
`ArraySubscriptExpr` can switch base and idx. For dependent array subscript access, we should check both base and idx conservatively.
833 lines
34 KiB
C++
833 lines
34 KiB
C++
//===---------- ExprMutationAnalyzer.cpp ----------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "clang/Analysis/Analyses/ExprMutationAnalyzer.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/OperationKinds.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/ASTMatchers/ASTMatchFinder.h"
|
|
#include "clang/ASTMatchers/ASTMatchers.h"
|
|
#include "clang/ASTMatchers/ASTMatchersMacros.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
|
|
namespace clang {
|
|
using namespace ast_matchers;
|
|
|
|
// Check if result of Source expression could be a Target expression.
|
|
// Checks:
|
|
// - Implicit Casts
|
|
// - Binary Operators
|
|
// - ConditionalOperator
|
|
// - BinaryConditionalOperator
|
|
static bool canExprResolveTo(const Expr *Source, const Expr *Target) {
|
|
const auto IgnoreDerivedToBase = [](const Expr *E, auto Matcher) {
|
|
if (Matcher(E))
|
|
return true;
|
|
if (const auto *Cast = dyn_cast<ImplicitCastExpr>(E)) {
|
|
if ((Cast->getCastKind() == CK_DerivedToBase ||
|
|
Cast->getCastKind() == CK_UncheckedDerivedToBase) &&
|
|
Matcher(Cast->getSubExpr()))
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
const auto EvalCommaExpr = [](const Expr *E, auto Matcher) {
|
|
const Expr *Result = E;
|
|
while (const auto *BOComma =
|
|
dyn_cast_or_null<BinaryOperator>(Result->IgnoreParens())) {
|
|
if (!BOComma->isCommaOp())
|
|
break;
|
|
Result = BOComma->getRHS();
|
|
}
|
|
|
|
return Result != E && Matcher(Result);
|
|
};
|
|
|
|
// The 'ConditionalOperatorM' matches on `<anything> ? <expr> : <expr>`.
|
|
// This matching must be recursive because `<expr>` can be anything resolving
|
|
// to the `InnerMatcher`, for example another conditional operator.
|
|
// The edge-case `BaseClass &b = <cond> ? DerivedVar1 : DerivedVar2;`
|
|
// is handled, too. The implicit cast happens outside of the conditional.
|
|
// This is matched by `IgnoreDerivedToBase(canResolveToExpr(InnerMatcher))`
|
|
// below.
|
|
const auto ConditionalOperatorM = [Target](const Expr *E) {
|
|
if (const auto *CO = dyn_cast<AbstractConditionalOperator>(E)) {
|
|
const auto *TE = CO->getTrueExpr()->IgnoreParens();
|
|
if (TE && canExprResolveTo(TE, Target))
|
|
return true;
|
|
const auto *FE = CO->getFalseExpr()->IgnoreParens();
|
|
if (FE && canExprResolveTo(FE, Target))
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
const Expr *SourceExprP = Source->IgnoreParens();
|
|
return IgnoreDerivedToBase(SourceExprP,
|
|
[&](const Expr *E) {
|
|
return E == Target || ConditionalOperatorM(E);
|
|
}) ||
|
|
EvalCommaExpr(SourceExprP, [&](const Expr *E) {
|
|
return IgnoreDerivedToBase(
|
|
E->IgnoreParens(), [&](const Expr *EE) { return EE == Target; });
|
|
});
|
|
}
|
|
|
|
namespace {
|
|
|
|
// `ArraySubscriptExpr` can switch base and idx, e.g. `a[4]` is the same as
|
|
// `4[a]`. When type is dependent, we conservatively assume both sides are base.
|
|
AST_MATCHER_P(ArraySubscriptExpr, hasBaseConservative,
|
|
ast_matchers::internal::Matcher<Expr>, InnerMatcher) {
|
|
if (Node.isTypeDependent()) {
|
|
return InnerMatcher.matches(*Node.getLHS(), Finder, Builder) ||
|
|
InnerMatcher.matches(*Node.getRHS(), Finder, Builder);
|
|
}
|
|
return InnerMatcher.matches(*Node.getBase(), Finder, Builder);
|
|
}
|
|
|
|
AST_MATCHER(Type, isDependentType) { return Node.isDependentType(); }
|
|
|
|
AST_MATCHER_P(LambdaExpr, hasCaptureInit, const Expr *, E) {
|
|
return llvm::is_contained(Node.capture_inits(), E);
|
|
}
|
|
|
|
AST_MATCHER_P(CXXForRangeStmt, hasRangeStmt,
|
|
ast_matchers::internal::Matcher<DeclStmt>, InnerMatcher) {
|
|
const DeclStmt *const Range = Node.getRangeStmt();
|
|
return InnerMatcher.matches(*Range, Finder, Builder);
|
|
}
|
|
|
|
AST_MATCHER_P(Stmt, canResolveToExpr, const Stmt *, Inner) {
|
|
auto *Exp = dyn_cast<Expr>(&Node);
|
|
if (!Exp)
|
|
return true;
|
|
auto *Target = dyn_cast<Expr>(Inner);
|
|
if (!Target)
|
|
return false;
|
|
return canExprResolveTo(Exp, Target);
|
|
}
|
|
|
|
// use class member to store data can reduce stack usage to avoid stack overflow
|
|
// when recursive call.
|
|
class ExprPointeeResolve {
|
|
const Expr *T;
|
|
|
|
bool resolveExpr(const Expr *E) {
|
|
if (E == nullptr)
|
|
return false;
|
|
if (E == T)
|
|
return true;
|
|
|
|
if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
|
|
if (BO->isAdditiveOp())
|
|
return (resolveExpr(BO->getLHS()) || resolveExpr(BO->getRHS()));
|
|
if (BO->isCommaOp())
|
|
return resolveExpr(BO->getRHS());
|
|
return false;
|
|
}
|
|
|
|
if (const auto *PE = dyn_cast<ParenExpr>(E))
|
|
return resolveExpr(PE->getSubExpr());
|
|
|
|
if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
// only implicit cast needs to be treated as resolvable.
|
|
// explicit cast will be checked in `findPointeeToNonConst`
|
|
const CastKind kind = ICE->getCastKind();
|
|
if (kind == CK_LValueToRValue || kind == CK_DerivedToBase ||
|
|
kind == CK_UncheckedDerivedToBase)
|
|
return resolveExpr(ICE->getSubExpr());
|
|
return false;
|
|
}
|
|
|
|
if (const auto *ACE = dyn_cast<AbstractConditionalOperator>(E))
|
|
return resolve(ACE->getTrueExpr()) || resolve(ACE->getFalseExpr());
|
|
|
|
return false;
|
|
}
|
|
|
|
public:
|
|
ExprPointeeResolve(const Expr *T) : T(T) {}
|
|
bool resolve(const Expr *S) { return resolveExpr(S); }
|
|
};
|
|
|
|
AST_MATCHER_P(Stmt, canResolveToExprPointee, const Stmt *, T) {
|
|
auto *Exp = dyn_cast<Expr>(&Node);
|
|
if (!Exp)
|
|
return true;
|
|
auto *Target = dyn_cast<Expr>(T);
|
|
if (!Target)
|
|
return false;
|
|
return ExprPointeeResolve{Target}.resolve(Exp);
|
|
}
|
|
|
|
// Similar to 'hasAnyArgument', but does not work because 'InitListExpr' does
|
|
// not have the 'arguments()' method.
|
|
AST_MATCHER_P(InitListExpr, hasAnyInit, ast_matchers::internal::Matcher<Expr>,
|
|
InnerMatcher) {
|
|
for (const Expr *Arg : Node.inits()) {
|
|
if (Arg == nullptr)
|
|
continue;
|
|
ast_matchers::internal::BoundNodesTreeBuilder Result(*Builder);
|
|
if (InnerMatcher.matches(*Arg, Finder, &Result)) {
|
|
*Builder = std::move(Result);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
const ast_matchers::internal::VariadicDynCastAllOfMatcher<Stmt, CXXTypeidExpr>
|
|
cxxTypeidExpr;
|
|
|
|
AST_MATCHER(CXXTypeidExpr, isPotentiallyEvaluated) {
|
|
return Node.isPotentiallyEvaluated();
|
|
}
|
|
|
|
AST_MATCHER(CXXMemberCallExpr, isConstCallee) {
|
|
const Decl *CalleeDecl = Node.getCalleeDecl();
|
|
const auto *VD = dyn_cast_or_null<ValueDecl>(CalleeDecl);
|
|
if (!VD)
|
|
return false;
|
|
const QualType T = VD->getType().getCanonicalType();
|
|
const auto *MPT = dyn_cast<MemberPointerType>(T);
|
|
const auto *FPT = MPT ? cast<FunctionProtoType>(MPT->getPointeeType())
|
|
: dyn_cast<FunctionProtoType>(T);
|
|
if (!FPT)
|
|
return false;
|
|
return FPT->isConst();
|
|
}
|
|
|
|
AST_MATCHER_P(GenericSelectionExpr, hasControllingExpr,
|
|
ast_matchers::internal::Matcher<Expr>, InnerMatcher) {
|
|
if (Node.isTypePredicate())
|
|
return false;
|
|
return InnerMatcher.matches(*Node.getControllingExpr(), Finder, Builder);
|
|
}
|
|
|
|
template <typename T>
|
|
ast_matchers::internal::Matcher<T>
|
|
findFirst(const ast_matchers::internal::Matcher<T> &Matcher) {
|
|
return anyOf(Matcher, hasDescendant(Matcher));
|
|
}
|
|
|
|
const auto nonConstReferenceType = [] {
|
|
return hasUnqualifiedDesugaredType(
|
|
referenceType(pointee(unless(isConstQualified()))));
|
|
};
|
|
|
|
const auto nonConstPointerType = [] {
|
|
return hasUnqualifiedDesugaredType(
|
|
pointerType(pointee(unless(isConstQualified()))));
|
|
};
|
|
|
|
const auto isMoveOnly = [] {
|
|
return cxxRecordDecl(
|
|
hasMethod(cxxConstructorDecl(isMoveConstructor(), unless(isDeleted()))),
|
|
hasMethod(cxxMethodDecl(isMoveAssignmentOperator(), unless(isDeleted()))),
|
|
unless(anyOf(hasMethod(cxxConstructorDecl(isCopyConstructor(),
|
|
unless(isDeleted()))),
|
|
hasMethod(cxxMethodDecl(isCopyAssignmentOperator(),
|
|
unless(isDeleted()))))));
|
|
};
|
|
|
|
template <class T> struct NodeID;
|
|
template <> struct NodeID<Expr> { static constexpr StringRef value = "expr"; };
|
|
template <> struct NodeID<Decl> { static constexpr StringRef value = "decl"; };
|
|
constexpr StringRef NodeID<Expr>::value;
|
|
constexpr StringRef NodeID<Decl>::value;
|
|
|
|
template <class T,
|
|
class F = const Stmt *(ExprMutationAnalyzer::Analyzer::*)(const T *)>
|
|
const Stmt *tryEachMatch(ArrayRef<ast_matchers::BoundNodes> Matches,
|
|
ExprMutationAnalyzer::Analyzer *Analyzer, F Finder) {
|
|
const StringRef ID = NodeID<T>::value;
|
|
for (const auto &Nodes : Matches) {
|
|
if (const Stmt *S = (Analyzer->*Finder)(Nodes.getNodeAs<T>(ID)))
|
|
return S;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
const Stmt *ExprMutationAnalyzer::Analyzer::findMutation(const Expr *Exp) {
|
|
return findMutationMemoized(
|
|
Exp,
|
|
{&ExprMutationAnalyzer::Analyzer::findDirectMutation,
|
|
&ExprMutationAnalyzer::Analyzer::findMemberMutation,
|
|
&ExprMutationAnalyzer::Analyzer::findArrayElementMutation,
|
|
&ExprMutationAnalyzer::Analyzer::findCastMutation,
|
|
&ExprMutationAnalyzer::Analyzer::findRangeLoopMutation,
|
|
&ExprMutationAnalyzer::Analyzer::findReferenceMutation,
|
|
&ExprMutationAnalyzer::Analyzer::findFunctionArgMutation},
|
|
Memorized.Results);
|
|
}
|
|
|
|
const Stmt *ExprMutationAnalyzer::Analyzer::findMutation(const Decl *Dec) {
|
|
return tryEachDeclRef(Dec, &ExprMutationAnalyzer::Analyzer::findMutation);
|
|
}
|
|
|
|
const Stmt *
|
|
ExprMutationAnalyzer::Analyzer::findPointeeMutation(const Expr *Exp) {
|
|
return findMutationMemoized(
|
|
Exp,
|
|
{
|
|
&ExprMutationAnalyzer::Analyzer::findPointeeValueMutation,
|
|
&ExprMutationAnalyzer::Analyzer::findPointeeMemberMutation,
|
|
&ExprMutationAnalyzer::Analyzer::findPointeeToNonConst,
|
|
},
|
|
Memorized.PointeeResults);
|
|
}
|
|
|
|
const Stmt *
|
|
ExprMutationAnalyzer::Analyzer::findPointeeMutation(const Decl *Dec) {
|
|
return tryEachDeclRef(Dec,
|
|
&ExprMutationAnalyzer::Analyzer::findPointeeMutation);
|
|
}
|
|
|
|
const Stmt *ExprMutationAnalyzer::Analyzer::findMutationMemoized(
|
|
const Expr *Exp, llvm::ArrayRef<MutationFinder> Finders,
|
|
Memoized::ResultMap &MemoizedResults) {
|
|
// Assume Exp is not mutated before analyzing Exp.
|
|
auto [Memoized, Inserted] = MemoizedResults.try_emplace(Exp);
|
|
if (!Inserted)
|
|
return Memoized->second;
|
|
|
|
if (ExprMutationAnalyzer::isUnevaluated(Exp, Context))
|
|
return nullptr;
|
|
|
|
for (const auto &Finder : Finders) {
|
|
if (const Stmt *S = (this->*Finder)(Exp))
|
|
return MemoizedResults[Exp] = S;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
const Stmt *
|
|
ExprMutationAnalyzer::Analyzer::tryEachDeclRef(const Decl *Dec,
|
|
MutationFinder Finder) {
|
|
const auto Refs = match(
|
|
findAll(
|
|
declRefExpr(to(
|
|
// `Dec` or a binding if `Dec` is a decomposition.
|
|
anyOf(equalsNode(Dec),
|
|
bindingDecl(forDecomposition(equalsNode(Dec))))
|
|
//
|
|
))
|
|
.bind(NodeID<Expr>::value)),
|
|
Stm, Context);
|
|
for (const auto &RefNodes : Refs) {
|
|
const auto *E = RefNodes.getNodeAs<Expr>(NodeID<Expr>::value);
|
|
if ((this->*Finder)(E))
|
|
return E;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool ExprMutationAnalyzer::isUnevaluated(const Stmt *Stm, ASTContext &Context) {
|
|
return !match(stmt(anyOf(
|
|
// `Exp` is part of the underlying expression of
|
|
// decltype/typeof if it has an ancestor of
|
|
// typeLoc.
|
|
hasAncestor(typeLoc(
|
|
unless(hasAncestor(unaryExprOrTypeTraitExpr())))),
|
|
hasAncestor(expr(anyOf(
|
|
// `UnaryExprOrTypeTraitExpr` is unevaluated
|
|
// unless it's sizeof on VLA.
|
|
unaryExprOrTypeTraitExpr(unless(sizeOfExpr(
|
|
hasArgumentOfType(variableArrayType())))),
|
|
// `CXXTypeidExpr` is unevaluated unless it's
|
|
// applied to an expression of glvalue of
|
|
// polymorphic class type.
|
|
cxxTypeidExpr(unless(isPotentiallyEvaluated())),
|
|
// The controlling expression of
|
|
// `GenericSelectionExpr` is unevaluated.
|
|
genericSelectionExpr(
|
|
hasControllingExpr(hasDescendant(equalsNode(Stm)))),
|
|
cxxNoexceptExpr()))))),
|
|
*Stm, Context)
|
|
.empty();
|
|
}
|
|
|
|
const Stmt *
|
|
ExprMutationAnalyzer::Analyzer::findExprMutation(ArrayRef<BoundNodes> Matches) {
|
|
return tryEachMatch<Expr>(Matches, this,
|
|
&ExprMutationAnalyzer::Analyzer::findMutation);
|
|
}
|
|
|
|
const Stmt *
|
|
ExprMutationAnalyzer::Analyzer::findDeclMutation(ArrayRef<BoundNodes> Matches) {
|
|
return tryEachMatch<Decl>(Matches, this,
|
|
&ExprMutationAnalyzer::Analyzer::findMutation);
|
|
}
|
|
|
|
const Stmt *ExprMutationAnalyzer::Analyzer::findExprPointeeMutation(
|
|
ArrayRef<ast_matchers::BoundNodes> Matches) {
|
|
return tryEachMatch<Expr>(
|
|
Matches, this, &ExprMutationAnalyzer::Analyzer::findPointeeMutation);
|
|
}
|
|
|
|
const Stmt *ExprMutationAnalyzer::Analyzer::findDeclPointeeMutation(
|
|
ArrayRef<ast_matchers::BoundNodes> Matches) {
|
|
return tryEachMatch<Decl>(
|
|
Matches, this, &ExprMutationAnalyzer::Analyzer::findPointeeMutation);
|
|
}
|
|
|
|
const Stmt *
|
|
ExprMutationAnalyzer::Analyzer::findDirectMutation(const Expr *Exp) {
|
|
// LHS of any assignment operators.
|
|
const auto AsAssignmentLhs =
|
|
binaryOperator(isAssignmentOperator(), hasLHS(canResolveToExpr(Exp)));
|
|
|
|
// Operand of increment/decrement operators.
|
|
const auto AsIncDecOperand =
|
|
unaryOperator(anyOf(hasOperatorName("++"), hasOperatorName("--")),
|
|
hasUnaryOperand(canResolveToExpr(Exp)));
|
|
|
|
// Invoking non-const member function.
|
|
// A member function is assumed to be non-const when it is unresolved.
|
|
const auto NonConstMethod = cxxMethodDecl(unless(isConst()));
|
|
|
|
const auto AsNonConstThis = expr(anyOf(
|
|
cxxMemberCallExpr(on(canResolveToExpr(Exp)), unless(isConstCallee())),
|
|
cxxOperatorCallExpr(callee(NonConstMethod),
|
|
hasArgument(0, canResolveToExpr(Exp))),
|
|
// In case of a templated type, calling overloaded operators is not
|
|
// resolved and modelled as `binaryOperator` on a dependent type.
|
|
// Such instances are considered a modification, because they can modify
|
|
// in different instantiations of the template.
|
|
binaryOperator(isTypeDependent(),
|
|
hasEitherOperand(ignoringImpCasts(canResolveToExpr(Exp)))),
|
|
// A fold expression may contain `Exp` as it's initializer.
|
|
// We don't know if the operator modifies `Exp` because the
|
|
// operator is type dependent due to the parameter pack.
|
|
cxxFoldExpr(hasFoldInit(ignoringImpCasts(canResolveToExpr(Exp)))),
|
|
// Within class templates and member functions the member expression might
|
|
// not be resolved. In that case, the `callExpr` is considered to be a
|
|
// modification.
|
|
callExpr(callee(expr(anyOf(
|
|
unresolvedMemberExpr(hasObjectExpression(canResolveToExpr(Exp))),
|
|
cxxDependentScopeMemberExpr(
|
|
hasObjectExpression(canResolveToExpr(Exp))))))),
|
|
// Match on a call to a known method, but the call itself is type
|
|
// dependent (e.g. `vector<T> v; v.push(T{});` in a templated function).
|
|
callExpr(allOf(
|
|
isTypeDependent(),
|
|
callee(memberExpr(hasDeclaration(NonConstMethod),
|
|
hasObjectExpression(canResolveToExpr(Exp))))))));
|
|
|
|
// Taking address of 'Exp'.
|
|
// We're assuming 'Exp' is mutated as soon as its address is taken, though in
|
|
// theory we can follow the pointer and see whether it escaped `Stm` or is
|
|
// dereferenced and then mutated. This is left for future improvements.
|
|
const auto AsAmpersandOperand =
|
|
unaryOperator(hasOperatorName("&"),
|
|
// A NoOp implicit cast is adding const.
|
|
unless(hasParent(implicitCastExpr(hasCastKind(CK_NoOp)))),
|
|
hasUnaryOperand(canResolveToExpr(Exp)));
|
|
const auto AsPointerFromArrayDecay = castExpr(
|
|
hasCastKind(CK_ArrayToPointerDecay),
|
|
unless(hasParent(arraySubscriptExpr())), has(canResolveToExpr(Exp)));
|
|
// Treat calling `operator->()` of move-only classes as taking address.
|
|
// These are typically smart pointers with unique ownership so we treat
|
|
// mutation of pointee as mutation of the smart pointer itself.
|
|
const auto AsOperatorArrowThis = cxxOperatorCallExpr(
|
|
hasOverloadedOperatorName("->"),
|
|
callee(
|
|
cxxMethodDecl(ofClass(isMoveOnly()), returns(nonConstPointerType()))),
|
|
argumentCountIs(1), hasArgument(0, canResolveToExpr(Exp)));
|
|
|
|
// Used as non-const-ref argument when calling a function.
|
|
// An argument is assumed to be non-const-ref when the function is unresolved.
|
|
// Instantiated template functions are not handled here but in
|
|
// findFunctionArgMutation which has additional smarts for handling forwarding
|
|
// references.
|
|
const auto NonConstRefParam = forEachArgumentWithParamType(
|
|
anyOf(canResolveToExpr(Exp),
|
|
memberExpr(
|
|
hasObjectExpression(ignoringImpCasts(canResolveToExpr(Exp))))),
|
|
nonConstReferenceType());
|
|
const auto NotInstantiated = unless(hasDeclaration(isInstantiated()));
|
|
|
|
const auto AsNonConstRefArg =
|
|
anyOf(callExpr(NonConstRefParam, NotInstantiated),
|
|
cxxConstructExpr(NonConstRefParam, NotInstantiated),
|
|
// If the call is type-dependent, we can't properly process any
|
|
// argument because required type conversions and implicit casts
|
|
// will be inserted only after specialization.
|
|
callExpr(isTypeDependent(), hasAnyArgument(canResolveToExpr(Exp))),
|
|
cxxUnresolvedConstructExpr(hasAnyArgument(canResolveToExpr(Exp))),
|
|
// Previous False Positive in the following Code:
|
|
// `template <typename T> void f() { int i = 42; new Type<T>(i); }`
|
|
// Where the constructor of `Type` takes its argument as reference.
|
|
// The AST does not resolve in a `cxxConstructExpr` because it is
|
|
// type-dependent.
|
|
parenListExpr(hasDescendant(expr(canResolveToExpr(Exp)))),
|
|
// If the initializer is for a reference type, there is no cast for
|
|
// the variable. Values are cast to RValue first.
|
|
initListExpr(hasAnyInit(expr(canResolveToExpr(Exp)))));
|
|
|
|
// Captured by a lambda by reference.
|
|
// If we're initializing a capture with 'Exp' directly then we're initializing
|
|
// a reference capture.
|
|
// For value captures there will be an ImplicitCastExpr <LValueToRValue>.
|
|
const auto AsLambdaRefCaptureInit = lambdaExpr(hasCaptureInit(Exp));
|
|
|
|
// Returned as non-const-ref.
|
|
// If we're returning 'Exp' directly then it's returned as non-const-ref.
|
|
// For returning by value there will be an ImplicitCastExpr <LValueToRValue>.
|
|
// For returning by const-ref there will be an ImplicitCastExpr <NoOp> (for
|
|
// adding const.)
|
|
const auto AsNonConstRefReturn =
|
|
returnStmt(hasReturnValue(canResolveToExpr(Exp)));
|
|
|
|
// It is used as a non-const-reference for initializing a range-for loop.
|
|
const auto AsNonConstRefRangeInit = cxxForRangeStmt(hasRangeInit(declRefExpr(
|
|
allOf(canResolveToExpr(Exp), hasType(nonConstReferenceType())))));
|
|
|
|
const auto Matches = match(
|
|
traverse(
|
|
TK_AsIs,
|
|
findFirst(stmt(anyOf(AsAssignmentLhs, AsIncDecOperand, AsNonConstThis,
|
|
AsAmpersandOperand, AsPointerFromArrayDecay,
|
|
AsOperatorArrowThis, AsNonConstRefArg,
|
|
AsLambdaRefCaptureInit, AsNonConstRefReturn,
|
|
AsNonConstRefRangeInit))
|
|
.bind("stmt"))),
|
|
Stm, Context);
|
|
return selectFirst<Stmt>("stmt", Matches);
|
|
}
|
|
|
|
const Stmt *
|
|
ExprMutationAnalyzer::Analyzer::findMemberMutation(const Expr *Exp) {
|
|
// Check whether any member of 'Exp' is mutated.
|
|
const auto MemberExprs = match(
|
|
findAll(expr(anyOf(memberExpr(hasObjectExpression(canResolveToExpr(Exp))),
|
|
cxxDependentScopeMemberExpr(
|
|
hasObjectExpression(canResolveToExpr(Exp))),
|
|
binaryOperator(hasOperatorName(".*"),
|
|
hasLHS(equalsNode(Exp)))))
|
|
.bind(NodeID<Expr>::value)),
|
|
Stm, Context);
|
|
return findExprMutation(MemberExprs);
|
|
}
|
|
|
|
const Stmt *
|
|
ExprMutationAnalyzer::Analyzer::findArrayElementMutation(const Expr *Exp) {
|
|
// Check whether any element of an array is mutated.
|
|
const auto SubscriptExprs = match(
|
|
findAll(arraySubscriptExpr(
|
|
anyOf(hasBaseConservative(canResolveToExpr(Exp)),
|
|
hasBaseConservative(implicitCastExpr(allOf(
|
|
hasCastKind(CK_ArrayToPointerDecay),
|
|
hasSourceExpression(canResolveToExpr(Exp)))))))
|
|
.bind(NodeID<Expr>::value)),
|
|
Stm, Context);
|
|
return findExprMutation(SubscriptExprs);
|
|
}
|
|
|
|
const Stmt *ExprMutationAnalyzer::Analyzer::findCastMutation(const Expr *Exp) {
|
|
// If the 'Exp' is explicitly casted to a non-const reference type the
|
|
// 'Exp' is considered to be modified.
|
|
const auto ExplicitCast =
|
|
match(findFirst(stmt(castExpr(hasSourceExpression(canResolveToExpr(Exp)),
|
|
explicitCastExpr(hasDestinationType(
|
|
nonConstReferenceType()))))
|
|
.bind("stmt")),
|
|
Stm, Context);
|
|
|
|
if (const auto *CastStmt = selectFirst<Stmt>("stmt", ExplicitCast))
|
|
return CastStmt;
|
|
|
|
// If 'Exp' is casted to any non-const reference type, check the castExpr.
|
|
const auto Casts = match(
|
|
findAll(expr(castExpr(hasSourceExpression(canResolveToExpr(Exp)),
|
|
anyOf(explicitCastExpr(hasDestinationType(
|
|
nonConstReferenceType())),
|
|
implicitCastExpr(hasImplicitDestinationType(
|
|
nonConstReferenceType())))))
|
|
.bind(NodeID<Expr>::value)),
|
|
Stm, Context);
|
|
|
|
if (const Stmt *S = findExprMutation(Casts))
|
|
return S;
|
|
// Treat std::{move,forward} as cast.
|
|
const auto Calls =
|
|
match(findAll(callExpr(callee(namedDecl(
|
|
hasAnyName("::std::move", "::std::forward"))),
|
|
hasArgument(0, canResolveToExpr(Exp)))
|
|
.bind("expr")),
|
|
Stm, Context);
|
|
return findExprMutation(Calls);
|
|
}
|
|
|
|
const Stmt *
|
|
ExprMutationAnalyzer::Analyzer::findRangeLoopMutation(const Expr *Exp) {
|
|
// Keep the ordering for the specific initialization matches to happen first,
|
|
// because it is cheaper to match all potential modifications of the loop
|
|
// variable.
|
|
|
|
// The range variable is a reference to a builtin array. In that case the
|
|
// array is considered modified if the loop-variable is a non-const reference.
|
|
const auto DeclStmtToNonRefToArray = declStmt(hasSingleDecl(varDecl(hasType(
|
|
hasUnqualifiedDesugaredType(referenceType(pointee(arrayType())))))));
|
|
const auto RefToArrayRefToElements = match(
|
|
findFirst(stmt(cxxForRangeStmt(
|
|
hasLoopVariable(
|
|
varDecl(anyOf(hasType(nonConstReferenceType()),
|
|
hasType(nonConstPointerType())))
|
|
.bind(NodeID<Decl>::value)),
|
|
hasRangeStmt(DeclStmtToNonRefToArray),
|
|
hasRangeInit(canResolveToExpr(Exp))))
|
|
.bind("stmt")),
|
|
Stm, Context);
|
|
|
|
if (const auto *BadRangeInitFromArray =
|
|
selectFirst<Stmt>("stmt", RefToArrayRefToElements))
|
|
return BadRangeInitFromArray;
|
|
|
|
// Small helper to match special cases in range-for loops.
|
|
//
|
|
// It is possible that containers do not provide a const-overload for their
|
|
// iterator accessors. If this is the case, the variable is used non-const
|
|
// no matter what happens in the loop. This requires special detection as it
|
|
// is then faster to find all mutations of the loop variable.
|
|
// It aims at a different modification as well.
|
|
const auto HasAnyNonConstIterator =
|
|
anyOf(allOf(hasMethod(allOf(hasName("begin"), unless(isConst()))),
|
|
unless(hasMethod(allOf(hasName("begin"), isConst())))),
|
|
allOf(hasMethod(allOf(hasName("end"), unless(isConst()))),
|
|
unless(hasMethod(allOf(hasName("end"), isConst())))));
|
|
|
|
const auto DeclStmtToNonConstIteratorContainer = declStmt(
|
|
hasSingleDecl(varDecl(hasType(hasUnqualifiedDesugaredType(referenceType(
|
|
pointee(hasDeclaration(cxxRecordDecl(HasAnyNonConstIterator)))))))));
|
|
|
|
const auto RefToContainerBadIterators = match(
|
|
findFirst(stmt(cxxForRangeStmt(allOf(
|
|
hasRangeStmt(DeclStmtToNonConstIteratorContainer),
|
|
hasRangeInit(canResolveToExpr(Exp)))))
|
|
.bind("stmt")),
|
|
Stm, Context);
|
|
|
|
if (const auto *BadIteratorsContainer =
|
|
selectFirst<Stmt>("stmt", RefToContainerBadIterators))
|
|
return BadIteratorsContainer;
|
|
|
|
// If range for looping over 'Exp' with a non-const reference loop variable,
|
|
// check all declRefExpr of the loop variable.
|
|
const auto LoopVars =
|
|
match(findAll(cxxForRangeStmt(
|
|
hasLoopVariable(varDecl(hasType(nonConstReferenceType()))
|
|
.bind(NodeID<Decl>::value)),
|
|
hasRangeInit(canResolveToExpr(Exp)))),
|
|
Stm, Context);
|
|
return findDeclMutation(LoopVars);
|
|
}
|
|
|
|
const Stmt *
|
|
ExprMutationAnalyzer::Analyzer::findReferenceMutation(const Expr *Exp) {
|
|
// Follow non-const reference returned by `operator*()` of move-only classes.
|
|
// These are typically smart pointers with unique ownership so we treat
|
|
// mutation of pointee as mutation of the smart pointer itself.
|
|
const auto Ref = match(
|
|
findAll(cxxOperatorCallExpr(
|
|
hasOverloadedOperatorName("*"),
|
|
callee(cxxMethodDecl(ofClass(isMoveOnly()),
|
|
returns(nonConstReferenceType()))),
|
|
argumentCountIs(1), hasArgument(0, canResolveToExpr(Exp)))
|
|
.bind(NodeID<Expr>::value)),
|
|
Stm, Context);
|
|
if (const Stmt *S = findExprMutation(Ref))
|
|
return S;
|
|
|
|
// If 'Exp' is bound to a non-const reference, check all declRefExpr to that.
|
|
const auto Refs = match(
|
|
stmt(forEachDescendant(
|
|
varDecl(hasType(nonConstReferenceType()),
|
|
hasInitializer(anyOf(
|
|
canResolveToExpr(Exp),
|
|
memberExpr(hasObjectExpression(canResolveToExpr(Exp))))),
|
|
hasParent(declStmt().bind("stmt")),
|
|
// Don't follow the reference in range statement, we've
|
|
// handled that separately.
|
|
unless(hasParent(declStmt(hasParent(cxxForRangeStmt(
|
|
hasRangeStmt(equalsBoundNode("stmt"))))))))
|
|
.bind(NodeID<Decl>::value))),
|
|
Stm, Context);
|
|
return findDeclMutation(Refs);
|
|
}
|
|
|
|
const Stmt *
|
|
ExprMutationAnalyzer::Analyzer::findFunctionArgMutation(const Expr *Exp) {
|
|
const auto NonConstRefParam = forEachArgumentWithParam(
|
|
canResolveToExpr(Exp),
|
|
parmVarDecl(hasType(nonConstReferenceType())).bind("parm"));
|
|
const auto IsInstantiated = hasDeclaration(isInstantiated());
|
|
const auto FuncDecl = hasDeclaration(functionDecl().bind("func"));
|
|
const auto Matches = match(
|
|
traverse(
|
|
TK_AsIs,
|
|
findAll(
|
|
expr(anyOf(callExpr(NonConstRefParam, IsInstantiated, FuncDecl,
|
|
unless(callee(namedDecl(hasAnyName(
|
|
"::std::move", "::std::forward"))))),
|
|
cxxConstructExpr(NonConstRefParam, IsInstantiated,
|
|
FuncDecl)))
|
|
.bind(NodeID<Expr>::value))),
|
|
Stm, Context);
|
|
for (const auto &Nodes : Matches) {
|
|
const auto *Exp = Nodes.getNodeAs<Expr>(NodeID<Expr>::value);
|
|
const auto *Func = Nodes.getNodeAs<FunctionDecl>("func");
|
|
if (!Func->getBody() || !Func->getPrimaryTemplate())
|
|
return Exp;
|
|
|
|
const auto *Parm = Nodes.getNodeAs<ParmVarDecl>("parm");
|
|
const ArrayRef<ParmVarDecl *> AllParams =
|
|
Func->getPrimaryTemplate()->getTemplatedDecl()->parameters();
|
|
QualType ParmType =
|
|
AllParams[std::min<size_t>(Parm->getFunctionScopeIndex(),
|
|
AllParams.size() - 1)]
|
|
->getType();
|
|
if (const auto *T = ParmType->getAs<PackExpansionType>())
|
|
ParmType = T->getPattern();
|
|
|
|
// If param type is forwarding reference, follow into the function
|
|
// definition and see whether the param is mutated inside.
|
|
if (const auto *RefType = ParmType->getAs<RValueReferenceType>()) {
|
|
if (!RefType->getPointeeType().getQualifiers() &&
|
|
RefType->getPointeeType()->getAs<TemplateTypeParmType>()) {
|
|
FunctionParmMutationAnalyzer *Analyzer =
|
|
FunctionParmMutationAnalyzer::getFunctionParmMutationAnalyzer(
|
|
*Func, Context, Memorized);
|
|
if (Analyzer->findMutation(Parm))
|
|
return Exp;
|
|
continue;
|
|
}
|
|
}
|
|
// Not forwarding reference.
|
|
return Exp;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
const Stmt *
|
|
ExprMutationAnalyzer::Analyzer::findPointeeValueMutation(const Expr *Exp) {
|
|
const auto Matches = match(
|
|
stmt(forEachDescendant(
|
|
expr(anyOf(
|
|
// deref by *
|
|
unaryOperator(hasOperatorName("*"),
|
|
hasUnaryOperand(canResolveToExprPointee(Exp))),
|
|
// deref by []
|
|
arraySubscriptExpr(
|
|
hasBaseConservative(canResolveToExprPointee(Exp)))))
|
|
.bind(NodeID<Expr>::value))),
|
|
Stm, Context);
|
|
return findExprMutation(Matches);
|
|
}
|
|
|
|
const Stmt *
|
|
ExprMutationAnalyzer::Analyzer::findPointeeMemberMutation(const Expr *Exp) {
|
|
const Stmt *MemberCallExpr = selectFirst<Stmt>(
|
|
"stmt", match(stmt(forEachDescendant(
|
|
cxxMemberCallExpr(on(canResolveToExprPointee(Exp)),
|
|
unless(isConstCallee()))
|
|
.bind("stmt"))),
|
|
Stm, Context));
|
|
if (MemberCallExpr)
|
|
return MemberCallExpr;
|
|
const auto Matches =
|
|
match(stmt(forEachDescendant(
|
|
memberExpr(hasObjectExpression(canResolveToExprPointee(Exp)))
|
|
.bind(NodeID<Expr>::value))),
|
|
Stm, Context);
|
|
return findExprMutation(Matches);
|
|
}
|
|
|
|
const Stmt *
|
|
ExprMutationAnalyzer::Analyzer::findPointeeToNonConst(const Expr *Exp) {
|
|
const auto NonConstPointerOrDependentType =
|
|
type(anyOf(nonConstPointerType(), isDependentType()));
|
|
|
|
// assign
|
|
const auto InitToNonConst =
|
|
varDecl(hasType(NonConstPointerOrDependentType),
|
|
hasInitializer(expr(canResolveToExprPointee(Exp)).bind("stmt")));
|
|
const auto AssignToNonConst =
|
|
binaryOperation(hasOperatorName("="),
|
|
hasLHS(expr(hasType(NonConstPointerOrDependentType))),
|
|
hasRHS(canResolveToExprPointee(Exp)));
|
|
// arguments like
|
|
const auto ArgOfInstantiationDependent = allOf(
|
|
hasAnyArgument(canResolveToExprPointee(Exp)), isInstantiationDependent());
|
|
const auto ArgOfNonConstParameter = forEachArgumentWithParamType(
|
|
canResolveToExprPointee(Exp), NonConstPointerOrDependentType);
|
|
const auto CallLikeMatcher =
|
|
anyOf(ArgOfNonConstParameter, ArgOfInstantiationDependent);
|
|
const auto PassAsNonConstArg =
|
|
expr(anyOf(cxxUnresolvedConstructExpr(ArgOfInstantiationDependent),
|
|
cxxConstructExpr(CallLikeMatcher), callExpr(CallLikeMatcher),
|
|
parenListExpr(has(canResolveToExprPointee(Exp))),
|
|
initListExpr(hasAnyInit(canResolveToExprPointee(Exp)))));
|
|
// cast
|
|
const auto CastToNonConst =
|
|
explicitCastExpr(hasSourceExpression(canResolveToExprPointee(Exp)),
|
|
hasDestinationType(NonConstPointerOrDependentType));
|
|
|
|
// capture
|
|
// FIXME: false positive if the pointee does not change in lambda
|
|
const auto CaptureNoConst = lambdaExpr(hasCaptureInit(Exp));
|
|
|
|
const auto Matches =
|
|
match(stmt(anyOf(forEachDescendant(
|
|
stmt(anyOf(AssignToNonConst, PassAsNonConstArg,
|
|
CastToNonConst, CaptureNoConst))
|
|
.bind("stmt")),
|
|
forEachDescendant(InitToNonConst))),
|
|
Stm, Context);
|
|
return selectFirst<Stmt>("stmt", Matches);
|
|
}
|
|
|
|
FunctionParmMutationAnalyzer::FunctionParmMutationAnalyzer(
|
|
const FunctionDecl &Func, ASTContext &Context,
|
|
ExprMutationAnalyzer::Memoized &Memorized)
|
|
: BodyAnalyzer(*Func.getBody(), Context, Memorized) {
|
|
if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(&Func)) {
|
|
// CXXCtorInitializer might also mutate Param but they're not part of
|
|
// function body, check them eagerly here since they're typically trivial.
|
|
for (const CXXCtorInitializer *Init : Ctor->inits()) {
|
|
ExprMutationAnalyzer::Analyzer InitAnalyzer(*Init->getInit(), Context,
|
|
Memorized);
|
|
for (const ParmVarDecl *Parm : Ctor->parameters()) {
|
|
if (Results.contains(Parm))
|
|
continue;
|
|
if (const Stmt *S = InitAnalyzer.findMutation(Parm))
|
|
Results[Parm] = S;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const Stmt *
|
|
FunctionParmMutationAnalyzer::findMutation(const ParmVarDecl *Parm) {
|
|
auto [Place, Inserted] = Results.try_emplace(Parm);
|
|
if (!Inserted)
|
|
return Place->second;
|
|
|
|
// To handle call A -> call B -> call A. Assume parameters of A is not mutated
|
|
// before analyzing parameters of A. Then when analyzing the second "call A",
|
|
// FunctionParmMutationAnalyzer can use this memoized value to avoid infinite
|
|
// recursion.
|
|
return Place->second = BodyAnalyzer.findMutation(Parm);
|
|
}
|
|
|
|
} // namespace clang
|