llvm-project/clang/lib/Sema/SemaModule.cpp
Kazu Hirata 136b541304
[clang] Replace SmallSet with SmallPtrSet (NFC) (#154262)
This patch replaces SmallSet<T *, N> with SmallPtrSet<T *, N>.  Note
that SmallSet.h "redirects" SmallSet to SmallPtrSet for pointer
element types:

  template <typename PointeeType, unsigned N>
class SmallSet<PointeeType*, N> : public SmallPtrSet<PointeeType*, N>
{};

We only have 30 instances that rely on this "redirection", with about
half of them under clang/.  Since the redirection doesn't improve
readability, this patch replaces SmallSet with SmallPtrSet for pointer
element types.

I'm planning to remove the redirection eventually.
2025-08-19 07:11:39 -07:00

1576 lines
58 KiB
C++

//===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for modules (C++ modules syntax,
// Objective-C modules syntax, and Clang header modules).
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/DynamicRecursiveASTVisitor.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/ParsedAttr.h"
#include "clang/Sema/SemaInternal.h"
#include "llvm/ADT/StringExtras.h"
using namespace clang;
using namespace sema;
static void checkModuleImportContext(Sema &S, Module *M,
SourceLocation ImportLoc, DeclContext *DC,
bool FromInclude = false) {
SourceLocation ExternCLoc;
if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
switch (LSD->getLanguage()) {
case LinkageSpecLanguageIDs::C:
if (ExternCLoc.isInvalid())
ExternCLoc = LSD->getBeginLoc();
break;
case LinkageSpecLanguageIDs::CXX:
break;
}
DC = LSD->getParent();
}
while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC))
DC = DC->getParent();
if (!isa<TranslationUnitDecl>(DC)) {
S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M))
? diag::ext_module_import_not_at_top_level_noop
: diag::err_module_import_not_at_top_level_fatal)
<< M->getFullModuleName() << DC;
S.Diag(cast<Decl>(DC)->getBeginLoc(),
diag::note_module_import_not_at_top_level)
<< DC;
} else if (!M->IsExternC && ExternCLoc.isValid()) {
S.Diag(ImportLoc, diag::ext_module_import_in_extern_c)
<< M->getFullModuleName();
S.Diag(ExternCLoc, diag::note_extern_c_begins_here);
}
}
// We represent the primary and partition names as 'Paths' which are sections
// of the hierarchical access path for a clang module. However for C++20
// the periods in a name are just another character, and we will need to
// flatten them into a string.
static std::string stringFromPath(ModuleIdPath Path) {
std::string Name;
if (Path.empty())
return Name;
for (auto &Piece : Path) {
if (!Name.empty())
Name += ".";
Name += Piece.getIdentifierInfo()->getName();
}
return Name;
}
/// Helper function for makeTransitiveImportsVisible to decide whether
/// the \param Imported module unit is in the same module with the \param
/// CurrentModule.
/// \param FoundPrimaryModuleInterface is a helper parameter to record the
/// primary module interface unit corresponding to the module \param
/// CurrentModule. Since currently it is expensive to decide whether two module
/// units come from the same module by comparing the module name.
static bool
isImportingModuleUnitFromSameModule(ASTContext &Ctx, Module *Imported,
Module *CurrentModule,
Module *&FoundPrimaryModuleInterface) {
if (!Imported->isNamedModule())
return false;
// The a partition unit we're importing must be in the same module of the
// current module.
if (Imported->isModulePartition())
return true;
// If we found the primary module interface during the search process, we can
// return quickly to avoid expensive string comparison.
if (FoundPrimaryModuleInterface)
return Imported == FoundPrimaryModuleInterface;
if (!CurrentModule)
return false;
// Then the imported module must be a primary module interface unit. It
// is only allowed to import the primary module interface unit from the same
// module in the implementation unit and the implementation partition unit.
// Since we'll handle implementation unit above. We can only care
// about the implementation partition unit here.
if (!CurrentModule->isModulePartitionImplementation())
return false;
if (Ctx.isInSameModule(Imported, CurrentModule)) {
assert(!FoundPrimaryModuleInterface ||
FoundPrimaryModuleInterface == Imported);
FoundPrimaryModuleInterface = Imported;
return true;
}
return false;
}
/// [module.import]p7:
/// Additionally, when a module-import-declaration in a module unit of some
/// module M imports another module unit U of M, it also imports all
/// translation units imported by non-exported module-import-declarations in
/// the module unit purview of U. These rules can in turn lead to the
/// importation of yet more translation units.
static void
makeTransitiveImportsVisible(ASTContext &Ctx, VisibleModuleSet &VisibleModules,
Module *Imported, Module *CurrentModule,
SourceLocation ImportLoc,
bool IsImportingPrimaryModuleInterface = false) {
assert(Imported->isNamedModule() &&
"'makeTransitiveImportsVisible()' is intended for standard C++ named "
"modules only.");
llvm::SmallVector<Module *, 4> Worklist;
llvm::SmallPtrSet<Module *, 16> Visited;
Worklist.push_back(Imported);
Module *FoundPrimaryModuleInterface =
IsImportingPrimaryModuleInterface ? Imported : nullptr;
while (!Worklist.empty()) {
Module *Importing = Worklist.pop_back_val();
if (Visited.count(Importing))
continue;
Visited.insert(Importing);
// FIXME: The ImportLoc here is not meaningful. It may be problematic if we
// use the sourcelocation loaded from the visible modules.
VisibleModules.setVisible(Importing, ImportLoc);
if (isImportingModuleUnitFromSameModule(Ctx, Importing, CurrentModule,
FoundPrimaryModuleInterface)) {
for (Module *TransImported : Importing->Imports)
Worklist.push_back(TransImported);
for (auto [Exports, _] : Importing->Exports)
Worklist.push_back(Exports);
}
}
}
Sema::DeclGroupPtrTy
Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) {
// We start in the global module;
Module *GlobalModule =
PushGlobalModuleFragment(ModuleLoc);
// All declarations created from now on are owned by the global module.
auto *TU = Context.getTranslationUnitDecl();
// [module.global.frag]p2
// A global-module-fragment specifies the contents of the global module
// fragment for a module unit. The global module fragment can be used to
// provide declarations that are attached to the global module and usable
// within the module unit.
//
// So the declations in the global module shouldn't be visible by default.
TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported);
TU->setLocalOwningModule(GlobalModule);
// FIXME: Consider creating an explicit representation of this declaration.
return nullptr;
}
void Sema::HandleStartOfHeaderUnit() {
assert(getLangOpts().CPlusPlusModules &&
"Header units are only valid for C++20 modules");
SourceLocation StartOfTU =
SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID());
StringRef HUName = getLangOpts().CurrentModule;
if (HUName.empty()) {
HUName =
SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID())->getName();
const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str();
}
// TODO: Make the C++20 header lookup independent.
// When the input is pre-processed source, we need a file ref to the original
// file for the header map.
auto F = SourceMgr.getFileManager().getOptionalFileRef(HUName);
// For the sake of error recovery (if someone has moved the original header
// after creating the pre-processed output) fall back to obtaining the file
// ref for the input file, which must be present.
if (!F)
F = SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID());
assert(F && "failed to find the header unit source?");
Module::Header H{HUName.str(), HUName.str(), *F};
auto &Map = PP.getHeaderSearchInfo().getModuleMap();
Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H);
assert(Mod && "module creation should not fail");
ModuleScopes.push_back({}); // No GMF
ModuleScopes.back().BeginLoc = StartOfTU;
ModuleScopes.back().Module = Mod;
VisibleModules.setVisible(Mod, StartOfTU);
// From now on, we have an owning module for all declarations we see.
// All of these are implicitly exported.
auto *TU = Context.getTranslationUnitDecl();
TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible);
TU->setLocalOwningModule(Mod);
}
/// Tests whether the given identifier is reserved as a module name and
/// diagnoses if it is. Returns true if a diagnostic is emitted and false
/// otherwise.
static bool DiagReservedModuleName(Sema &S, const IdentifierInfo *II,
SourceLocation Loc) {
enum {
Valid = -1,
Invalid = 0,
Reserved = 1,
} Reason = Valid;
if (II->isStr("module") || II->isStr("import"))
Reason = Invalid;
else if (II->isReserved(S.getLangOpts()) !=
ReservedIdentifierStatus::NotReserved)
Reason = Reserved;
// If the identifier is reserved (not invalid) but is in a system header,
// we do not diagnose (because we expect system headers to use reserved
// identifiers).
if (Reason == Reserved && S.getSourceManager().isInSystemHeader(Loc))
Reason = Valid;
switch (Reason) {
case Valid:
return false;
case Invalid:
return S.Diag(Loc, diag::err_invalid_module_name) << II;
case Reserved:
S.Diag(Loc, diag::warn_reserved_module_name) << II;
return false;
}
llvm_unreachable("fell off a fully covered switch");
}
Sema::DeclGroupPtrTy
Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc,
ModuleDeclKind MDK, ModuleIdPath Path,
ModuleIdPath Partition, ModuleImportState &ImportState,
bool SeenNoTrivialPPDirective) {
assert(getLangOpts().CPlusPlusModules &&
"should only have module decl in standard C++ modules");
bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl;
bool SeenGMF = ImportState == ModuleImportState::GlobalFragment;
// If any of the steps here fail, we count that as invalidating C++20
// module state;
ImportState = ModuleImportState::NotACXX20Module;
bool IsPartition = !Partition.empty();
if (IsPartition)
switch (MDK) {
case ModuleDeclKind::Implementation:
MDK = ModuleDeclKind::PartitionImplementation;
break;
case ModuleDeclKind::Interface:
MDK = ModuleDeclKind::PartitionInterface;
break;
default:
llvm_unreachable("how did we get a partition type set?");
}
// A (non-partition) module implementation unit requires that we are not
// compiling a module of any kind. A partition implementation emits an
// interface (and the AST for the implementation), which will subsequently
// be consumed to emit a binary.
// A module interface unit requires that we are not compiling a module map.
switch (getLangOpts().getCompilingModule()) {
case LangOptions::CMK_None:
// It's OK to compile a module interface as a normal translation unit.
break;
case LangOptions::CMK_ModuleInterface:
if (MDK != ModuleDeclKind::Implementation)
break;
// We were asked to compile a module interface unit but this is a module
// implementation unit.
Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch)
<< FixItHint::CreateInsertion(ModuleLoc, "export ");
MDK = ModuleDeclKind::Interface;
break;
case LangOptions::CMK_ModuleMap:
Diag(ModuleLoc, diag::err_module_decl_in_module_map_module);
return nullptr;
case LangOptions::CMK_HeaderUnit:
Diag(ModuleLoc, diag::err_module_decl_in_header_unit);
return nullptr;
}
assert(ModuleScopes.size() <= 1 && "expected to be at global module scope");
// FIXME: Most of this work should be done by the preprocessor rather than
// here, in order to support macro import.
// Only one module-declaration is permitted per source file.
if (isCurrentModulePurview()) {
Diag(ModuleLoc, diag::err_module_redeclaration);
Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module),
diag::note_prev_module_declaration);
return nullptr;
}
assert((!getLangOpts().CPlusPlusModules ||
SeenGMF == (bool)this->TheGlobalModuleFragment) &&
"mismatched global module state");
// In C++20, A module directive may only appear as the first preprocessing
// tokens in a file (excluding the global module fragment.).
if (getLangOpts().CPlusPlusModules &&
(!IsFirstDecl || SeenNoTrivialPPDirective) && !SeenGMF) {
Diag(ModuleLoc, diag::err_module_decl_not_at_start);
SourceLocation BeginLoc = PP.getMainFileFirstPPTokenLoc();
Diag(BeginLoc, diag::note_global_module_introducer_missing)
<< FixItHint::CreateInsertion(BeginLoc, "module;\n");
}
// C++23 [module.unit]p1: ... The identifiers module and import shall not
// appear as identifiers in a module-name or module-partition. All
// module-names either beginning with an identifier consisting of std
// followed by zero or more digits or containing a reserved identifier
// ([lex.name]) are reserved and shall not be specified in a
// module-declaration; no diagnostic is required.
// Test the first part of the path to see if it's std[0-9]+ but allow the
// name in a system header.
StringRef FirstComponentName = Path[0].getIdentifierInfo()->getName();
if (!getSourceManager().isInSystemHeader(Path[0].getLoc()) &&
(FirstComponentName == "std" ||
(FirstComponentName.starts_with("std") &&
llvm::all_of(FirstComponentName.drop_front(3), &llvm::isDigit))))
Diag(Path[0].getLoc(), diag::warn_reserved_module_name)
<< Path[0].getIdentifierInfo();
// Then test all of the components in the path to see if any of them are
// using another kind of reserved or invalid identifier.
for (auto Part : Path) {
if (DiagReservedModuleName(*this, Part.getIdentifierInfo(), Part.getLoc()))
return nullptr;
}
// Flatten the dots in a module name. Unlike Clang's hierarchical module map
// modules, the dots here are just another character that can appear in a
// module name.
std::string ModuleName = stringFromPath(Path);
if (IsPartition) {
ModuleName += ":";
ModuleName += stringFromPath(Partition);
}
// If a module name was explicitly specified on the command line, it must be
// correct.
if (!getLangOpts().CurrentModule.empty() &&
getLangOpts().CurrentModule != ModuleName) {
Diag(Path.front().getLoc(), diag::err_current_module_name_mismatch)
<< SourceRange(Path.front().getLoc(), IsPartition
? Partition.back().getLoc()
: Path.back().getLoc())
<< getLangOpts().CurrentModule;
return nullptr;
}
const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName;
auto &Map = PP.getHeaderSearchInfo().getModuleMap();
Module *Mod; // The module we are creating.
Module *Interface = nullptr; // The interface for an implementation.
switch (MDK) {
case ModuleDeclKind::Interface:
case ModuleDeclKind::PartitionInterface: {
// We can't have parsed or imported a definition of this module or parsed a
// module map defining it already.
if (auto *M = Map.findOrLoadModule(ModuleName)) {
Diag(Path[0].getLoc(), diag::err_module_redefinition) << ModuleName;
if (M->DefinitionLoc.isValid())
Diag(M->DefinitionLoc, diag::note_prev_module_definition);
else if (OptionalFileEntryRef FE = M->getASTFile())
Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file)
<< FE->getName();
Mod = M;
break;
}
// Create a Module for the module that we're defining.
Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName);
if (MDK == ModuleDeclKind::PartitionInterface)
Mod->Kind = Module::ModulePartitionInterface;
assert(Mod && "module creation should not fail");
break;
}
case ModuleDeclKind::Implementation: {
// C++20 A module-declaration that contains neither an export-
// keyword nor a module-partition implicitly imports the primary
// module interface unit of the module as if by a module-import-
// declaration.
IdentifierLoc ModuleNameLoc(Path[0].getLoc(),
PP.getIdentifierInfo(ModuleName));
// The module loader will assume we're trying to import the module that
// we're building if `LangOpts.CurrentModule` equals to 'ModuleName'.
// Change the value for `LangOpts.CurrentModule` temporarily to make the
// module loader work properly.
const_cast<LangOptions &>(getLangOpts()).CurrentModule = "";
Interface = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc},
Module::AllVisible,
/*IsInclusionDirective=*/false);
const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName;
if (!Interface) {
Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName;
// Create an empty module interface unit for error recovery.
Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName);
} else {
Mod = Map.createModuleForImplementationUnit(ModuleLoc, ModuleName);
}
} break;
case ModuleDeclKind::PartitionImplementation:
// Create an interface, but note that it is an implementation
// unit.
Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName);
Mod->Kind = Module::ModulePartitionImplementation;
break;
}
if (!this->TheGlobalModuleFragment) {
ModuleScopes.push_back({});
if (getLangOpts().ModulesLocalVisibility)
ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
} else {
// We're done with the global module fragment now.
ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global);
}
// Switch from the global module fragment (if any) to the named module.
ModuleScopes.back().BeginLoc = StartLoc;
ModuleScopes.back().Module = Mod;
VisibleModules.setVisible(Mod, ModuleLoc);
// From now on, we have an owning module for all declarations we see.
// In C++20 modules, those declaration would be reachable when imported
// unless explicitily exported.
// Otherwise, those declarations are module-private unless explicitly
// exported.
auto *TU = Context.getTranslationUnitDecl();
TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported);
TU->setLocalOwningModule(Mod);
// We are in the module purview, but before any other (non import)
// statements, so imports are allowed.
ImportState = ModuleImportState::ImportAllowed;
getASTContext().setCurrentNamedModule(Mod);
if (auto *Listener = getASTMutationListener())
Listener->EnteringModulePurview();
// We already potentially made an implicit import (in the case of a module
// implementation unit importing its interface). Make this module visible
// and return the import decl to be added to the current TU.
if (Interface) {
HadImportedNamedModules = true;
makeTransitiveImportsVisible(getASTContext(), VisibleModules, Interface,
Mod, ModuleLoc,
/*IsImportingPrimaryModuleInterface=*/true);
// Make the import decl for the interface in the impl module.
ImportDecl *Import = ImportDecl::Create(Context, CurContext, ModuleLoc,
Interface, Path[0].getLoc());
CurContext->addDecl(Import);
// Sequence initialization of the imported module before that of the current
// module, if any.
Context.addModuleInitializer(ModuleScopes.back().Module, Import);
Mod->Imports.insert(Interface); // As if we imported it.
// Also save this as a shortcut to checking for decls in the interface
ThePrimaryInterface = Interface;
// If we made an implicit import of the module interface, then return the
// imported module decl.
return ConvertDeclToDeclGroup(Import);
}
return nullptr;
}
Sema::DeclGroupPtrTy
Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc,
SourceLocation PrivateLoc) {
// C++20 [basic.link]/2:
// A private-module-fragment shall appear only in a primary module
// interface unit.
switch (ModuleScopes.empty() ? Module::ExplicitGlobalModuleFragment
: ModuleScopes.back().Module->Kind) {
case Module::ModuleMapModule:
case Module::ExplicitGlobalModuleFragment:
case Module::ImplicitGlobalModuleFragment:
case Module::ModulePartitionImplementation:
case Module::ModulePartitionInterface:
case Module::ModuleHeaderUnit:
Diag(PrivateLoc, diag::err_private_module_fragment_not_module);
return nullptr;
case Module::PrivateModuleFragment:
Diag(PrivateLoc, diag::err_private_module_fragment_redefined);
Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition);
return nullptr;
case Module::ModuleImplementationUnit:
Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface);
Diag(ModuleScopes.back().BeginLoc,
diag::note_not_module_interface_add_export)
<< FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export ");
return nullptr;
case Module::ModuleInterfaceUnit:
break;
}
// FIXME: Check that this translation unit does not import any partitions;
// such imports would violate [basic.link]/2's "shall be the only module unit"
// restriction.
// We've finished the public fragment of the translation unit.
ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal);
auto &Map = PP.getHeaderSearchInfo().getModuleMap();
Module *PrivateModuleFragment =
Map.createPrivateModuleFragmentForInterfaceUnit(
ModuleScopes.back().Module, PrivateLoc);
assert(PrivateModuleFragment && "module creation should not fail");
// Enter the scope of the private module fragment.
ModuleScopes.push_back({});
ModuleScopes.back().BeginLoc = ModuleLoc;
ModuleScopes.back().Module = PrivateModuleFragment;
VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc);
// All declarations created from now on are scoped to the private module
// fragment (and are neither visible nor reachable in importers of the module
// interface).
auto *TU = Context.getTranslationUnitDecl();
TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate);
TU->setLocalOwningModule(PrivateModuleFragment);
// FIXME: Consider creating an explicit representation of this declaration.
return nullptr;
}
DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc,
SourceLocation ExportLoc,
SourceLocation ImportLoc, ModuleIdPath Path,
bool IsPartition) {
assert((!IsPartition || getLangOpts().CPlusPlusModules) &&
"partition seen in non-C++20 code?");
// For a C++20 module name, flatten into a single identifier with the source
// location of the first component.
IdentifierLoc ModuleNameLoc;
std::string ModuleName;
if (IsPartition) {
// We already checked that we are in a module purview in the parser.
assert(!ModuleScopes.empty() && "in a module purview, but no module?");
Module *NamedMod = ModuleScopes.back().Module;
// If we are importing into a partition, find the owning named module,
// otherwise, the name of the importing named module.
ModuleName = NamedMod->getPrimaryModuleInterfaceName().str();
ModuleName += ":";
ModuleName += stringFromPath(Path);
ModuleNameLoc =
IdentifierLoc(Path[0].getLoc(), PP.getIdentifierInfo(ModuleName));
Path = ModuleIdPath(ModuleNameLoc);
} else if (getLangOpts().CPlusPlusModules) {
ModuleName = stringFromPath(Path);
ModuleNameLoc =
IdentifierLoc(Path[0].getLoc(), PP.getIdentifierInfo(ModuleName));
Path = ModuleIdPath(ModuleNameLoc);
}
// Diagnose self-import before attempting a load.
// [module.import]/9
// A module implementation unit of a module M that is not a module partition
// shall not contain a module-import-declaration nominating M.
// (for an implementation, the module interface is imported implicitly,
// but that's handled in the module decl code).
if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() &&
getCurrentModule()->Name == ModuleName) {
Diag(ImportLoc, diag::err_module_self_import_cxx20)
<< ModuleName << currentModuleIsImplementation();
return true;
}
Module *Mod = getModuleLoader().loadModule(
ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false);
if (!Mod)
return true;
if (!Mod->isInterfaceOrPartition() && !ModuleName.empty() &&
!getLangOpts().ObjC) {
Diag(ImportLoc, diag::err_module_import_non_interface_nor_parition)
<< ModuleName;
return true;
}
return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path);
}
/// Determine whether \p D is lexically within an export-declaration.
static const ExportDecl *getEnclosingExportDecl(const Decl *D) {
for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent())
if (auto *ED = dyn_cast<ExportDecl>(DC))
return ED;
return nullptr;
}
DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc,
SourceLocation ExportLoc,
SourceLocation ImportLoc, Module *Mod,
ModuleIdPath Path) {
if (Mod->isHeaderUnit())
Diag(ImportLoc, diag::warn_experimental_header_unit);
if (Mod->isNamedModule())
makeTransitiveImportsVisible(getASTContext(), VisibleModules, Mod,
getCurrentModule(), ImportLoc);
else
VisibleModules.setVisible(Mod, ImportLoc);
assert((!Mod->isModulePartitionImplementation() || getCurrentModule()) &&
"We can only import a partition unit in a named module.");
if (Mod->isModulePartitionImplementation() &&
getCurrentModule()->isModuleInterfaceUnit())
Diag(ImportLoc,
diag::warn_import_implementation_partition_unit_in_interface_unit)
<< Mod->Name;
checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
// FIXME: we should support importing a submodule within a different submodule
// of the same top-level module. Until we do, make it an error rather than
// silently ignoring the import.
// FIXME: Should we warn on a redundant import of the current module?
if (Mod->isForBuilding(getLangOpts())) {
Diag(ImportLoc, getLangOpts().isCompilingModule()
? diag::err_module_self_import
: diag::err_module_import_in_implementation)
<< Mod->getFullModuleName() << getLangOpts().CurrentModule;
}
SmallVector<SourceLocation, 2> IdentifierLocs;
if (Path.empty()) {
// If this was a header import, pad out with dummy locations.
// FIXME: Pass in and use the location of the header-name token in this
// case.
for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent)
IdentifierLocs.push_back(SourceLocation());
} else if (getLangOpts().CPlusPlusModules && !Mod->Parent) {
// A single identifier for the whole name.
IdentifierLocs.push_back(Path[0].getLoc());
} else {
Module *ModCheck = Mod;
for (unsigned I = 0, N = Path.size(); I != N; ++I) {
// If we've run out of module parents, just drop the remaining
// identifiers. We need the length to be consistent.
if (!ModCheck)
break;
ModCheck = ModCheck->Parent;
IdentifierLocs.push_back(Path[I].getLoc());
}
}
ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc,
Mod, IdentifierLocs);
CurContext->addDecl(Import);
// Sequence initialization of the imported module before that of the current
// module, if any.
if (!ModuleScopes.empty())
Context.addModuleInitializer(ModuleScopes.back().Module, Import);
// A module (partition) implementation unit shall not be exported.
if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() &&
Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) {
Diag(ExportLoc, diag::err_export_partition_impl)
<< SourceRange(ExportLoc, Path.back().getLoc());
} else if (ExportLoc.isValid() &&
(ModuleScopes.empty() || currentModuleIsImplementation())) {
// [module.interface]p1:
// An export-declaration shall inhabit a namespace scope and appear in the
// purview of a module interface unit.
Diag(ExportLoc, diag::err_export_not_in_module_interface);
} else if (!ModuleScopes.empty()) {
// Re-export the module if the imported module is exported.
// Note that we don't need to add re-exported module to Imports field
// since `Exports` implies the module is imported already.
if (ExportLoc.isValid() || getEnclosingExportDecl(Import))
getCurrentModule()->Exports.emplace_back(Mod, false);
else
getCurrentModule()->Imports.insert(Mod);
}
HadImportedNamedModules = true;
return Import;
}
void Sema::ActOnAnnotModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
BuildModuleInclude(DirectiveLoc, Mod);
}
void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
// Determine whether we're in the #include buffer for a module. The #includes
// in that buffer do not qualify as module imports; they're just an
// implementation detail of us building the module.
//
// FIXME: Should we even get ActOnAnnotModuleInclude calls for those?
bool IsInModuleIncludes =
TUKind == TU_ClangModule &&
getSourceManager().isWrittenInMainFile(DirectiveLoc);
// If we are really importing a module (not just checking layering) due to an
// #include in the main file, synthesize an ImportDecl.
if (getLangOpts().Modules && !IsInModuleIncludes) {
TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
DirectiveLoc, Mod,
DirectiveLoc);
if (!ModuleScopes.empty())
Context.addModuleInitializer(ModuleScopes.back().Module, ImportD);
TU->addDecl(ImportD);
Consumer.HandleImplicitImportDecl(ImportD);
}
getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc);
VisibleModules.setVisible(Mod, DirectiveLoc);
if (getLangOpts().isCompilingModule()) {
Module *ThisModule = PP.getHeaderSearchInfo().lookupModule(
getLangOpts().CurrentModule, DirectiveLoc, false, false);
(void)ThisModule;
assert(ThisModule && "was expecting a module if building one");
}
}
void Sema::ActOnAnnotModuleBegin(SourceLocation DirectiveLoc, Module *Mod) {
checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
ModuleScopes.push_back({});
ModuleScopes.back().Module = Mod;
if (getLangOpts().ModulesLocalVisibility)
ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
VisibleModules.setVisible(Mod, DirectiveLoc);
// The enclosing context is now part of this module.
// FIXME: Consider creating a child DeclContext to hold the entities
// lexically within the module.
if (getLangOpts().trackLocalOwningModule()) {
for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
cast<Decl>(DC)->setModuleOwnershipKind(
getLangOpts().ModulesLocalVisibility
? Decl::ModuleOwnershipKind::VisibleWhenImported
: Decl::ModuleOwnershipKind::Visible);
cast<Decl>(DC)->setLocalOwningModule(Mod);
}
}
}
void Sema::ActOnAnnotModuleEnd(SourceLocation EomLoc, Module *Mod) {
if (getLangOpts().ModulesLocalVisibility) {
VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules);
// Leaving a module hides namespace names, so our visible namespace cache
// is now out of date.
VisibleNamespaceCache.clear();
}
assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod &&
"left the wrong module scope");
ModuleScopes.pop_back();
// We got to the end of processing a local module. Create an
// ImportDecl as we would for an imported module.
FileID File = getSourceManager().getFileID(EomLoc);
SourceLocation DirectiveLoc;
if (EomLoc == getSourceManager().getLocForEndOfFile(File)) {
// We reached the end of a #included module header. Use the #include loc.
assert(File != getSourceManager().getMainFileID() &&
"end of submodule in main source file");
DirectiveLoc = getSourceManager().getIncludeLoc(File);
} else {
// We reached an EOM pragma. Use the pragma location.
DirectiveLoc = EomLoc;
}
BuildModuleInclude(DirectiveLoc, Mod);
// Any further declarations are in whatever module we returned to.
if (getLangOpts().trackLocalOwningModule()) {
// The parser guarantees that this is the same context that we entered
// the module within.
for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
cast<Decl>(DC)->setLocalOwningModule(getCurrentModule());
if (!getCurrentModule())
cast<Decl>(DC)->setModuleOwnershipKind(
Decl::ModuleOwnershipKind::Unowned);
}
}
}
void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
Module *Mod) {
// Bail if we're not allowed to implicitly import a module here.
if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery ||
VisibleModules.isVisible(Mod))
return;
// Create the implicit import declaration.
TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
Loc, Mod, Loc);
TU->addDecl(ImportD);
Consumer.HandleImplicitImportDecl(ImportD);
// Make the module visible.
getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
VisibleModules.setVisible(Mod, Loc);
}
Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
SourceLocation LBraceLoc) {
ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc);
// Set this temporarily so we know the export-declaration was braced.
D->setRBraceLoc(LBraceLoc);
CurContext->addDecl(D);
PushDeclContext(S, D);
// C++2a [module.interface]p1:
// An export-declaration shall appear only [...] in the purview of a module
// interface unit. An export-declaration shall not appear directly or
// indirectly within [...] a private-module-fragment.
if (!getLangOpts().HLSL) {
if (!isCurrentModulePurview()) {
Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0;
D->setInvalidDecl();
return D;
} else if (currentModuleIsImplementation()) {
Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1;
Diag(ModuleScopes.back().BeginLoc,
diag::note_not_module_interface_add_export)
<< FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export ");
D->setInvalidDecl();
return D;
} else if (ModuleScopes.back().Module->Kind ==
Module::PrivateModuleFragment) {
Diag(ExportLoc, diag::err_export_in_private_module_fragment);
Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment);
D->setInvalidDecl();
return D;
}
}
for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) {
if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
// An export-declaration shall not appear directly or indirectly within
// an unnamed namespace [...]
if (ND->isAnonymousNamespace()) {
Diag(ExportLoc, diag::err_export_within_anonymous_namespace);
Diag(ND->getLocation(), diag::note_anonymous_namespace);
// Don't diagnose internal-linkage declarations in this region.
D->setInvalidDecl();
return D;
}
// A declaration is exported if it is [...] a namespace-definition
// that contains an exported declaration.
//
// Defer exporting the namespace until after we leave it, in order to
// avoid marking all subsequent declarations in the namespace as exported.
if (!getLangOpts().HLSL && !DeferredExportedNamespaces.insert(ND).second)
break;
}
}
// [...] its declaration or declaration-seq shall not contain an
// export-declaration.
if (auto *ED = getEnclosingExportDecl(D)) {
Diag(ExportLoc, diag::err_export_within_export);
if (ED->hasBraces())
Diag(ED->getLocation(), diag::note_export);
D->setInvalidDecl();
return D;
}
if (!getLangOpts().HLSL)
D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
return D;
}
static bool checkExportedDecl(Sema &, Decl *, SourceLocation);
/// Check that it's valid to export all the declarations in \p DC.
static bool checkExportedDeclContext(Sema &S, DeclContext *DC,
SourceLocation BlockStart) {
bool AllUnnamed = true;
for (auto *D : DC->decls())
AllUnnamed &= checkExportedDecl(S, D, BlockStart);
return AllUnnamed;
}
/// Check that it's valid to export \p D.
static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) {
// HLSL: export declaration is valid only on functions
if (S.getLangOpts().HLSL) {
// Export-within-export was already diagnosed in ActOnStartExportDecl
if (!isa<FunctionDecl, ExportDecl>(D)) {
S.Diag(D->getBeginLoc(), diag::err_hlsl_export_not_on_function);
D->setInvalidDecl();
return false;
}
}
// C++20 [module.interface]p3:
// [...] it shall not declare a name with internal linkage.
bool HasName = false;
if (auto *ND = dyn_cast<NamedDecl>(D)) {
// Don't diagnose anonymous union objects; we'll diagnose their members
// instead.
HasName = (bool)ND->getDeclName();
if (HasName && ND->getFormalLinkage() == Linkage::Internal) {
S.Diag(ND->getLocation(), diag::err_export_internal) << ND;
if (BlockStart.isValid())
S.Diag(BlockStart, diag::note_export);
return false;
}
}
// C++2a [module.interface]p5:
// all entities to which all of the using-declarators ultimately refer
// shall have been introduced with a name having external linkage
if (auto *USD = dyn_cast<UsingShadowDecl>(D)) {
NamedDecl *Target = USD->getUnderlyingDecl();
Linkage Lk = Target->getFormalLinkage();
if (Lk == Linkage::Internal || Lk == Linkage::Module) {
S.Diag(USD->getLocation(), diag::err_export_using_internal)
<< (Lk == Linkage::Internal ? 0 : 1) << Target;
S.Diag(Target->getLocation(), diag::note_using_decl_target);
if (BlockStart.isValid())
S.Diag(BlockStart, diag::note_export);
return false;
}
}
// Recurse into namespace-scope DeclContexts. (Only namespace-scope
// declarations are exported).
if (auto *DC = dyn_cast<DeclContext>(D)) {
if (!isa<NamespaceDecl>(D))
return true;
if (auto *ND = dyn_cast<NamedDecl>(D)) {
if (!ND->getDeclName()) {
S.Diag(ND->getLocation(), diag::err_export_anon_ns_internal);
if (BlockStart.isValid())
S.Diag(BlockStart, diag::note_export);
return false;
} else if (!DC->decls().empty() &&
DC->getRedeclContext()->isFileContext()) {
return checkExportedDeclContext(S, DC, BlockStart);
}
}
}
return true;
}
Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) {
auto *ED = cast<ExportDecl>(D);
if (RBraceLoc.isValid())
ED->setRBraceLoc(RBraceLoc);
PopDeclContext();
if (!D->isInvalidDecl()) {
SourceLocation BlockStart =
ED->hasBraces() ? ED->getBeginLoc() : SourceLocation();
for (auto *Child : ED->decls()) {
checkExportedDecl(*this, Child, BlockStart);
if (auto *FD = dyn_cast<FunctionDecl>(Child)) {
// [dcl.inline]/7
// If an inline function or variable that is attached to a named module
// is declared in a definition domain, it shall be defined in that
// domain.
// So, if the current declaration does not have a definition, we must
// check at the end of the TU (or when the PMF starts) to see that we
// have a definition at that point.
if (FD->isInlineSpecified() && !FD->isDefined())
PendingInlineFuncDecls.insert(FD);
}
}
}
// Anything exported from a module should never be considered unused.
for (auto *Exported : ED->decls())
Exported->markUsed(getASTContext());
return D;
}
Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc) {
// We shouldn't create new global module fragment if there is already
// one.
if (!TheGlobalModuleFragment) {
ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap();
TheGlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit(
BeginLoc, getCurrentModule());
}
assert(TheGlobalModuleFragment && "module creation should not fail");
// Enter the scope of the global module.
ModuleScopes.push_back({BeginLoc, TheGlobalModuleFragment,
/*OuterVisibleModules=*/{}});
VisibleModules.setVisible(TheGlobalModuleFragment, BeginLoc);
return TheGlobalModuleFragment;
}
void Sema::PopGlobalModuleFragment() {
assert(!ModuleScopes.empty() &&
getCurrentModule()->isExplicitGlobalModule() &&
"left the wrong module scope, which is not global module fragment");
ModuleScopes.pop_back();
}
Module *Sema::PushImplicitGlobalModuleFragment(SourceLocation BeginLoc) {
if (!TheImplicitGlobalModuleFragment) {
ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap();
TheImplicitGlobalModuleFragment =
Map.createImplicitGlobalModuleFragmentForModuleUnit(BeginLoc,
getCurrentModule());
}
assert(TheImplicitGlobalModuleFragment && "module creation should not fail");
// Enter the scope of the global module.
ModuleScopes.push_back({BeginLoc, TheImplicitGlobalModuleFragment,
/*OuterVisibleModules=*/{}});
VisibleModules.setVisible(TheImplicitGlobalModuleFragment, BeginLoc);
return TheImplicitGlobalModuleFragment;
}
void Sema::PopImplicitGlobalModuleFragment() {
assert(!ModuleScopes.empty() &&
getCurrentModule()->isImplicitGlobalModule() &&
"left the wrong module scope, which is not global module fragment");
ModuleScopes.pop_back();
}
bool Sema::isCurrentModulePurview() const {
if (!getCurrentModule())
return false;
/// Does this Module scope describe part of the purview of a standard named
/// C++ module?
switch (getCurrentModule()->Kind) {
case Module::ModuleInterfaceUnit:
case Module::ModuleImplementationUnit:
case Module::ModulePartitionInterface:
case Module::ModulePartitionImplementation:
case Module::PrivateModuleFragment:
case Module::ImplicitGlobalModuleFragment:
return true;
default:
return false;
}
}
//===----------------------------------------------------------------------===//
// Checking Exposure in modules //
//===----------------------------------------------------------------------===//
namespace {
class ExposureChecker {
public:
ExposureChecker(Sema &S) : SemaRef(S) {}
bool checkExposure(const VarDecl *D, bool Diag);
bool checkExposure(const CXXRecordDecl *D, bool Diag);
bool checkExposure(const Stmt *S, bool Diag);
bool checkExposure(const FunctionDecl *D, bool Diag);
bool checkExposure(const NamedDecl *D, bool Diag);
void checkExposureInContext(const DeclContext *DC);
bool isExposureCandidate(const NamedDecl *D);
bool isTULocal(QualType Ty);
bool isTULocal(const NamedDecl *ND);
bool isTULocal(const Expr *E);
Sema &SemaRef;
private:
llvm::DenseSet<const NamedDecl *> ExposureSet;
llvm::DenseSet<const NamedDecl *> KnownNonExposureSet;
};
bool ExposureChecker::isTULocal(QualType Ty) {
// [basic.link]p15:
// An entity is TU-local if it is
// - a type, type alias, namespace, namespace alias, function, variable, or
// template that
// -- has internal linkage, or
return Ty->getLinkage() == Linkage::Internal;
// TODO:
// [basic.link]p15.2:
// a type with no name that is defined outside a class-specifier, function
// body, or initializer or is introduced by a defining-type-specifier that
// is used to declare only TU-local entities,
}
bool ExposureChecker::isTULocal(const NamedDecl *D) {
if (!D)
return false;
// [basic.link]p15:
// An entity is TU-local if it is
// - a type, type alias, namespace, namespace alias, function, variable, or
// template that
// -- has internal linkage, or
if (D->getLinkageInternal() == Linkage::Internal)
return true;
if (D->isInAnonymousNamespace())
return true;
// [basic.link]p15.1.2:
// does not have a name with linkage and is declared, or introduced by a
// lambda-expression, within the definition of a TU-local entity,
if (D->getLinkageInternal() == Linkage::None)
if (auto *ND = dyn_cast<NamedDecl>(D->getDeclContext());
ND && isTULocal(ND))
return true;
// [basic.link]p15.3, p15.4:
// - a specialization of a TU-local template,
// - a specialization of a template with any TU-local template argument, or
ArrayRef<TemplateArgument> TemplateArgs;
NamedDecl *PrimaryTemplate = nullptr;
if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
TemplateArgs = CTSD->getTemplateArgs().asArray();
PrimaryTemplate = CTSD->getSpecializedTemplate();
if (isTULocal(PrimaryTemplate))
return true;
} else if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(D)) {
TemplateArgs = VTSD->getTemplateArgs().asArray();
PrimaryTemplate = VTSD->getSpecializedTemplate();
if (isTULocal(PrimaryTemplate))
return true;
} else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
if (auto *TAList = FD->getTemplateSpecializationArgs())
TemplateArgs = TAList->asArray();
PrimaryTemplate = FD->getPrimaryTemplate();
if (isTULocal(PrimaryTemplate))
return true;
}
if (!PrimaryTemplate)
// Following off, we only check for specializations.
return false;
if (KnownNonExposureSet.count(D))
return false;
for (auto &TA : TemplateArgs) {
switch (TA.getKind()) {
case TemplateArgument::Type:
if (isTULocal(TA.getAsType()))
return true;
break;
case TemplateArgument::Declaration:
if (isTULocal(TA.getAsDecl()))
return true;
break;
default:
break;
}
}
// [basic.link]p15.5
// - a specialization of a template whose (possibly instantiated) declaration
// is an exposure.
if (ExposureSet.count(PrimaryTemplate) ||
checkExposure(PrimaryTemplate, /*Diag=*/false))
return true;
// Avoid calling checkExposure again since it is expensive.
KnownNonExposureSet.insert(D);
return false;
}
bool ExposureChecker::isTULocal(const Expr *E) {
if (!E)
return false;
// [basic.link]p16:
// A value or object is TU-local if either
// - it is of TU-local type,
if (isTULocal(E->getType()))
return true;
E = E->IgnoreParenImpCasts();
// [basic.link]p16.2:
// - it is, or is a pointer to, a TU-local function or the object associated
// with a TU-local variable,
// - it is an object of class or array type and any of its subobjects or any
// of the objects or functions to which its non-static data members of
// reference type refer is TU-local and is usable in constant expressions, or
// FIXME: But how can we know the value of pointers or arrays at compile time?
if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
if (auto *FD = dyn_cast_or_null<FunctionDecl>(DRE->getFoundDecl()))
return isTULocal(FD);
else if (auto *VD = dyn_cast_or_null<VarDecl>(DRE->getFoundDecl()))
return isTULocal(VD);
else if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(DRE->getFoundDecl()))
return isTULocal(RD);
}
// TODO:
// [basic.link]p16.4:
// it is a reflection value that represents...
return false;
}
bool ExposureChecker::isExposureCandidate(const NamedDecl *D) {
if (!D)
return false;
// [basic.link]p17:
// If a (possibly instantiated) declaration of, or a deduction guide for,
// a non-TU-local entity in a module interface unit
// (outside the private-module-fragment, if any) or
// module partition is an exposure, the program is ill-formed.
Module *M = D->getOwningModule();
if (!M || !M->isInterfaceOrPartition())
return false;
if (D->isImplicit())
return false;
// [basic.link]p14:
// A declaration is an exposure if it either names a TU-local entity
// (defined below), ignoring:
// ...
// - friend declarations in a class definition
if (D->getFriendObjectKind() &&
isa<CXXRecordDecl>(D->getLexicalDeclContext()))
return false;
return true;
}
bool ExposureChecker::checkExposure(const NamedDecl *D, bool Diag) {
if (!isExposureCandidate(D))
return false;
if (auto *FD = dyn_cast<FunctionDecl>(D))
return checkExposure(FD, Diag);
if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D))
return checkExposure(FTD->getTemplatedDecl(), Diag);
if (auto *VD = dyn_cast<VarDecl>(D))
return checkExposure(VD, Diag);
if (auto *VTD = dyn_cast<VarTemplateDecl>(D))
return checkExposure(VTD->getTemplatedDecl(), Diag);
if (auto *RD = dyn_cast<CXXRecordDecl>(D))
return checkExposure(RD, Diag);
if (auto *CTD = dyn_cast<ClassTemplateDecl>(D))
return checkExposure(CTD->getTemplatedDecl(), Diag);
return false;
}
bool ExposureChecker::checkExposure(const FunctionDecl *FD, bool Diag) {
bool IsExposure = false;
if (isTULocal(FD->getReturnType())) {
IsExposure = true;
if (Diag)
SemaRef.Diag(FD->getReturnTypeSourceRange().getBegin(),
diag::warn_exposure)
<< FD->getReturnType();
}
for (ParmVarDecl *Parms : FD->parameters())
if (isTULocal(Parms->getType())) {
IsExposure = true;
if (Diag)
SemaRef.Diag(Parms->getLocation(), diag::warn_exposure)
<< Parms->getType();
}
bool IsImplicitInstantiation =
FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation;
// [basic.link]p14:
// A declaration is an exposure if it either names a TU-local entity
// (defined below), ignoring:
// - the function-body for a non-inline function or function template
// (but not the deduced return
// type for a (possibly instantiated) definition of a function with a
// declared return type that uses a placeholder type
// ([dcl.spec.auto])),
Diag &=
(FD->isInlined() || IsImplicitInstantiation) && !FD->isDependentContext();
IsExposure |= checkExposure(FD->getBody(), Diag);
if (IsExposure)
ExposureSet.insert(FD);
return IsExposure;
}
bool ExposureChecker::checkExposure(const VarDecl *VD, bool Diag) {
bool IsExposure = false;
// [basic.link]p14:
// A declaration is an exposure if it either names a TU-local entity (defined
// below), ignoring:
// ...
// or defines a constexpr variable initialized to a TU-local value (defined
// below).
if (VD->isConstexpr() && isTULocal(VD->getInit())) {
IsExposure = true;
if (Diag)
SemaRef.Diag(VD->getInit()->getExprLoc(), diag::warn_exposure)
<< VD->getInit();
}
if (isTULocal(VD->getType())) {
IsExposure = true;
if (Diag)
SemaRef.Diag(VD->getLocation(), diag::warn_exposure) << VD->getType();
}
// [basic.link]p14:
// ..., ignoring:
// - the initializer for a variable or variable template (but not the
// variable's type),
//
// Note: although the spec says to ignore the initializer for all variable,
// for the code we generated now for inline variables, it is dangerous if the
// initializer of an inline variable is TULocal.
Diag &= !VD->getDeclContext()->isDependentContext() && VD->isInline();
IsExposure |= checkExposure(VD->getInit(), Diag);
if (IsExposure)
ExposureSet.insert(VD);
return IsExposure;
}
bool ExposureChecker::checkExposure(const CXXRecordDecl *RD, bool Diag) {
if (!RD->hasDefinition())
return false;
bool IsExposure = false;
for (CXXMethodDecl *Method : RD->methods())
IsExposure |= checkExposure(Method, Diag);
for (FieldDecl *FD : RD->fields()) {
if (isTULocal(FD->getType())) {
IsExposure = true;
if (Diag)
SemaRef.Diag(FD->getLocation(), diag::warn_exposure) << FD->getType();
}
}
for (const CXXBaseSpecifier &Base : RD->bases()) {
if (isTULocal(Base.getType())) {
IsExposure = true;
if (Diag)
SemaRef.Diag(Base.getBaseTypeLoc(), diag::warn_exposure)
<< Base.getType();
}
}
if (IsExposure)
ExposureSet.insert(RD);
return IsExposure;
}
class ReferenceTULocalChecker : public DynamicRecursiveASTVisitor {
public:
using CallbackTy = std::function<void(DeclRefExpr *, ValueDecl *)>;
ReferenceTULocalChecker(ExposureChecker &C, CallbackTy &&Callback)
: Checker(C), Callback(std::move(Callback)) {}
bool VisitDeclRefExpr(DeclRefExpr *DRE) override {
ValueDecl *Referenced = DRE->getDecl();
if (!Referenced)
return true;
if (!Checker.isTULocal(Referenced))
// We don't care if the referenced declaration is not TU-local.
return true;
Qualifiers Qual = DRE->getType().getQualifiers();
// [basic.link]p14:
// A declaration is an exposure if it either names a TU-local entity
// (defined below), ignoring:
// ...
// - any reference to a non-volatile const object ...
if (Qual.hasConst() && !Qual.hasVolatile())
return true;
// [basic.link]p14:
// ..., ignoring:
// ...
// (p14.4) - ... or reference with internal or no linkage initialized with
// a constant expression that is not an odr-use
ASTContext &Context = Referenced->getASTContext();
Linkage L = Referenced->getLinkageInternal();
if (DRE->isNonOdrUse() && (L == Linkage::Internal || L == Linkage::None))
if (auto *VD = dyn_cast<VarDecl>(Referenced);
VD && VD->getInit() && !VD->getInit()->isValueDependent() &&
VD->getInit()->isConstantInitializer(Context, /*IsForRef=*/false))
return true;
Callback(DRE, Referenced);
return true;
}
ExposureChecker &Checker;
CallbackTy Callback;
};
bool ExposureChecker::checkExposure(const Stmt *S, bool Diag) {
if (!S)
return false;
bool HasReferencedTULocals = false;
ReferenceTULocalChecker Checker(
*this, [this, &HasReferencedTULocals, Diag](DeclRefExpr *DRE,
ValueDecl *Referenced) {
if (Diag) {
SemaRef.Diag(DRE->getExprLoc(), diag::warn_exposure) << Referenced;
}
HasReferencedTULocals = true;
});
Checker.TraverseStmt(const_cast<Stmt *>(S));
return HasReferencedTULocals;
}
void ExposureChecker::checkExposureInContext(const DeclContext *DC) {
for (auto *TopD : DC->noload_decls()) {
auto *TopND = dyn_cast<NamedDecl>(TopD);
if (!TopND)
continue;
if (auto *Namespace = dyn_cast<NamespaceDecl>(TopND)) {
checkExposureInContext(Namespace);
continue;
}
// [basic.link]p17:
// If a (possibly instantiated) declaration of, or a deduction guide for,
// a non-TU-local entity in a module interface unit
// (outside the private-module-fragment, if any) or
// module partition is an exposure, the program is ill-formed.
if (!TopND->isFromASTFile() && isExposureCandidate(TopND) &&
!isTULocal(TopND))
checkExposure(TopND, /*Diag=*/true);
}
}
} // namespace
void Sema::checkExposure(const TranslationUnitDecl *TU) {
if (!TU)
return;
ExposureChecker Checker(*this);
Module *M = TU->getOwningModule();
if (M && M->isInterfaceOrPartition())
Checker.checkExposureInContext(TU);
// [basic.link]p18:
// If a declaration that appears in one translation unit names a TU-local
// entity declared in another translation unit that is not a header unit,
// the program is ill-formed.
for (auto FDAndInstantiationLocPair : PendingCheckReferenceForTULocal) {
FunctionDecl *FD = FDAndInstantiationLocPair.first;
SourceLocation PointOfInstantiation = FDAndInstantiationLocPair.second;
if (!FD->hasBody())
continue;
ReferenceTULocalChecker(Checker, [&, this](DeclRefExpr *DRE,
ValueDecl *Referenced) {
// A "defect" in current implementation. Now an implicit instantiation of
// a template, the instantiation is considered to be in the same module
// unit as the template instead of the module unit where the instantiation
// happens.
//
// See test/Modules/Exposre-2.cppm for example.
if (!Referenced->isFromASTFile())
return;
if (!Referenced->isInAnotherModuleUnit())
return;
// This is not standard conforming. But given there are too many static
// (inline) functions in headers in existing code, it is more user
// friendly to ignore them temporarily now. maybe we can have another flag
// for this.
if (Referenced->getOwningModule()->isExplicitGlobalModule() &&
isa<FunctionDecl>(Referenced))
return;
Diag(PointOfInstantiation,
diag::warn_reference_tu_local_entity_in_other_tu)
<< FD << Referenced
<< Referenced->getOwningModule()->getTopLevelModuleName();
}).TraverseStmt(FD->getBody());
}
}
void Sema::checkReferenceToTULocalFromOtherTU(
FunctionDecl *FD, SourceLocation PointOfInstantiation) {
// Checking if a declaration have any reference to TU-local entities in other
// TU is expensive. Try to avoid it as much as possible.
if (!FD || !HadImportedNamedModules)
return;
PendingCheckReferenceForTULocal.push_back(
std::make_pair(FD, PointOfInstantiation));
}