
to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
453 lines
15 KiB
C++
453 lines
15 KiB
C++
//===-- PGOMemOPSizeOpt.cpp - Optimizations based on value profiling ===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the transformation that optimizes memory intrinsics
|
|
// such as memcpy using the size value profile. When memory intrinsic size
|
|
// value profile metadata is available, a single memory intrinsic is expanded
|
|
// to a sequence of guarded specialized versions that are called with the
|
|
// hottest size(s), for later expansion into more optimal inline sequences.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/DomTreeUpdater.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/PassRegistry.h"
|
|
#include "llvm/PassSupport.h"
|
|
#include "llvm/ProfileData/InstrProf.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Transforms/Instrumentation.h"
|
|
#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "pgo-memop-opt"
|
|
|
|
STATISTIC(NumOfPGOMemOPOpt, "Number of memop intrinsics optimized.");
|
|
STATISTIC(NumOfPGOMemOPAnnotate, "Number of memop intrinsics annotated.");
|
|
|
|
// The minimum call count to optimize memory intrinsic calls.
|
|
static cl::opt<unsigned>
|
|
MemOPCountThreshold("pgo-memop-count-threshold", cl::Hidden, cl::ZeroOrMore,
|
|
cl::init(1000),
|
|
cl::desc("The minimum count to optimize memory "
|
|
"intrinsic calls"));
|
|
|
|
// Command line option to disable memory intrinsic optimization. The default is
|
|
// false. This is for debug purpose.
|
|
static cl::opt<bool> DisableMemOPOPT("disable-memop-opt", cl::init(false),
|
|
cl::Hidden, cl::desc("Disable optimize"));
|
|
|
|
// The percent threshold to optimize memory intrinsic calls.
|
|
static cl::opt<unsigned>
|
|
MemOPPercentThreshold("pgo-memop-percent-threshold", cl::init(40),
|
|
cl::Hidden, cl::ZeroOrMore,
|
|
cl::desc("The percentage threshold for the "
|
|
"memory intrinsic calls optimization"));
|
|
|
|
// Maximum number of versions for optimizing memory intrinsic call.
|
|
static cl::opt<unsigned>
|
|
MemOPMaxVersion("pgo-memop-max-version", cl::init(3), cl::Hidden,
|
|
cl::ZeroOrMore,
|
|
cl::desc("The max version for the optimized memory "
|
|
" intrinsic calls"));
|
|
|
|
// Scale the counts from the annotation using the BB count value.
|
|
static cl::opt<bool>
|
|
MemOPScaleCount("pgo-memop-scale-count", cl::init(true), cl::Hidden,
|
|
cl::desc("Scale the memop size counts using the basic "
|
|
" block count value"));
|
|
|
|
// This option sets the rangge of precise profile memop sizes.
|
|
extern cl::opt<std::string> MemOPSizeRange;
|
|
|
|
// This option sets the value that groups large memop sizes
|
|
extern cl::opt<unsigned> MemOPSizeLarge;
|
|
|
|
namespace {
|
|
class PGOMemOPSizeOptLegacyPass : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
PGOMemOPSizeOptLegacyPass() : FunctionPass(ID) {
|
|
initializePGOMemOPSizeOptLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
StringRef getPassName() const override { return "PGOMemOPSize"; }
|
|
|
|
private:
|
|
bool runOnFunction(Function &F) override;
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<BlockFrequencyInfoWrapperPass>();
|
|
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
char PGOMemOPSizeOptLegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(PGOMemOPSizeOptLegacyPass, "pgo-memop-opt",
|
|
"Optimize memory intrinsic using its size value profile",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
|
|
INITIALIZE_PASS_END(PGOMemOPSizeOptLegacyPass, "pgo-memop-opt",
|
|
"Optimize memory intrinsic using its size value profile",
|
|
false, false)
|
|
|
|
FunctionPass *llvm::createPGOMemOPSizeOptLegacyPass() {
|
|
return new PGOMemOPSizeOptLegacyPass();
|
|
}
|
|
|
|
namespace {
|
|
class MemOPSizeOpt : public InstVisitor<MemOPSizeOpt> {
|
|
public:
|
|
MemOPSizeOpt(Function &Func, BlockFrequencyInfo &BFI,
|
|
OptimizationRemarkEmitter &ORE, DominatorTree *DT)
|
|
: Func(Func), BFI(BFI), ORE(ORE), DT(DT), Changed(false) {
|
|
ValueDataArray =
|
|
llvm::make_unique<InstrProfValueData[]>(MemOPMaxVersion + 2);
|
|
// Get the MemOPSize range information from option MemOPSizeRange,
|
|
getMemOPSizeRangeFromOption(MemOPSizeRange, PreciseRangeStart,
|
|
PreciseRangeLast);
|
|
}
|
|
bool isChanged() const { return Changed; }
|
|
void perform() {
|
|
WorkList.clear();
|
|
visit(Func);
|
|
|
|
for (auto &MI : WorkList) {
|
|
++NumOfPGOMemOPAnnotate;
|
|
if (perform(MI)) {
|
|
Changed = true;
|
|
++NumOfPGOMemOPOpt;
|
|
LLVM_DEBUG(dbgs() << "MemOP call: "
|
|
<< MI->getCalledFunction()->getName()
|
|
<< "is Transformed.\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
void visitMemIntrinsic(MemIntrinsic &MI) {
|
|
Value *Length = MI.getLength();
|
|
// Not perform on constant length calls.
|
|
if (dyn_cast<ConstantInt>(Length))
|
|
return;
|
|
WorkList.push_back(&MI);
|
|
}
|
|
|
|
private:
|
|
Function &Func;
|
|
BlockFrequencyInfo &BFI;
|
|
OptimizationRemarkEmitter &ORE;
|
|
DominatorTree *DT;
|
|
bool Changed;
|
|
std::vector<MemIntrinsic *> WorkList;
|
|
// Start of the previse range.
|
|
int64_t PreciseRangeStart;
|
|
// Last value of the previse range.
|
|
int64_t PreciseRangeLast;
|
|
// The space to read the profile annotation.
|
|
std::unique_ptr<InstrProfValueData[]> ValueDataArray;
|
|
bool perform(MemIntrinsic *MI);
|
|
|
|
// This kind shows which group the value falls in. For PreciseValue, we have
|
|
// the profile count for that value. LargeGroup groups the values that are in
|
|
// range [LargeValue, +inf). NonLargeGroup groups the rest of values.
|
|
enum MemOPSizeKind { PreciseValue, NonLargeGroup, LargeGroup };
|
|
|
|
MemOPSizeKind getMemOPSizeKind(int64_t Value) const {
|
|
if (Value == MemOPSizeLarge && MemOPSizeLarge != 0)
|
|
return LargeGroup;
|
|
if (Value == PreciseRangeLast + 1)
|
|
return NonLargeGroup;
|
|
return PreciseValue;
|
|
}
|
|
};
|
|
|
|
static const char *getMIName(const MemIntrinsic *MI) {
|
|
switch (MI->getIntrinsicID()) {
|
|
case Intrinsic::memcpy:
|
|
return "memcpy";
|
|
case Intrinsic::memmove:
|
|
return "memmove";
|
|
case Intrinsic::memset:
|
|
return "memset";
|
|
default:
|
|
return "unknown";
|
|
}
|
|
}
|
|
|
|
static bool isProfitable(uint64_t Count, uint64_t TotalCount) {
|
|
assert(Count <= TotalCount);
|
|
if (Count < MemOPCountThreshold)
|
|
return false;
|
|
if (Count < TotalCount * MemOPPercentThreshold / 100)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static inline uint64_t getScaledCount(uint64_t Count, uint64_t Num,
|
|
uint64_t Denom) {
|
|
if (!MemOPScaleCount)
|
|
return Count;
|
|
bool Overflowed;
|
|
uint64_t ScaleCount = SaturatingMultiply(Count, Num, &Overflowed);
|
|
return ScaleCount / Denom;
|
|
}
|
|
|
|
bool MemOPSizeOpt::perform(MemIntrinsic *MI) {
|
|
assert(MI);
|
|
if (MI->getIntrinsicID() == Intrinsic::memmove)
|
|
return false;
|
|
|
|
uint32_t NumVals, MaxNumPromotions = MemOPMaxVersion + 2;
|
|
uint64_t TotalCount;
|
|
if (!getValueProfDataFromInst(*MI, IPVK_MemOPSize, MaxNumPromotions,
|
|
ValueDataArray.get(), NumVals, TotalCount))
|
|
return false;
|
|
|
|
uint64_t ActualCount = TotalCount;
|
|
uint64_t SavedTotalCount = TotalCount;
|
|
if (MemOPScaleCount) {
|
|
auto BBEdgeCount = BFI.getBlockProfileCount(MI->getParent());
|
|
if (!BBEdgeCount)
|
|
return false;
|
|
ActualCount = *BBEdgeCount;
|
|
}
|
|
|
|
ArrayRef<InstrProfValueData> VDs(ValueDataArray.get(), NumVals);
|
|
LLVM_DEBUG(dbgs() << "Read one memory intrinsic profile with count "
|
|
<< ActualCount << "\n");
|
|
LLVM_DEBUG(
|
|
for (auto &VD
|
|
: VDs) { dbgs() << " (" << VD.Value << "," << VD.Count << ")\n"; });
|
|
|
|
if (ActualCount < MemOPCountThreshold)
|
|
return false;
|
|
// Skip if the total value profiled count is 0, in which case we can't
|
|
// scale up the counts properly (and there is no profitable transformation).
|
|
if (TotalCount == 0)
|
|
return false;
|
|
|
|
TotalCount = ActualCount;
|
|
if (MemOPScaleCount)
|
|
LLVM_DEBUG(dbgs() << "Scale counts: numerator = " << ActualCount
|
|
<< " denominator = " << SavedTotalCount << "\n");
|
|
|
|
// Keeping track of the count of the default case:
|
|
uint64_t RemainCount = TotalCount;
|
|
uint64_t SavedRemainCount = SavedTotalCount;
|
|
SmallVector<uint64_t, 16> SizeIds;
|
|
SmallVector<uint64_t, 16> CaseCounts;
|
|
uint64_t MaxCount = 0;
|
|
unsigned Version = 0;
|
|
// Default case is in the front -- save the slot here.
|
|
CaseCounts.push_back(0);
|
|
for (auto &VD : VDs) {
|
|
int64_t V = VD.Value;
|
|
uint64_t C = VD.Count;
|
|
if (MemOPScaleCount)
|
|
C = getScaledCount(C, ActualCount, SavedTotalCount);
|
|
|
|
// Only care precise value here.
|
|
if (getMemOPSizeKind(V) != PreciseValue)
|
|
continue;
|
|
|
|
// ValueCounts are sorted on the count. Break at the first un-profitable
|
|
// value.
|
|
if (!isProfitable(C, RemainCount))
|
|
break;
|
|
|
|
SizeIds.push_back(V);
|
|
CaseCounts.push_back(C);
|
|
if (C > MaxCount)
|
|
MaxCount = C;
|
|
|
|
assert(RemainCount >= C);
|
|
RemainCount -= C;
|
|
assert(SavedRemainCount >= VD.Count);
|
|
SavedRemainCount -= VD.Count;
|
|
|
|
if (++Version > MemOPMaxVersion && MemOPMaxVersion != 0)
|
|
break;
|
|
}
|
|
|
|
if (Version == 0)
|
|
return false;
|
|
|
|
CaseCounts[0] = RemainCount;
|
|
if (RemainCount > MaxCount)
|
|
MaxCount = RemainCount;
|
|
|
|
uint64_t SumForOpt = TotalCount - RemainCount;
|
|
|
|
LLVM_DEBUG(dbgs() << "Optimize one memory intrinsic call to " << Version
|
|
<< " Versions (covering " << SumForOpt << " out of "
|
|
<< TotalCount << ")\n");
|
|
|
|
// mem_op(..., size)
|
|
// ==>
|
|
// switch (size) {
|
|
// case s1:
|
|
// mem_op(..., s1);
|
|
// goto merge_bb;
|
|
// case s2:
|
|
// mem_op(..., s2);
|
|
// goto merge_bb;
|
|
// ...
|
|
// default:
|
|
// mem_op(..., size);
|
|
// goto merge_bb;
|
|
// }
|
|
// merge_bb:
|
|
|
|
BasicBlock *BB = MI->getParent();
|
|
LLVM_DEBUG(dbgs() << "\n\n== Basic Block Before ==\n");
|
|
LLVM_DEBUG(dbgs() << *BB << "\n");
|
|
auto OrigBBFreq = BFI.getBlockFreq(BB);
|
|
|
|
BasicBlock *DefaultBB = SplitBlock(BB, MI, DT);
|
|
BasicBlock::iterator It(*MI);
|
|
++It;
|
|
assert(It != DefaultBB->end());
|
|
BasicBlock *MergeBB = SplitBlock(DefaultBB, &(*It), DT);
|
|
MergeBB->setName("MemOP.Merge");
|
|
BFI.setBlockFreq(MergeBB, OrigBBFreq.getFrequency());
|
|
DefaultBB->setName("MemOP.Default");
|
|
|
|
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
|
|
auto &Ctx = Func.getContext();
|
|
IRBuilder<> IRB(BB);
|
|
BB->getTerminator()->eraseFromParent();
|
|
Value *SizeVar = MI->getLength();
|
|
SwitchInst *SI = IRB.CreateSwitch(SizeVar, DefaultBB, SizeIds.size());
|
|
|
|
// Clear the value profile data.
|
|
MI->setMetadata(LLVMContext::MD_prof, nullptr);
|
|
// If all promoted, we don't need the MD.prof metadata.
|
|
if (SavedRemainCount > 0 || Version != NumVals)
|
|
// Otherwise we need update with the un-promoted records back.
|
|
annotateValueSite(*Func.getParent(), *MI, VDs.slice(Version),
|
|
SavedRemainCount, IPVK_MemOPSize, NumVals);
|
|
|
|
LLVM_DEBUG(dbgs() << "\n\n== Basic Block After==\n");
|
|
|
|
std::vector<DominatorTree::UpdateType> Updates;
|
|
if (DT)
|
|
Updates.reserve(2 * SizeIds.size());
|
|
|
|
for (uint64_t SizeId : SizeIds) {
|
|
BasicBlock *CaseBB = BasicBlock::Create(
|
|
Ctx, Twine("MemOP.Case.") + Twine(SizeId), &Func, DefaultBB);
|
|
Instruction *NewInst = MI->clone();
|
|
// Fix the argument.
|
|
MemIntrinsic * MemI = dyn_cast<MemIntrinsic>(NewInst);
|
|
IntegerType *SizeType = dyn_cast<IntegerType>(MemI->getLength()->getType());
|
|
assert(SizeType && "Expected integer type size argument.");
|
|
ConstantInt *CaseSizeId = ConstantInt::get(SizeType, SizeId);
|
|
MemI->setLength(CaseSizeId);
|
|
CaseBB->getInstList().push_back(NewInst);
|
|
IRBuilder<> IRBCase(CaseBB);
|
|
IRBCase.CreateBr(MergeBB);
|
|
SI->addCase(CaseSizeId, CaseBB);
|
|
if (DT) {
|
|
Updates.push_back({DominatorTree::Insert, CaseBB, MergeBB});
|
|
Updates.push_back({DominatorTree::Insert, BB, CaseBB});
|
|
}
|
|
LLVM_DEBUG(dbgs() << *CaseBB << "\n");
|
|
}
|
|
DTU.applyUpdates(Updates);
|
|
Updates.clear();
|
|
|
|
setProfMetadata(Func.getParent(), SI, CaseCounts, MaxCount);
|
|
|
|
LLVM_DEBUG(dbgs() << *BB << "\n");
|
|
LLVM_DEBUG(dbgs() << *DefaultBB << "\n");
|
|
LLVM_DEBUG(dbgs() << *MergeBB << "\n");
|
|
|
|
ORE.emit([&]() {
|
|
using namespace ore;
|
|
return OptimizationRemark(DEBUG_TYPE, "memopt-opt", MI)
|
|
<< "optimized " << NV("Intrinsic", StringRef(getMIName(MI)))
|
|
<< " with count " << NV("Count", SumForOpt) << " out of "
|
|
<< NV("Total", TotalCount) << " for " << NV("Versions", Version)
|
|
<< " versions";
|
|
});
|
|
|
|
return true;
|
|
}
|
|
} // namespace
|
|
|
|
static bool PGOMemOPSizeOptImpl(Function &F, BlockFrequencyInfo &BFI,
|
|
OptimizationRemarkEmitter &ORE,
|
|
DominatorTree *DT) {
|
|
if (DisableMemOPOPT)
|
|
return false;
|
|
|
|
if (F.hasFnAttribute(Attribute::OptimizeForSize))
|
|
return false;
|
|
MemOPSizeOpt MemOPSizeOpt(F, BFI, ORE, DT);
|
|
MemOPSizeOpt.perform();
|
|
return MemOPSizeOpt.isChanged();
|
|
}
|
|
|
|
bool PGOMemOPSizeOptLegacyPass::runOnFunction(Function &F) {
|
|
BlockFrequencyInfo &BFI =
|
|
getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
|
|
auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
|
|
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
|
DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
|
|
return PGOMemOPSizeOptImpl(F, BFI, ORE, DT);
|
|
}
|
|
|
|
namespace llvm {
|
|
char &PGOMemOPSizeOptID = PGOMemOPSizeOptLegacyPass::ID;
|
|
|
|
PreservedAnalyses PGOMemOPSizeOpt::run(Function &F,
|
|
FunctionAnalysisManager &FAM) {
|
|
auto &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
|
|
auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
|
|
auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
|
|
bool Changed = PGOMemOPSizeOptImpl(F, BFI, ORE, DT);
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
auto PA = PreservedAnalyses();
|
|
PA.preserve<GlobalsAA>();
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
return PA;
|
|
}
|
|
} // namespace llvm
|