Alex Langford 9337594e33
[Support] Don't re-raise signals sent from kernel (#145759)
When an llvm tool crashes (e.g. from a segmentation fault),
SignalHandler will re-raise the signal. The effect is that crash reports
now contain SignalHandler in the stack trace. The crash reports are
still useful, but the presence of SignalHandler can confuse tooling and
automation that deduplicate or analyze crash reports.

rdar://150464802
2025-07-09 14:53:15 -07:00

944 lines
32 KiB
C++

//===- Signals.cpp - Generic Unix Signals Implementation -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines some helpful functions for dealing with the possibility of
// Unix signals occurring while your program is running.
//
//===----------------------------------------------------------------------===//
//
// This file is extremely careful to only do signal-safe things while in a
// signal handler. In particular, memory allocation and acquiring a mutex
// while in a signal handler should never occur. ManagedStatic isn't usable from
// a signal handler for 2 reasons:
//
// 1. Creating a new one allocates.
// 2. The signal handler could fire while llvm_shutdown is being processed, in
// which case the ManagedStatic is in an unknown state because it could
// already have been destroyed, or be in the process of being destroyed.
//
// Modifying the behavior of the signal handlers (such as registering new ones)
// can acquire a mutex, but all this guarantees is that the signal handler
// behavior is only modified by one thread at a time. A signal handler can still
// fire while this occurs!
//
// Adding work to a signal handler requires lock-freedom (and assume atomics are
// always lock-free) because the signal handler could fire while new work is
// being added.
//
//===----------------------------------------------------------------------===//
#include "Unix.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/config.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/Support/ExitCodes.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <string>
#ifdef HAVE_BACKTRACE
#include BACKTRACE_HEADER // For backtrace().
#endif
#include <signal.h>
#include <sys/stat.h>
#include <dlfcn.h>
#if HAVE_MACH_MACH_H
#include <mach/mach.h>
#endif
#ifdef __APPLE__
#include <mach-o/dyld.h>
#endif
#if __has_include(<link.h>)
#include <link.h>
#endif
#ifdef HAVE__UNWIND_BACKTRACE
// FIXME: We should be able to use <unwind.h> for any target that has an
// _Unwind_Backtrace function, but on FreeBSD the configure test passes
// despite the function not existing, and on Android, <unwind.h> conflicts
// with <link.h>.
#ifdef __GLIBC__
#include <unwind.h>
#else
#undef HAVE__UNWIND_BACKTRACE
#endif
#endif
#if ENABLE_BACKTRACES && defined(__MVS__)
#include "llvm/Support/ConvertEBCDIC.h"
#include <__le_cwi.h>
#endif
#if defined(__linux__)
#include <sys/syscall.h>
#endif
using namespace llvm;
static void SignalHandler(int Sig, siginfo_t *Info, void *);
static void InfoSignalHandler(int Sig); // defined below.
using SignalHandlerFunctionType = void (*)();
/// The function to call if ctrl-c is pressed.
static std::atomic<SignalHandlerFunctionType> InterruptFunction = nullptr;
static std::atomic<SignalHandlerFunctionType> InfoSignalFunction = nullptr;
/// The function to call on SIGPIPE (one-time use only).
static std::atomic<SignalHandlerFunctionType> OneShotPipeSignalFunction =
nullptr;
namespace {
/// Signal-safe removal of files.
/// Inserting and erasing from the list isn't signal-safe, but removal of files
/// themselves is signal-safe. Memory is freed when the head is freed, deletion
/// is therefore not signal-safe either.
class FileToRemoveList {
std::atomic<char *> Filename = nullptr;
std::atomic<FileToRemoveList *> Next = nullptr;
FileToRemoveList() = default;
// Not signal-safe.
FileToRemoveList(const std::string &str) : Filename(strdup(str.c_str())) {}
public:
// Not signal-safe.
~FileToRemoveList() {
if (FileToRemoveList *N = Next.exchange(nullptr))
delete N;
if (char *F = Filename.exchange(nullptr))
free(F);
}
// Not signal-safe.
static void insert(std::atomic<FileToRemoveList *> &Head,
const std::string &Filename) {
// Insert the new file at the end of the list.
FileToRemoveList *NewHead = new FileToRemoveList(Filename);
std::atomic<FileToRemoveList *> *InsertionPoint = &Head;
FileToRemoveList *OldHead = nullptr;
while (!InsertionPoint->compare_exchange_strong(OldHead, NewHead)) {
InsertionPoint = &OldHead->Next;
OldHead = nullptr;
}
}
// Not signal-safe.
static void erase(std::atomic<FileToRemoveList *> &Head,
const std::string &Filename) {
// Use a lock to avoid concurrent erase: the comparison would access
// free'd memory.
static ManagedStatic<sys::SmartMutex<true>> Lock;
sys::SmartScopedLock<true> Writer(*Lock);
for (FileToRemoveList *Current = Head.load(); Current;
Current = Current->Next.load()) {
if (char *OldFilename = Current->Filename.load()) {
if (OldFilename != Filename)
continue;
// Leave an empty filename.
OldFilename = Current->Filename.exchange(nullptr);
// The filename might have become null between the time we
// compared it and we exchanged it.
if (OldFilename)
free(OldFilename);
}
}
}
static void removeFile(char *path) {
// Get the status so we can determine if it's a file or directory. If we
// can't stat the file, ignore it.
struct stat buf;
if (stat(path, &buf) != 0)
return;
// If this is not a regular file, ignore it. We want to prevent removal
// of special files like /dev/null, even if the compiler is being run
// with the super-user permissions.
if (!S_ISREG(buf.st_mode))
return;
// Otherwise, remove the file. We ignore any errors here as there is
// nothing else we can do.
unlink(path);
}
// Signal-safe.
static void removeAllFiles(std::atomic<FileToRemoveList *> &Head) {
// If cleanup were to occur while we're removing files we'd have a bad time.
// Make sure we're OK by preventing cleanup from doing anything while we're
// removing files. If cleanup races with us and we win we'll have a leak,
// but we won't crash.
FileToRemoveList *OldHead = Head.exchange(nullptr);
for (FileToRemoveList *currentFile = OldHead; currentFile;
currentFile = currentFile->Next.load()) {
// If erasing was occuring while we're trying to remove files we'd look
// at free'd data. Take away the path and put it back when done.
if (char *path = currentFile->Filename.exchange(nullptr)) {
removeFile(path);
// We're done removing the file, erasing can safely proceed.
currentFile->Filename.exchange(path);
}
}
// We're done removing files, cleanup can safely proceed.
Head.exchange(OldHead);
}
};
static std::atomic<FileToRemoveList *> FilesToRemove = nullptr;
/// Clean up the list in a signal-friendly manner.
/// Recall that signals can fire during llvm_shutdown. If this occurs we should
/// either clean something up or nothing at all, but we shouldn't crash!
struct FilesToRemoveCleanup {
// Not signal-safe.
~FilesToRemoveCleanup() {
FileToRemoveList *Head = FilesToRemove.exchange(nullptr);
if (Head)
delete Head;
}
};
} // namespace
static StringRef Argv0;
/// Signals that represent requested termination. There's no bug or failure, or
/// if there is, it's not our direct responsibility. For whatever reason, our
/// continued execution is no longer desirable.
static const int IntSigs[] = {SIGHUP, SIGINT, SIGTERM, SIGUSR2};
/// Signals that represent that we have a bug, and our prompt termination has
/// been ordered.
static const int KillSigs[] = {SIGILL,
SIGTRAP,
SIGABRT,
SIGFPE,
SIGBUS,
SIGSEGV,
SIGQUIT
#ifdef SIGSYS
,
SIGSYS
#endif
#ifdef SIGXCPU
,
SIGXCPU
#endif
#ifdef SIGXFSZ
,
SIGXFSZ
#endif
#ifdef SIGEMT
,
SIGEMT
#endif
};
/// Signals that represent requests for status.
static const int InfoSigs[] = {SIGUSR1
#ifdef SIGINFO
,
SIGINFO
#endif
};
static const size_t NumSigs = std::size(IntSigs) + std::size(KillSigs) +
std::size(InfoSigs) + 1 /* SIGPIPE */;
static std::atomic<unsigned> NumRegisteredSignals = 0;
static struct {
struct sigaction SA;
int SigNo;
} RegisteredSignalInfo[NumSigs];
#if defined(HAVE_SIGALTSTACK)
// Hold onto both the old and new alternate signal stack so that it's not
// reported as a leak. We don't make any attempt to remove our alt signal
// stack if we remove our signal handlers; that can't be done reliably if
// someone else is also trying to do the same thing.
static stack_t OldAltStack;
LLVM_ATTRIBUTE_USED static void *NewAltStackPointer;
static void CreateSigAltStack() {
const size_t AltStackSize = MINSIGSTKSZ + 64 * 1024;
// If we're executing on the alternate stack, or we already have an alternate
// signal stack that we're happy with, there's nothing for us to do. Don't
// reduce the size, some other part of the process might need a larger stack
// than we do.
if (sigaltstack(nullptr, &OldAltStack) != 0 ||
OldAltStack.ss_flags & SS_ONSTACK ||
(OldAltStack.ss_sp && OldAltStack.ss_size >= AltStackSize))
return;
stack_t AltStack = {};
AltStack.ss_sp = static_cast<char *>(safe_malloc(AltStackSize));
NewAltStackPointer = AltStack.ss_sp; // Save to avoid reporting a leak.
AltStack.ss_size = AltStackSize;
if (sigaltstack(&AltStack, &OldAltStack) != 0)
free(AltStack.ss_sp);
}
#else
static void CreateSigAltStack() {}
#endif
static void RegisterHandlers() { // Not signal-safe.
// The mutex prevents other threads from registering handlers while we're
// doing it. We also have to protect the handlers and their count because
// a signal handler could fire while we're registering handlers.
static ManagedStatic<sys::SmartMutex<true>> SignalHandlerRegistrationMutex;
sys::SmartScopedLock<true> Guard(*SignalHandlerRegistrationMutex);
// If the handlers are already registered, we're done.
if (NumRegisteredSignals.load() != 0)
return;
// Create an alternate stack for signal handling. This is necessary for us to
// be able to reliably handle signals due to stack overflow.
CreateSigAltStack();
enum class SignalKind { IsKill, IsInfo };
auto registerHandler = [&](int Signal, SignalKind Kind) {
unsigned Index = NumRegisteredSignals.load();
assert(Index < std::size(RegisteredSignalInfo) &&
"Out of space for signal handlers!");
struct sigaction NewHandler;
switch (Kind) {
case SignalKind::IsKill:
NewHandler.sa_sigaction = SignalHandler;
NewHandler.sa_flags = SA_NODEFER | SA_RESETHAND | SA_ONSTACK | SA_SIGINFO;
break;
case SignalKind::IsInfo:
NewHandler.sa_handler = InfoSignalHandler;
NewHandler.sa_flags = SA_ONSTACK;
break;
}
sigemptyset(&NewHandler.sa_mask);
// Install the new handler, save the old one in RegisteredSignalInfo.
sigaction(Signal, &NewHandler, &RegisteredSignalInfo[Index].SA);
RegisteredSignalInfo[Index].SigNo = Signal;
++NumRegisteredSignals;
};
for (auto S : IntSigs)
registerHandler(S, SignalKind::IsKill);
for (auto S : KillSigs)
registerHandler(S, SignalKind::IsKill);
if (OneShotPipeSignalFunction)
registerHandler(SIGPIPE, SignalKind::IsKill);
for (auto S : InfoSigs)
registerHandler(S, SignalKind::IsInfo);
}
void sys::unregisterHandlers() {
// Restore all of the signal handlers to how they were before we showed up.
for (unsigned i = 0, e = NumRegisteredSignals.load(); i != e; ++i) {
sigaction(RegisteredSignalInfo[i].SigNo, &RegisteredSignalInfo[i].SA,
nullptr);
--NumRegisteredSignals;
}
}
/// Process the FilesToRemove list.
static void RemoveFilesToRemove() {
FileToRemoveList::removeAllFiles(FilesToRemove);
}
void sys::CleanupOnSignal(uintptr_t Context) {
int Sig = (int)Context;
if (llvm::is_contained(InfoSigs, Sig)) {
InfoSignalHandler(Sig);
return;
}
RemoveFilesToRemove();
if (llvm::is_contained(IntSigs, Sig) || Sig == SIGPIPE)
return;
llvm::sys::RunSignalHandlers();
}
// The signal handler that runs.
static void SignalHandler(int Sig, siginfo_t *Info, void *) {
// Restore the signal behavior to default, so that the program actually
// crashes when we return and the signal reissues. This also ensures that if
// we crash in our signal handler that the program will terminate immediately
// instead of recursing in the signal handler.
sys::unregisterHandlers();
// Unmask all potentially blocked kill signals.
sigset_t SigMask;
sigfillset(&SigMask);
sigprocmask(SIG_UNBLOCK, &SigMask, nullptr);
{
RemoveFilesToRemove();
if (Sig == SIGPIPE)
if (auto OldOneShotPipeFunction =
OneShotPipeSignalFunction.exchange(nullptr))
return OldOneShotPipeFunction();
bool IsIntSig = llvm::is_contained(IntSigs, Sig);
if (IsIntSig)
if (auto OldInterruptFunction = InterruptFunction.exchange(nullptr))
return OldInterruptFunction();
if (Sig == SIGPIPE || IsIntSig) {
raise(Sig); // Execute the default handler.
return;
}
}
// Otherwise if it is a fault (like SEGV) run any handler.
llvm::sys::RunSignalHandlers();
#ifdef __s390__
// On S/390, certain signals are delivered with PSW Address pointing to
// *after* the faulting instruction. Simply returning from the signal
// handler would continue execution after that point, instead of
// re-raising the signal. Raise the signal manually in those cases.
if (Sig == SIGILL || Sig == SIGFPE || Sig == SIGTRAP)
raise(Sig);
#endif
#if defined(__linux__)
// Re-raising a signal via `raise` loses the original siginfo. Recent
// versions of linux (>= 3.9) support processes sending a signal to itself
// with arbitrary signal information using a syscall. If this syscall is
// unsupported, errno will be set to EPERM and `raise` will be used instead.
int retval =
syscall(SYS_rt_tgsigqueueinfo, getpid(), syscall(SYS_gettid), Sig, Info);
if (retval != 0 && errno == EPERM)
raise(Sig);
#else
// Signal sent from another userspace process, do not assume that continuing
// the execution would re-raise it.
if (Info->si_pid != getpid() && Info->si_pid != 0)
raise(Sig);
#endif
}
static void InfoSignalHandler(int Sig) {
SaveAndRestore SaveErrnoDuringASignalHandler(errno);
if (SignalHandlerFunctionType CurrentInfoFunction = InfoSignalFunction)
CurrentInfoFunction();
}
void llvm::sys::RunInterruptHandlers() { RemoveFilesToRemove(); }
void llvm::sys::SetInterruptFunction(void (*IF)()) {
InterruptFunction.exchange(IF);
RegisterHandlers();
}
void llvm::sys::SetInfoSignalFunction(void (*Handler)()) {
InfoSignalFunction.exchange(Handler);
RegisterHandlers();
}
void llvm::sys::SetOneShotPipeSignalFunction(void (*Handler)()) {
OneShotPipeSignalFunction.exchange(Handler);
RegisterHandlers();
}
void llvm::sys::DefaultOneShotPipeSignalHandler() {
// Send a special return code that drivers can check for, from sysexits.h.
exit(EX_IOERR);
}
// The public API
bool llvm::sys::RemoveFileOnSignal(StringRef Filename, std::string *ErrMsg) {
// Ensure that cleanup will occur as soon as one file is added.
static ManagedStatic<FilesToRemoveCleanup> FilesToRemoveCleanup;
*FilesToRemoveCleanup;
FileToRemoveList::insert(FilesToRemove, Filename.str());
RegisterHandlers();
return false;
}
// The public API
void llvm::sys::DontRemoveFileOnSignal(StringRef Filename) {
FileToRemoveList::erase(FilesToRemove, Filename.str());
}
/// Add a function to be called when a signal is delivered to the process. The
/// handler can have a cookie passed to it to identify what instance of the
/// handler it is.
void llvm::sys::AddSignalHandler(sys::SignalHandlerCallback FnPtr,
void *Cookie) { // Signal-safe.
insertSignalHandler(FnPtr, Cookie);
RegisterHandlers();
}
#if ENABLE_BACKTRACES && defined(HAVE_BACKTRACE) && \
(defined(__linux__) || defined(__FreeBSD__) || \
defined(__FreeBSD_kernel__) || defined(__NetBSD__) || \
defined(__OpenBSD__) || defined(__DragonFly__))
struct DlIteratePhdrData {
void **StackTrace;
int depth;
bool first;
const char **modules;
intptr_t *offsets;
const char *main_exec_name;
};
static int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *arg) {
DlIteratePhdrData *data = (DlIteratePhdrData *)arg;
const char *name = data->first ? data->main_exec_name : info->dlpi_name;
data->first = false;
for (int i = 0; i < info->dlpi_phnum; i++) {
const auto *phdr = &info->dlpi_phdr[i];
if (phdr->p_type != PT_LOAD)
continue;
intptr_t beg = info->dlpi_addr + phdr->p_vaddr;
intptr_t end = beg + phdr->p_memsz;
for (int j = 0; j < data->depth; j++) {
if (data->modules[j])
continue;
intptr_t addr = (intptr_t)data->StackTrace[j];
if (beg <= addr && addr < end) {
data->modules[j] = name;
data->offsets[j] = addr - info->dlpi_addr;
}
}
}
return 0;
}
#if LLVM_ENABLE_DEBUGLOC_TRACKING_ORIGIN
#if !defined(HAVE_BACKTRACE)
#error DebugLoc origin-tracking currently requires `backtrace()`.
#endif
namespace llvm {
namespace sys {
template <unsigned long MaxDepth>
int getStackTrace(std::array<void *, MaxDepth> &StackTrace) {
return backtrace(StackTrace.data(), MaxDepth);
}
template int getStackTrace<16ul>(std::array<void *, 16ul> &);
} // namespace sys
} // namespace llvm
#endif
/// If this is an ELF platform, we can find all loaded modules and their virtual
/// addresses with dl_iterate_phdr.
static bool findModulesAndOffsets(void **StackTrace, int Depth,
const char **Modules, intptr_t *Offsets,
const char *MainExecutableName,
StringSaver &StrPool) {
DlIteratePhdrData data = {StackTrace, Depth, true,
Modules, Offsets, MainExecutableName};
dl_iterate_phdr(dl_iterate_phdr_cb, &data);
return true;
}
class DSOMarkupPrinter {
llvm::raw_ostream &OS;
const char *MainExecutableName;
size_t ModuleCount = 0;
bool IsFirst = true;
public:
DSOMarkupPrinter(llvm::raw_ostream &OS, const char *MainExecutableName)
: OS(OS), MainExecutableName(MainExecutableName) {}
/// Print llvm-symbolizer markup describing the layout of the given DSO.
void printDSOMarkup(dl_phdr_info *Info) {
ArrayRef<uint8_t> BuildID = findBuildID(Info);
if (BuildID.empty())
return;
OS << format("{{{module:%d:%s:elf:", ModuleCount,
IsFirst ? MainExecutableName : Info->dlpi_name);
for (uint8_t X : BuildID)
OS << format("%02x", X);
OS << "}}}\n";
for (int I = 0; I < Info->dlpi_phnum; I++) {
const auto *Phdr = &Info->dlpi_phdr[I];
if (Phdr->p_type != PT_LOAD)
continue;
uintptr_t StartAddress = Info->dlpi_addr + Phdr->p_vaddr;
uintptr_t ModuleRelativeAddress = Phdr->p_vaddr;
std::array<char, 4> ModeStr = modeStrFromFlags(Phdr->p_flags);
OS << format("{{{mmap:%#016x:%#x:load:%d:%s:%#016x}}}\n", StartAddress,
Phdr->p_memsz, ModuleCount, &ModeStr[0],
ModuleRelativeAddress);
}
IsFirst = false;
ModuleCount++;
}
/// Callback for use with dl_iterate_phdr. The last dl_iterate_phdr argument
/// must be a pointer to an instance of this class.
static int printDSOMarkup(dl_phdr_info *Info, size_t Size, void *Arg) {
static_cast<DSOMarkupPrinter *>(Arg)->printDSOMarkup(Info);
return 0;
}
// Returns the build ID for the given DSO as an array of bytes. Returns an
// empty array if none could be found.
ArrayRef<uint8_t> findBuildID(dl_phdr_info *Info) {
for (int I = 0; I < Info->dlpi_phnum; I++) {
const auto *Phdr = &Info->dlpi_phdr[I];
if (Phdr->p_type != PT_NOTE)
continue;
ArrayRef<uint8_t> Notes(
reinterpret_cast<const uint8_t *>(Info->dlpi_addr + Phdr->p_vaddr),
Phdr->p_memsz);
while (Notes.size() > 12) {
uint32_t NameSize = *reinterpret_cast<const uint32_t *>(Notes.data());
Notes = Notes.drop_front(4);
uint32_t DescSize = *reinterpret_cast<const uint32_t *>(Notes.data());
Notes = Notes.drop_front(4);
uint32_t Type = *reinterpret_cast<const uint32_t *>(Notes.data());
Notes = Notes.drop_front(4);
ArrayRef<uint8_t> Name = Notes.take_front(NameSize);
auto CurPos = reinterpret_cast<uintptr_t>(Notes.data());
uint32_t BytesUntilDesc =
alignToPowerOf2(CurPos + NameSize, 4) - CurPos;
if (BytesUntilDesc >= Notes.size())
break;
Notes = Notes.drop_front(BytesUntilDesc);
ArrayRef<uint8_t> Desc = Notes.take_front(DescSize);
CurPos = reinterpret_cast<uintptr_t>(Notes.data());
uint32_t BytesUntilNextNote =
alignToPowerOf2(CurPos + DescSize, 4) - CurPos;
if (BytesUntilNextNote > Notes.size())
break;
Notes = Notes.drop_front(BytesUntilNextNote);
if (Type == 3 /*NT_GNU_BUILD_ID*/ && Name.size() >= 3 &&
Name[0] == 'G' && Name[1] == 'N' && Name[2] == 'U')
return Desc;
}
}
return {};
}
// Returns a symbolizer markup string describing the permissions on a DSO
// with the given p_flags.
std::array<char, 4> modeStrFromFlags(uint32_t Flags) {
std::array<char, 4> Mode;
char *Cur = &Mode[0];
if (Flags & PF_R)
*Cur++ = 'r';
if (Flags & PF_W)
*Cur++ = 'w';
if (Flags & PF_X)
*Cur++ = 'x';
*Cur = '\0';
return Mode;
}
};
static bool printMarkupContext(llvm::raw_ostream &OS,
const char *MainExecutableName) {
OS << "{{{reset}}}\n";
DSOMarkupPrinter MP(OS, MainExecutableName);
dl_iterate_phdr(DSOMarkupPrinter::printDSOMarkup, &MP);
return true;
}
#elif ENABLE_BACKTRACES && defined(__APPLE__) && defined(__LP64__)
static bool findModulesAndOffsets(void **StackTrace, int Depth,
const char **Modules, intptr_t *Offsets,
const char *MainExecutableName,
StringSaver &StrPool) {
uint32_t NumImgs = _dyld_image_count();
for (uint32_t ImageIndex = 0; ImageIndex < NumImgs; ImageIndex++) {
const char *Name = _dyld_get_image_name(ImageIndex);
intptr_t Slide = _dyld_get_image_vmaddr_slide(ImageIndex);
auto *Header =
(const struct mach_header_64 *)_dyld_get_image_header(ImageIndex);
if (Header == NULL)
continue;
auto Cmd = (const struct load_command *)(&Header[1]);
for (uint32_t CmdNum = 0; CmdNum < Header->ncmds; ++CmdNum) {
uint32_t BaseCmd = Cmd->cmd & ~LC_REQ_DYLD;
if (BaseCmd == LC_SEGMENT_64) {
auto CmdSeg64 = (const struct segment_command_64 *)Cmd;
for (int j = 0; j < Depth; j++) {
if (Modules[j])
continue;
intptr_t Addr = (intptr_t)StackTrace[j];
if ((intptr_t)CmdSeg64->vmaddr + Slide <= Addr &&
Addr < intptr_t(CmdSeg64->vmaddr + CmdSeg64->vmsize + Slide)) {
Modules[j] = Name;
Offsets[j] = Addr - Slide;
}
}
}
Cmd = (const load_command *)(((const char *)Cmd) + (Cmd->cmdsize));
}
}
return true;
}
static bool printMarkupContext(llvm::raw_ostream &OS,
const char *MainExecutableName) {
return false;
}
#else
/// Backtraces are not enabled or we don't yet know how to find all loaded DSOs
/// on this platform.
static bool findModulesAndOffsets(void **StackTrace, int Depth,
const char **Modules, intptr_t *Offsets,
const char *MainExecutableName,
StringSaver &StrPool) {
return false;
}
static bool printMarkupContext(llvm::raw_ostream &OS,
const char *MainExecutableName) {
return false;
}
#endif // ENABLE_BACKTRACES && ... (findModulesAndOffsets variants)
#if ENABLE_BACKTRACES && defined(HAVE__UNWIND_BACKTRACE)
static int unwindBacktrace(void **StackTrace, int MaxEntries) {
if (MaxEntries < 0)
return 0;
// Skip the first frame ('unwindBacktrace' itself).
int Entries = -1;
auto HandleFrame = [&](_Unwind_Context *Context) -> _Unwind_Reason_Code {
// Apparently we need to detect reaching the end of the stack ourselves.
void *IP = (void *)_Unwind_GetIP(Context);
if (!IP)
return _URC_END_OF_STACK;
assert(Entries < MaxEntries && "recursively called after END_OF_STACK?");
if (Entries >= 0)
StackTrace[Entries] = IP;
if (++Entries == MaxEntries)
return _URC_END_OF_STACK;
return _URC_NO_REASON;
};
_Unwind_Backtrace(
[](_Unwind_Context *Context, void *Handler) {
return (*static_cast<decltype(HandleFrame) *>(Handler))(Context);
},
static_cast<void *>(&HandleFrame));
return std::max(Entries, 0);
}
#endif
#if ENABLE_BACKTRACES && defined(__MVS__)
static void zosbacktrace(raw_ostream &OS) {
// A function name in the PPA1 can have length 16k.
constexpr size_t MAX_ENTRY_NAME = UINT16_MAX;
// Limit all other strings to 8 byte.
constexpr size_t MAX_OTHER = 8;
int32_t dsa_format = -1; // Input/Output
void *caaptr = _gtca(); // Input
int32_t member_id; // Output
char compile_unit_name[MAX_OTHER]; // Output
void *compile_unit_address; // Output
void *call_instruction_address = nullptr; // Input/Output
char entry_name[MAX_ENTRY_NAME]; // Output
void *entry_address; // Output
void *callers_instruction_address; // Output
void *callers_dsaptr; // Output
int32_t callers_dsa_format; // Output
char statement_id[MAX_OTHER]; // Output
void *cibptr; // Output
int32_t main_program; // Output
_FEEDBACK fc; // Output
// The DSA pointer is the value of the stack pointer r4.
// __builtin_frame_address() returns a pointer to the stack frame, so the
// stack bias has to be considered to get the expected DSA value.
void *dsaptr = static_cast<char *>(__builtin_frame_address(0)) - 2048;
int count = 0;
OS << " DSA Adr EP +EP DSA "
" Entry\n";
while (1) {
// After the call, these variables contain the length of the string.
int32_t compile_unit_name_length = sizeof(compile_unit_name);
int32_t entry_name_length = sizeof(entry_name);
int32_t statement_id_length = sizeof(statement_id);
// See
// https://www.ibm.com/docs/en/zos/3.1.0?topic=cwicsa6a-celqtbck-also-known-as-celqtbck-64-bit-traceback-service
// for documentation of the parameters.
__CELQTBCK(&dsaptr, &dsa_format, &caaptr, &member_id, &compile_unit_name[0],
&compile_unit_name_length, &compile_unit_address,
&call_instruction_address, &entry_name[0], &entry_name_length,
&entry_address, &callers_instruction_address, &callers_dsaptr,
&callers_dsa_format, &statement_id[0], &statement_id_length,
&cibptr, &main_program, &fc);
if (fc.tok_sev) {
OS << format("error: CELQTBCK returned severity %d message %d\n",
fc.tok_sev, fc.tok_msgno);
break;
}
if (count) { // Omit first entry.
uintptr_t diff = reinterpret_cast<uintptr_t>(call_instruction_address) -
reinterpret_cast<uintptr_t>(entry_address);
OS << format(" %3d. 0x%016lX", count, call_instruction_address);
OS << format(" 0x%016lX +0x%08lX 0x%016lX", entry_address, diff, dsaptr);
SmallString<256> Str;
ConverterEBCDIC::convertToUTF8(StringRef(entry_name, entry_name_length),
Str);
OS << ' ' << Str << '\n';
}
++count;
if (callers_dsaptr) {
dsaptr = callers_dsaptr;
dsa_format = callers_dsa_format;
call_instruction_address = callers_instruction_address;
} else
break;
}
}
#endif
// In the case of a program crash or fault, print out a stack trace so that the
// user has an indication of why and where we died.
//
// On glibc systems we have the 'backtrace' function, which works nicely, but
// doesn't demangle symbols.
void llvm::sys::PrintStackTrace(raw_ostream &OS, int Depth) {
#if ENABLE_BACKTRACES
#ifdef __MVS__
zosbacktrace(OS);
#else
static void *StackTrace[256];
int depth = 0;
#if defined(HAVE_BACKTRACE)
// Use backtrace() to output a backtrace on Linux systems with glibc.
if (!depth)
depth = backtrace(StackTrace, static_cast<int>(std::size(StackTrace)));
#endif
#if defined(HAVE__UNWIND_BACKTRACE)
// Try _Unwind_Backtrace() if backtrace() failed.
if (!depth)
depth =
unwindBacktrace(StackTrace, static_cast<int>(std::size(StackTrace)));
#endif
if (!depth)
return;
// If "Depth" is not provided by the caller, use the return value of
// backtrace() for printing a symbolized stack trace.
if (!Depth)
Depth = depth;
if (printMarkupStackTrace(Argv0, StackTrace, Depth, OS))
return;
if (printSymbolizedStackTrace(Argv0, StackTrace, Depth, OS))
return;
OS << "Stack dump without symbol names (ensure you have llvm-symbolizer in "
"your PATH or set the environment var `LLVM_SYMBOLIZER_PATH` to point "
"to it):\n";
#if HAVE_DLOPEN && !defined(_AIX)
int width = 0;
for (int i = 0; i < depth; ++i) {
Dl_info dlinfo;
int nwidth;
if (dladdr(StackTrace[i], &dlinfo) == 0) {
nwidth = 7; // "(error)"
} else {
const char *name = strrchr(dlinfo.dli_fname, '/');
if (!name)
nwidth = strlen(dlinfo.dli_fname);
else
nwidth = strlen(name) - 1;
}
if (nwidth > width)
width = nwidth;
}
for (int i = 0; i < depth; ++i) {
Dl_info dlinfo;
OS << format("%-2d", i);
if (dladdr(StackTrace[i], &dlinfo) == 0) {
OS << format(" %-*s", width, static_cast<const char *>("(error)"));
dlinfo.dli_sname = nullptr;
} else {
const char *name = strrchr(dlinfo.dli_fname, '/');
if (!name)
OS << format(" %-*s", width,
static_cast<const char *>(dlinfo.dli_fname));
else
OS << format(" %-*s", width, name + 1);
}
OS << format(" %#0*lx", (int)(sizeof(void *) * 2) + 2,
(unsigned long)StackTrace[i]);
if (dlinfo.dli_sname != nullptr) {
OS << ' ';
if (char *d = itaniumDemangle(dlinfo.dli_sname)) {
OS << d;
free(d);
} else {
OS << dlinfo.dli_sname;
}
OS << format(" + %tu", (static_cast<const char *>(StackTrace[i]) -
static_cast<const char *>(dlinfo.dli_saddr)));
}
OS << '\n';
}
#elif defined(HAVE_BACKTRACE)
backtrace_symbols_fd(StackTrace, Depth, STDERR_FILENO);
#endif
#endif
#endif
}
static void PrintStackTraceSignalHandler(void *) {
sys::PrintStackTrace(llvm::errs());
}
void llvm::sys::DisableSystemDialogsOnCrash() {}
/// When an error signal (such as SIGABRT or SIGSEGV) is delivered to the
/// process, print a stack trace and then exit.
void llvm::sys::PrintStackTraceOnErrorSignal(StringRef Argv0,
bool DisableCrashReporting) {
::Argv0 = Argv0;
AddSignalHandler(PrintStackTraceSignalHandler, nullptr);
#if defined(__APPLE__) && ENABLE_CRASH_OVERRIDES
// Environment variable to disable any kind of crash dialog.
if (DisableCrashReporting || getenv("LLVM_DISABLE_CRASH_REPORT")) {
mach_port_t self = mach_task_self();
exception_mask_t mask = EXC_MASK_CRASH;
kern_return_t ret = task_set_exception_ports(
self, mask, MACH_PORT_NULL,
EXCEPTION_STATE_IDENTITY | MACH_EXCEPTION_CODES, THREAD_STATE_NONE);
(void)ret;
}
#endif
}