 13510c0736
[libc++] Make list constexpr as part of P3372R3 (#129799)
This patch makes `std::list` constexpr as part of P3372R3.

Fixes #128659.
2025-06-18 12:13:50 -04:00

518 lines
17 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef MIN_ALLOCATOR_H
#define MIN_ALLOCATOR_H
#include <cassert>
#include <climits>
#include <cstddef>
#include <cstdlib>
#include <iterator>
#include <memory>
#include <new>
#include <type_traits>
#include <cstring>
#include "test_macros.h"
template <class T>
class bare_allocator {
public:
typedef T value_type;
bare_allocator() TEST_NOEXCEPT {}
template <class U>
bare_allocator(bare_allocator<U>) TEST_NOEXCEPT {}
T* allocate(std::size_t n) { return static_cast<T*>(::operator new(n * sizeof(T))); }
void deallocate(T* p, std::size_t) { return ::operator delete(static_cast<void*>(p)); }
friend bool operator==(bare_allocator, bare_allocator) { return true; }
friend bool operator!=(bare_allocator x, bare_allocator y) { return !(x == y); }
};
template <class T>
class no_default_allocator {
#if TEST_STD_VER >= 11
no_default_allocator() = delete;
#else
no_default_allocator();
#endif
struct construct_tag {};
TEST_CONSTEXPR_CXX20 explicit no_default_allocator(construct_tag) {}
public:
TEST_CONSTEXPR_CXX20 static no_default_allocator create() {
construct_tag tag;
return no_default_allocator(tag);
}
public:
typedef T value_type;
template <class U>
TEST_CONSTEXPR_CXX20 no_default_allocator(no_default_allocator<U>) TEST_NOEXCEPT {}
TEST_CONSTEXPR_CXX20 T* allocate(std::size_t n) { return static_cast<T*>(std::allocator<T>().allocate(n)); }
TEST_CONSTEXPR_CXX20 void deallocate(T* p, std::size_t n) { std::allocator<T>().deallocate(p, n); }
friend TEST_CONSTEXPR bool operator==(no_default_allocator, no_default_allocator) { return true; }
friend TEST_CONSTEXPR bool operator!=(no_default_allocator x, no_default_allocator y) { return !(x == y); }
};
struct malloc_allocator_base {
static std::size_t outstanding_bytes;
static std::size_t alloc_count;
static std::size_t dealloc_count;
static bool disable_default_constructor;
static std::size_t outstanding_alloc() {
assert(alloc_count >= dealloc_count);
return (alloc_count - dealloc_count);
}
static void reset() {
assert(outstanding_alloc() == 0);
disable_default_constructor = false;
outstanding_bytes = 0;
alloc_count = 0;
dealloc_count = 0;
}
};
size_t malloc_allocator_base::outstanding_bytes = 0;
size_t malloc_allocator_base::alloc_count = 0;
size_t malloc_allocator_base::dealloc_count = 0;
bool malloc_allocator_base::disable_default_constructor = false;
template <class T>
class malloc_allocator : public malloc_allocator_base {
public:
typedef T value_type;
malloc_allocator() TEST_NOEXCEPT { assert(!disable_default_constructor); }
template <class U>
malloc_allocator(malloc_allocator<U>) TEST_NOEXCEPT {}
T* allocate(std::size_t n) {
const std::size_t nbytes = n * sizeof(T);
++alloc_count;
outstanding_bytes += nbytes;
return static_cast<T*>(std::malloc(nbytes));
}
void deallocate(T* p, std::size_t n) {
const std::size_t nbytes = n * sizeof(T);
++dealloc_count;
outstanding_bytes -= nbytes;
std::free(static_cast<void*>(p));
}
friend bool operator==(malloc_allocator, malloc_allocator) { return true; }
friend bool operator!=(malloc_allocator x, malloc_allocator y) { return !(x == y); }
};
template <class T>
struct cpp03_allocator : bare_allocator<T> {
typedef T value_type;
typedef value_type* pointer;
static bool construct_called;
// Returned value is not used but it's not prohibited.
pointer construct(pointer p, const value_type& val) {
::new (p) value_type(val);
construct_called = true;
return p;
}
std::size_t max_size() const { return UINT_MAX / sizeof(T); }
};
template <class T>
bool cpp03_allocator<T>::construct_called = false;
template <class T>
struct cpp03_overload_allocator : bare_allocator<T> {
typedef T value_type;
typedef value_type* pointer;
static bool construct_called;
void construct(pointer p, const value_type& val) { construct(p, val, std::is_class<T>()); }
void construct(pointer p, const value_type& val, std::true_type) {
::new (p) value_type(val);
construct_called = true;
}
void construct(pointer p, const value_type& val, std::false_type) {
::new (p) value_type(val);
construct_called = true;
}
std::size_t max_size() const { return UINT_MAX / sizeof(T); }
};
template <class T>
bool cpp03_overload_allocator<T>::construct_called = false;
template <class T, class = std::integral_constant<std::size_t, 0> >
class min_pointer;
template <class T, class ID>
class min_pointer<const T, ID>;
template <class ID>
class min_pointer<void, ID>;
template <class ID>
class min_pointer<const void, ID>;
template <class T>
class min_allocator;
template <class ID>
class min_pointer<const void, ID> {
const void* ptr_;
public:
min_pointer() TEST_NOEXCEPT = default;
min_pointer(std::nullptr_t) TEST_NOEXCEPT : ptr_(nullptr) {}
template <class T>
min_pointer(min_pointer<T, ID> p) TEST_NOEXCEPT : ptr_(p.ptr_) {}
explicit operator bool() const { return ptr_ != nullptr; }
friend bool operator==(min_pointer x, min_pointer y) { return x.ptr_ == y.ptr_; }
friend bool operator!=(min_pointer x, min_pointer y) { return !(x == y); }
template <class U, class XID>
friend class min_pointer;
};
template <class ID>
class min_pointer<void, ID> {
void* ptr_;
public:
min_pointer() TEST_NOEXCEPT = default;
TEST_CONSTEXPR_CXX14 min_pointer(std::nullptr_t) TEST_NOEXCEPT : ptr_(nullptr) {}
template <class T, class = typename std::enable_if< !std::is_const<T>::value >::type >
TEST_CONSTEXPR_CXX14 min_pointer(min_pointer<T, ID> p) TEST_NOEXCEPT : ptr_(p.ptr_) {}
TEST_CONSTEXPR_CXX14 explicit operator bool() const { return ptr_ != nullptr; }
TEST_CONSTEXPR_CXX14 friend bool operator==(min_pointer x, min_pointer y) { return x.ptr_ == y.ptr_; }
TEST_CONSTEXPR_CXX14 friend bool operator!=(min_pointer x, min_pointer y) { return !(x == y); }
template <class U, class XID>
friend class min_pointer;
};
template <class T, class ID>
class min_pointer {
T* ptr_;
TEST_CONSTEXPR_CXX14 explicit min_pointer(T* p) TEST_NOEXCEPT : ptr_(p) {}
public:
min_pointer() TEST_NOEXCEPT = default;
TEST_CONSTEXPR_CXX14 min_pointer(std::nullptr_t) TEST_NOEXCEPT : ptr_(nullptr) {}
TEST_CONSTEXPR_CXX14 explicit min_pointer(min_pointer<void, ID> p) TEST_NOEXCEPT : ptr_(static_cast<T*>(p.ptr_)) {}
TEST_CONSTEXPR_CXX14 explicit operator bool() const { return ptr_ != nullptr; }
typedef std::ptrdiff_t difference_type;
typedef T& reference;
typedef T* pointer;
typedef T value_type;
typedef std::random_access_iterator_tag iterator_category;
TEST_CONSTEXPR_CXX14 reference operator*() const { return *ptr_; }
TEST_CONSTEXPR_CXX14 pointer operator->() const { return ptr_; }
TEST_CONSTEXPR_CXX14 min_pointer& operator++() {
++ptr_;
return *this;
}
TEST_CONSTEXPR_CXX14 min_pointer operator++(int) {
min_pointer tmp(*this);
++ptr_;
return tmp;
}
TEST_CONSTEXPR_CXX14 min_pointer& operator--() {
--ptr_;
return *this;
}
TEST_CONSTEXPR_CXX14 min_pointer operator--(int) {
min_pointer tmp(*this);
--ptr_;
return tmp;
}
TEST_CONSTEXPR_CXX14 min_pointer& operator+=(difference_type n) {
ptr_ += n;
return *this;
}
TEST_CONSTEXPR_CXX14 min_pointer& operator-=(difference_type n) {
ptr_ -= n;
return *this;
}
TEST_CONSTEXPR_CXX14 min_pointer operator+(difference_type n) const {
min_pointer tmp(*this);
tmp += n;
return tmp;
}
friend TEST_CONSTEXPR_CXX14 min_pointer operator+(difference_type n, min_pointer x) { return x + n; }
TEST_CONSTEXPR_CXX14 min_pointer operator-(difference_type n) const {
min_pointer tmp(*this);
tmp -= n;
return tmp;
}
friend TEST_CONSTEXPR_CXX14 difference_type operator-(min_pointer x, min_pointer y) { return x.ptr_ - y.ptr_; }
TEST_CONSTEXPR_CXX14 reference operator[](difference_type n) const { return ptr_[n]; }
friend TEST_CONSTEXPR_CXX14 bool operator<(min_pointer x, min_pointer y) { return x.ptr_ < y.ptr_; }
friend TEST_CONSTEXPR_CXX14 bool operator>(min_pointer x, min_pointer y) { return y < x; }
friend TEST_CONSTEXPR_CXX14 bool operator<=(min_pointer x, min_pointer y) { return !(y < x); }
friend TEST_CONSTEXPR_CXX14 bool operator>=(min_pointer x, min_pointer y) { return !(x < y); }
static TEST_CONSTEXPR_CXX14 min_pointer pointer_to(T& t) { return min_pointer(std::addressof(t)); }
friend TEST_CONSTEXPR_CXX14 bool operator==(min_pointer x, min_pointer y) { return x.ptr_ == y.ptr_; }
friend TEST_CONSTEXPR_CXX14 bool operator!=(min_pointer x, min_pointer y) { return !(x == y); }
template <class U, class XID>
friend class min_pointer;
template <class U>
friend class min_allocator;
};
template <class T, class ID>
class min_pointer<const T, ID> {
const T* ptr_;
TEST_CONSTEXPR_CXX14 explicit min_pointer(const T* p) : ptr_(p) {}
public:
min_pointer() TEST_NOEXCEPT = default;
TEST_CONSTEXPR_CXX14 min_pointer(std::nullptr_t) : ptr_(nullptr) {}
TEST_CONSTEXPR_CXX14 min_pointer(min_pointer<T, ID> p) : ptr_(p.ptr_) {}
TEST_CONSTEXPR_CXX14 explicit min_pointer(min_pointer<const void, ID> p) : ptr_(static_cast<const T*>(p.ptr_)) {}
TEST_CONSTEXPR_CXX14 explicit operator bool() const { return ptr_ != nullptr; }
typedef std::ptrdiff_t difference_type;
typedef const T& reference;
typedef const T* pointer;
typedef const T value_type;
typedef std::random_access_iterator_tag iterator_category;
TEST_CONSTEXPR_CXX14 reference operator*() const { return *ptr_; }
TEST_CONSTEXPR_CXX14 pointer operator->() const { return ptr_; }
TEST_CONSTEXPR_CXX14 min_pointer& operator++() {
++ptr_;
return *this;
}
TEST_CONSTEXPR_CXX14 min_pointer operator++(int) {
min_pointer tmp(*this);
++ptr_;
return tmp;
}
TEST_CONSTEXPR_CXX14 min_pointer& operator--() {
--ptr_;
return *this;
}
TEST_CONSTEXPR_CXX14 min_pointer operator--(int) {
min_pointer tmp(*this);
--ptr_;
return tmp;
}
TEST_CONSTEXPR_CXX14 min_pointer& operator+=(difference_type n) {
ptr_ += n;
return *this;
}
TEST_CONSTEXPR_CXX14 min_pointer& operator-=(difference_type n) {
ptr_ -= n;
return *this;
}
TEST_CONSTEXPR_CXX14 min_pointer operator+(difference_type n) const {
min_pointer tmp(*this);
tmp += n;
return tmp;
}
friend TEST_CONSTEXPR_CXX14 min_pointer operator+(difference_type n, min_pointer x) { return x + n; }
TEST_CONSTEXPR_CXX14 min_pointer operator-(difference_type n) const {
min_pointer tmp(*this);
tmp -= n;
return tmp;
}
friend TEST_CONSTEXPR_CXX14 difference_type operator-(min_pointer x, min_pointer y) { return x.ptr_ - y.ptr_; }
TEST_CONSTEXPR_CXX14 reference operator[](difference_type n) const { return ptr_[n]; }
friend TEST_CONSTEXPR_CXX14 bool operator<(min_pointer x, min_pointer y) { return x.ptr_ < y.ptr_; }
friend TEST_CONSTEXPR_CXX14 bool operator>(min_pointer x, min_pointer y) { return y < x; }
friend TEST_CONSTEXPR_CXX14 bool operator<=(min_pointer x, min_pointer y) { return !(y < x); }
friend TEST_CONSTEXPR_CXX14 bool operator>=(min_pointer x, min_pointer y) { return !(x < y); }
static TEST_CONSTEXPR_CXX14 min_pointer pointer_to(const T& t) { return min_pointer(std::addressof(t)); }
friend TEST_CONSTEXPR_CXX14 bool operator==(min_pointer x, min_pointer y) { return x.ptr_ == y.ptr_; }
friend TEST_CONSTEXPR_CXX14 bool operator!=(min_pointer x, min_pointer y) { return x.ptr_ != y.ptr_; }
friend TEST_CONSTEXPR_CXX14 bool operator==(min_pointer x, std::nullptr_t) { return x.ptr_ == nullptr; }
friend TEST_CONSTEXPR_CXX14 bool operator!=(min_pointer x, std::nullptr_t) { return x.ptr_ != nullptr; }
friend TEST_CONSTEXPR_CXX14 bool operator==(std::nullptr_t, min_pointer x) { return x.ptr_ == nullptr; }
friend TEST_CONSTEXPR_CXX14 bool operator!=(std::nullptr_t, min_pointer x) { return x.ptr_ != nullptr; }
template <class U, class XID>
friend class min_pointer;
};
template <class T>
class min_allocator {
public:
typedef T value_type;
typedef min_pointer<T> pointer;
min_allocator() = default;
template <class U>
TEST_CONSTEXPR_CXX20 min_allocator(min_allocator<U>) {}
TEST_CONSTEXPR_CXX20 pointer allocate(std::size_t n) { return pointer(std::allocator<T>().allocate(n)); }
TEST_CONSTEXPR_CXX20 void deallocate(pointer p, std::size_t n) { std::allocator<T>().deallocate(p.ptr_, n); }
TEST_CONSTEXPR_CXX20 friend bool operator==(min_allocator, min_allocator) { return true; }
TEST_CONSTEXPR_CXX20 friend bool operator!=(min_allocator x, min_allocator y) { return !(x == y); }
};
template <class T>
class complete_type_allocator {
public:
using value_type = T;
// Make sure that value_type is a complete when min_allocator is instantiated
static_assert(TEST_ALIGNOF(value_type) != 0, "");
TEST_CONSTEXPR_CXX20 complete_type_allocator() TEST_NOEXCEPT {}
template <class U>
TEST_CONSTEXPR_CXX20 explicit complete_type_allocator(complete_type_allocator<U>) TEST_NOEXCEPT {}
TEST_CONSTEXPR_CXX20 T* allocate(std::size_t n) { return static_cast<T*>(std::allocator<T>().allocate(n)); }
TEST_CONSTEXPR_CXX20 void deallocate(T* p, std::size_t n) { std::allocator<T>().deallocate(p, n); }
TEST_CONSTEXPR_CXX20 friend bool operator==(complete_type_allocator, complete_type_allocator) { return true; }
TEST_CONSTEXPR_CXX20 friend bool operator!=(complete_type_allocator, complete_type_allocator) { return false; }
};
template <class T>
class explicit_allocator
{
public:
typedef T value_type;
TEST_CONSTEXPR_CXX20 explicit_allocator() TEST_NOEXCEPT {}
template <class U>
TEST_CONSTEXPR_CXX20 explicit explicit_allocator(explicit_allocator<U>) TEST_NOEXCEPT {}
TEST_CONSTEXPR_CXX20 T* allocate(std::size_t n) { return static_cast<T*>(std::allocator<T>().allocate(n)); }
TEST_CONSTEXPR_CXX20 void deallocate(T* p, std::size_t n) { std::allocator<T>().deallocate(p, n); }
TEST_CONSTEXPR_CXX20 friend bool operator==(explicit_allocator, explicit_allocator) { return true; }
TEST_CONSTEXPR_CXX20 friend bool operator!=(explicit_allocator x, explicit_allocator y) { return !(x == y); }
};
template <class T>
class unaligned_allocator {
public:
static_assert(TEST_ALIGNOF(T) == 1, "Type T cannot be created on unaligned address (UB)");
typedef T value_type;
TEST_CONSTEXPR_CXX20 unaligned_allocator() TEST_NOEXCEPT {}
template <class U>
TEST_CONSTEXPR_CXX20 explicit unaligned_allocator(unaligned_allocator<U>) TEST_NOEXCEPT {}
TEST_CONSTEXPR_CXX20 T* allocate(std::size_t n) { return std::allocator<T>().allocate(n + 1) + 1; }
TEST_CONSTEXPR_CXX20 void deallocate(T* p, std::size_t n) { std::allocator<T>().deallocate(p - 1, n + 1); }
TEST_CONSTEXPR_CXX20 friend bool operator==(unaligned_allocator, unaligned_allocator) { return true; }
TEST_CONSTEXPR_CXX20 friend bool operator!=(unaligned_allocator x, unaligned_allocator y) { return !(x == y); }
};
template <class T>
class safe_allocator {
public:
typedef T value_type;
TEST_CONSTEXPR_CXX20 safe_allocator() TEST_NOEXCEPT {}
template <class U>
TEST_CONSTEXPR_CXX20 safe_allocator(safe_allocator<U>) TEST_NOEXCEPT {}
TEST_CONSTEXPR_CXX20 T* allocate(std::size_t n) {
T* memory = std::allocator<T>().allocate(n);
if (!TEST_IS_CONSTANT_EVALUATED)
std::memset(static_cast<void*>(memory), 0, sizeof(T) * n);
return memory;
}
TEST_CONSTEXPR_CXX20 void deallocate(T* p, std::size_t n) {
if (!TEST_IS_CONSTANT_EVALUATED)
DoNotOptimize(std::memset(static_cast<void*>(p), 0, sizeof(T) * n));
std::allocator<T>().deallocate(p, n);
}
TEST_CONSTEXPR_CXX20 friend bool operator==(safe_allocator, safe_allocator) { return true; }
TEST_CONSTEXPR_CXX20 friend bool operator!=(safe_allocator x, safe_allocator y) { return !(x == y); }
};
template <std::size_t MaxSize, class T>
struct tiny_size_allocator {
using value_type = T;
using size_type = unsigned;
template <class U>
struct rebind {
using other = tiny_size_allocator<MaxSize, U>;
};
tiny_size_allocator() = default;
template <class U>
TEST_CONSTEXPR_CXX20 tiny_size_allocator(tiny_size_allocator<MaxSize, U>) {}
TEST_CONSTEXPR_CXX20 T* allocate(std::size_t n) {
assert(n <= MaxSize);
return std::allocator<T>().allocate(n);
}
TEST_CONSTEXPR_CXX20 void deallocate(T* ptr, std::size_t n) { std::allocator<T>().deallocate(ptr, n); }
TEST_CONSTEXPR_CXX20 size_type max_size() const { return MaxSize; }
friend bool operator==(tiny_size_allocator, tiny_size_allocator) { return true; }
friend bool operator!=(tiny_size_allocator, tiny_size_allocator) { return false; }
};
#endif // MIN_ALLOCATOR_H