llvm-project/llvm/lib/Transforms/Vectorize/VPlanPredicator.cpp
Florian Hahn 177f27d220
[VPlan] Add incoming_[blocks,values] iterators to VPPhiAccessors (NFC) (#138472)
Add 3 new iterator ranges to VPPhiAccessors

* incoming_values(): returns a range over the incoming
  values of a phi 
* incoming_blocks(): returns a range over the incoming 
  blocks of a phi
* incoming_values_and_blocks: returns a range over pairs of
   incoming values and blocks.

Depends on https://github.com/llvm/llvm-project/pull/124838.

PR: https://github.com/llvm/llvm-project/pull/138472
2025-08-14 16:47:04 +01:00

302 lines
11 KiB
C++

//===-- VPlanPredicator.cpp - VPlan predicator ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements predication for VPlans.
///
//===----------------------------------------------------------------------===//
#include "VPRecipeBuilder.h"
#include "VPlan.h"
#include "VPlanCFG.h"
#include "VPlanTransforms.h"
#include "VPlanUtils.h"
#include "llvm/ADT/PostOrderIterator.h"
using namespace llvm;
namespace {
class VPPredicator {
/// Builder to construct recipes to compute masks.
VPBuilder Builder;
/// When we if-convert we need to create edge masks. We have to cache values
/// so that we don't end up with exponential recursion/IR.
using EdgeMaskCacheTy =
DenseMap<std::pair<const VPBasicBlock *, const VPBasicBlock *>,
VPValue *>;
using BlockMaskCacheTy = DenseMap<VPBasicBlock *, VPValue *>;
EdgeMaskCacheTy EdgeMaskCache;
BlockMaskCacheTy BlockMaskCache;
/// Create an edge mask for every destination of cases and/or default.
void createSwitchEdgeMasks(VPInstruction *SI);
/// Computes and return the predicate of the edge between \p Src and \p Dst,
/// possibly inserting new recipes at \p Dst (using Builder's insertion point)
VPValue *createEdgeMask(VPBasicBlock *Src, VPBasicBlock *Dst);
/// Returns the *entry* mask for \p VPBB.
VPValue *getBlockInMask(VPBasicBlock *VPBB) const {
return BlockMaskCache.lookup(VPBB);
}
/// Record \p Mask as the *entry* mask of \p VPBB, which is expected to not
/// already have a mask.
void setBlockInMask(VPBasicBlock *VPBB, VPValue *Mask) {
// TODO: Include the masks as operands in the predicated VPlan directly to
// avoid keeping the map of masks beyond the predication transform.
assert(!getBlockInMask(VPBB) && "Mask already set");
BlockMaskCache[VPBB] = Mask;
}
/// Record \p Mask as the mask of the edge from \p Src to \p Dst. The edge is
/// expected to not have a mask already.
VPValue *setEdgeMask(const VPBasicBlock *Src, const VPBasicBlock *Dst,
VPValue *Mask) {
assert(Src != Dst && "Src and Dst must be different");
assert(!getEdgeMask(Src, Dst) && "Mask already set");
return EdgeMaskCache[{Src, Dst}] = Mask;
}
public:
/// Returns the precomputed predicate of the edge from \p Src to \p Dst.
VPValue *getEdgeMask(const VPBasicBlock *Src, const VPBasicBlock *Dst) const {
return EdgeMaskCache.lookup({Src, Dst});
}
/// Compute and return the mask for the vector loop header block.
void createHeaderMask(VPBasicBlock *HeaderVPBB, bool FoldTail);
/// Compute and return the predicate of \p VPBB, assuming that the header
/// block of the loop is set to True, or to the loop mask when tail folding.
VPValue *createBlockInMask(VPBasicBlock *VPBB);
/// Convert phi recipes in \p VPBB to VPBlendRecipes.
void convertPhisToBlends(VPBasicBlock *VPBB);
const BlockMaskCacheTy getBlockMaskCache() const { return BlockMaskCache; }
};
} // namespace
VPValue *VPPredicator::createEdgeMask(VPBasicBlock *Src, VPBasicBlock *Dst) {
assert(is_contained(Dst->getPredecessors(), Src) && "Invalid edge");
// Look for cached value.
VPValue *EdgeMask = getEdgeMask(Src, Dst);
if (EdgeMask)
return EdgeMask;
VPValue *SrcMask = getBlockInMask(Src);
// If there's a single successor, there's no terminator recipe.
if (Src->getNumSuccessors() == 1)
return setEdgeMask(Src, Dst, SrcMask);
auto *Term = cast<VPInstruction>(Src->getTerminator());
if (Term->getOpcode() == Instruction::Switch) {
createSwitchEdgeMasks(Term);
return getEdgeMask(Src, Dst);
}
assert(Term->getOpcode() == VPInstruction::BranchOnCond &&
"Unsupported terminator");
if (Src->getSuccessors()[0] == Src->getSuccessors()[1])
return setEdgeMask(Src, Dst, SrcMask);
EdgeMask = Term->getOperand(0);
assert(EdgeMask && "No Edge Mask found for condition");
if (Src->getSuccessors()[0] != Dst)
EdgeMask = Builder.createNot(EdgeMask, Term->getDebugLoc());
if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
// The bitwise 'And' of SrcMask and EdgeMask introduces new UB if SrcMask
// is false and EdgeMask is poison. Avoid that by using 'LogicalAnd'
// instead which generates 'select i1 SrcMask, i1 EdgeMask, i1 false'.
EdgeMask = Builder.createLogicalAnd(SrcMask, EdgeMask, Term->getDebugLoc());
}
return setEdgeMask(Src, Dst, EdgeMask);
}
VPValue *VPPredicator::createBlockInMask(VPBasicBlock *VPBB) {
// Start inserting after the block's phis, which be replaced by blends later.
Builder.setInsertPoint(VPBB, VPBB->getFirstNonPhi());
// All-one mask is modelled as no-mask following the convention for masked
// load/store/gather/scatter. Initialize BlockMask to no-mask.
VPValue *BlockMask = nullptr;
// This is the block mask. We OR all unique incoming edges.
for (auto *Predecessor : SetVector<VPBlockBase *>(
VPBB->getPredecessors().begin(), VPBB->getPredecessors().end())) {
VPValue *EdgeMask = createEdgeMask(cast<VPBasicBlock>(Predecessor), VPBB);
if (!EdgeMask) { // Mask of predecessor is all-one so mask of block is
// too.
setBlockInMask(VPBB, EdgeMask);
return EdgeMask;
}
if (!BlockMask) { // BlockMask has its initial nullptr value.
BlockMask = EdgeMask;
continue;
}
BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
}
setBlockInMask(VPBB, BlockMask);
return BlockMask;
}
void VPPredicator::createHeaderMask(VPBasicBlock *HeaderVPBB, bool FoldTail) {
if (!FoldTail) {
setBlockInMask(HeaderVPBB, nullptr);
return;
}
// Introduce the early-exit compare IV <= BTC to form header block mask.
// This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
// constructing the desired canonical IV in the header block as its first
// non-phi instructions.
auto &Plan = *HeaderVPBB->getPlan();
auto *IV = new VPWidenCanonicalIVRecipe(Plan.getCanonicalIV());
Builder.setInsertPoint(HeaderVPBB, HeaderVPBB->getFirstNonPhi());
Builder.insert(IV);
VPValue *BTC = Plan.getOrCreateBackedgeTakenCount();
VPValue *BlockMask = Builder.createICmp(CmpInst::ICMP_ULE, IV, BTC);
setBlockInMask(HeaderVPBB, BlockMask);
}
void VPPredicator::createSwitchEdgeMasks(VPInstruction *SI) {
VPBasicBlock *Src = SI->getParent();
// Create masks where SI is a switch. We create masks for all edges from SI's
// parent block at the same time. This is more efficient, as we can create and
// collect compares for all cases once.
VPValue *Cond = SI->getOperand(0);
VPBasicBlock *DefaultDst = cast<VPBasicBlock>(Src->getSuccessors()[0]);
MapVector<VPBasicBlock *, SmallVector<VPValue *>> Dst2Compares;
for (const auto &[Idx, Succ] : enumerate(drop_begin(Src->getSuccessors()))) {
VPBasicBlock *Dst = cast<VPBasicBlock>(Succ);
assert(!getEdgeMask(Src, Dst) && "Edge masks already created");
// Cases whose destination is the same as default are redundant and can
// be ignored - they will get there anyhow.
if (Dst == DefaultDst)
continue;
auto &Compares = Dst2Compares[Dst];
VPValue *V = SI->getOperand(Idx + 1);
Compares.push_back(Builder.createICmp(CmpInst::ICMP_EQ, Cond, V));
}
// We need to handle 2 separate cases below for all entries in Dst2Compares,
// which excludes destinations matching the default destination.
VPValue *SrcMask = getBlockInMask(Src);
VPValue *DefaultMask = nullptr;
for (const auto &[Dst, Conds] : Dst2Compares) {
// 1. Dst is not the default destination. Dst is reached if any of the
// cases with destination == Dst are taken. Join the conditions for each
// case whose destination == Dst using an OR.
VPValue *Mask = Conds[0];
for (VPValue *V : drop_begin(Conds))
Mask = Builder.createOr(Mask, V);
if (SrcMask)
Mask = Builder.createLogicalAnd(SrcMask, Mask);
setEdgeMask(Src, Dst, Mask);
// 2. Create the mask for the default destination, which is reached if
// none of the cases with destination != default destination are taken.
// Join the conditions for each case where the destination is != Dst using
// an OR and negate it.
DefaultMask = DefaultMask ? Builder.createOr(DefaultMask, Mask) : Mask;
}
if (DefaultMask) {
DefaultMask = Builder.createNot(DefaultMask);
if (SrcMask)
DefaultMask = Builder.createLogicalAnd(SrcMask, DefaultMask);
}
setEdgeMask(Src, DefaultDst, DefaultMask);
}
void VPPredicator::convertPhisToBlends(VPBasicBlock *VPBB) {
SmallVector<VPPhi *> Phis;
for (VPRecipeBase &R : VPBB->phis())
Phis.push_back(cast<VPPhi>(&R));
for (VPPhi *PhiR : Phis) {
// The non-header Phi is converted into a Blend recipe below,
// so we don't have to worry about the insertion order and we can just use
// the builder. At this point we generate the predication tree. There may
// be duplications since this is a simple recursive scan, but future
// optimizations will clean it up.
SmallVector<VPValue *, 2> OperandsWithMask;
for (const auto &[InVPV, InVPBB] : PhiR->incoming_values_and_blocks()) {
OperandsWithMask.push_back(InVPV);
VPValue *EdgeMask = getEdgeMask(InVPBB, VPBB);
if (!EdgeMask) {
assert(all_equal(PhiR->incoming_values()) &&
"Distinct incoming values with one having a full mask");
break;
}
OperandsWithMask.push_back(EdgeMask);
}
PHINode *IRPhi = cast_or_null<PHINode>(PhiR->getUnderlyingValue());
auto *Blend =
new VPBlendRecipe(IRPhi, OperandsWithMask, PhiR->getDebugLoc());
Builder.insert(Blend);
PhiR->replaceAllUsesWith(Blend);
PhiR->eraseFromParent();
}
}
DenseMap<VPBasicBlock *, VPValue *>
VPlanTransforms::introduceMasksAndLinearize(VPlan &Plan, bool FoldTail) {
VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
// Scan the body of the loop in a topological order to visit each basic block
// after having visited its predecessor basic blocks.
VPBasicBlock *Header = LoopRegion->getEntryBasicBlock();
ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
Header);
VPPredicator Predicator;
for (VPBlockBase *VPB : RPOT) {
// Non-outer regions with VPBBs only are supported at the moment.
auto *VPBB = cast<VPBasicBlock>(VPB);
// Introduce the mask for VPBB, which may introduce needed edge masks, and
// convert all phi recipes of VPBB to blend recipes unless VPBB is the
// header.
if (VPBB == Header) {
Predicator.createHeaderMask(Header, FoldTail);
continue;
}
Predicator.createBlockInMask(VPBB);
Predicator.convertPhisToBlends(VPBB);
}
// Linearize the blocks of the loop into one serial chain.
VPBlockBase *PrevVPBB = nullptr;
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
auto Successors = to_vector(VPBB->getSuccessors());
if (Successors.size() > 1)
VPBB->getTerminator()->eraseFromParent();
// Flatten the CFG in the loop. To do so, first disconnect VPBB from its
// successors. Then connect VPBB to the previously visited VPBB.
for (auto *Succ : Successors)
VPBlockUtils::disconnectBlocks(VPBB, Succ);
if (PrevVPBB)
VPBlockUtils::connectBlocks(PrevVPBB, VPBB);
PrevVPBB = VPBB;
}
return Predicator.getBlockMaskCache();
}