Valentin Clement 165879ec31
[fir] Add fir.convert op conversion from FIR to LLVM IR
Add conversion pattern for the `fir.convert` operation.

This patch is part of the upstreaming effort from fir-dev branch.

Reviewed By: rovka, awarzynski

Differential Revision: https://reviews.llvm.org/D113469

Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
2021-11-09 14:55:24 +01:00

820 lines
33 KiB
C++

//===-- CodeGen.cpp -- bridge to lower to LLVM ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/CodeGen/CodeGen.h"
#include "PassDetail.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Support/FIRContext.h"
#include "mlir/Conversion/ArithmeticToLLVM/ArithmeticToLLVM.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/LLVMCommon/TypeConverter.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Pass/Pass.h"
#include "llvm/ADT/ArrayRef.h"
#define DEBUG_TYPE "flang-codegen"
// fir::LLVMTypeConverter for converting to LLVM IR dialect types.
#include "TypeConverter.h"
namespace {
/// FIR conversion pattern template
template <typename FromOp>
class FIROpConversion : public mlir::ConvertOpToLLVMPattern<FromOp> {
public:
explicit FIROpConversion(fir::LLVMTypeConverter &lowering)
: mlir::ConvertOpToLLVMPattern<FromOp>(lowering) {}
protected:
mlir::Type convertType(mlir::Type ty) const {
return lowerTy().convertType(ty);
}
fir::LLVMTypeConverter &lowerTy() const {
return *static_cast<fir::LLVMTypeConverter *>(this->getTypeConverter());
}
};
/// FIR conversion pattern template
template <typename FromOp>
class FIROpAndTypeConversion : public FIROpConversion<FromOp> {
public:
using FIROpConversion<FromOp>::FIROpConversion;
using OpAdaptor = typename FromOp::Adaptor;
mlir::LogicalResult
matchAndRewrite(FromOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const final {
mlir::Type ty = this->convertType(op.getType());
return doRewrite(op, ty, adaptor, rewriter);
}
virtual mlir::LogicalResult
doRewrite(FromOp addr, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const = 0;
};
// Lower `fir.address_of` operation to `llvm.address_of` operation.
struct AddrOfOpConversion : public FIROpConversion<fir::AddrOfOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::AddrOfOp addr, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto ty = convertType(addr.getType());
rewriter.replaceOpWithNewOp<mlir::LLVM::AddressOfOp>(
addr, ty, addr.symbol().getRootReference().getValue());
return success();
}
};
// `fir.call` -> `llvm.call`
struct CallOpConversion : public FIROpConversion<fir::CallOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::CallOp call, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
SmallVector<mlir::Type> resultTys;
for (auto r : call.getResults())
resultTys.push_back(convertType(r.getType()));
rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
call, resultTys, adaptor.getOperands(), call->getAttrs());
return success();
}
};
static mlir::Type getComplexEleTy(mlir::Type complex) {
if (auto cc = complex.dyn_cast<mlir::ComplexType>())
return cc.getElementType();
return complex.cast<fir::ComplexType>().getElementType();
}
/// convert value of from-type to value of to-type
struct ConvertOpConversion : public FIROpConversion<fir::ConvertOp> {
using FIROpConversion::FIROpConversion;
static bool isFloatingPointTy(mlir::Type ty) {
return ty.isa<mlir::FloatType>();
}
mlir::LogicalResult
matchAndRewrite(fir::ConvertOp convert, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto fromTy = convertType(convert.value().getType());
auto toTy = convertType(convert.res().getType());
mlir::Value op0 = adaptor.getOperands()[0];
if (fromTy == toTy) {
rewriter.replaceOp(convert, op0);
return success();
}
auto loc = convert.getLoc();
auto convertFpToFp = [&](mlir::Value val, unsigned fromBits,
unsigned toBits, mlir::Type toTy) -> mlir::Value {
if (fromBits == toBits) {
// TODO: Converting between two floating-point representations with the
// same bitwidth is not allowed for now.
mlir::emitError(loc,
"cannot implicitly convert between two floating-point "
"representations of the same bitwidth");
return {};
}
if (fromBits > toBits)
return rewriter.create<mlir::LLVM::FPTruncOp>(loc, toTy, val);
return rewriter.create<mlir::LLVM::FPExtOp>(loc, toTy, val);
};
// Complex to complex conversion.
if (fir::isa_complex(convert.value().getType()) &&
fir::isa_complex(convert.res().getType())) {
// Special case: handle the conversion of a complex such that both the
// real and imaginary parts are converted together.
auto zero = mlir::ArrayAttr::get(convert.getContext(),
rewriter.getI32IntegerAttr(0));
auto one = mlir::ArrayAttr::get(convert.getContext(),
rewriter.getI32IntegerAttr(1));
auto ty = convertType(getComplexEleTy(convert.value().getType()));
auto rp = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ty, op0, zero);
auto ip = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ty, op0, one);
auto nt = convertType(getComplexEleTy(convert.res().getType()));
auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(ty);
auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(nt);
auto rc = convertFpToFp(rp, fromBits, toBits, nt);
auto ic = convertFpToFp(ip, fromBits, toBits, nt);
auto un = rewriter.create<mlir::LLVM::UndefOp>(loc, toTy);
auto i1 =
rewriter.create<mlir::LLVM::InsertValueOp>(loc, toTy, un, rc, zero);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(convert, toTy, i1,
ic, one);
return mlir::success();
}
// Floating point to floating point conversion.
if (isFloatingPointTy(fromTy)) {
if (isFloatingPointTy(toTy)) {
auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(fromTy);
auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(toTy);
auto v = convertFpToFp(op0, fromBits, toBits, toTy);
rewriter.replaceOp(convert, v);
return mlir::success();
}
if (toTy.isa<mlir::IntegerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::FPToSIOp>(convert, toTy, op0);
return mlir::success();
}
} else if (fromTy.isa<mlir::IntegerType>()) {
// Integer to integer conversion.
if (toTy.isa<mlir::IntegerType>()) {
auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(fromTy);
auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(toTy);
assert(fromBits != toBits);
if (fromBits > toBits) {
rewriter.replaceOpWithNewOp<mlir::LLVM::TruncOp>(convert, toTy, op0);
return mlir::success();
}
rewriter.replaceOpWithNewOp<mlir::LLVM::SExtOp>(convert, toTy, op0);
return mlir::success();
}
// Integer to floating point conversion.
if (isFloatingPointTy(toTy)) {
rewriter.replaceOpWithNewOp<mlir::LLVM::SIToFPOp>(convert, toTy, op0);
return mlir::success();
}
// Integer to pointer conversion.
if (toTy.isa<mlir::LLVM::LLVMPointerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::IntToPtrOp>(convert, toTy, op0);
return mlir::success();
}
} else if (fromTy.isa<mlir::LLVM::LLVMPointerType>()) {
// Pointer to integer conversion.
if (toTy.isa<mlir::IntegerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::PtrToIntOp>(convert, toTy, op0);
return mlir::success();
}
// Pointer to pointer conversion.
if (toTy.isa<mlir::LLVM::LLVMPointerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(convert, toTy, op0);
return mlir::success();
}
}
return emitError(loc) << "cannot convert " << fromTy << " to " << toTy;
}
};
/// Lower `fir.has_value` operation to `llvm.return` operation.
struct HasValueOpConversion : public FIROpConversion<fir::HasValueOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::HasValueOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, adaptor.getOperands());
return success();
}
};
/// Lower `fir.global` operation to `llvm.global` operation.
/// `fir.insert_on_range` operations are replaced with constant dense attribute
/// if they are applied on the full range.
struct GlobalOpConversion : public FIROpConversion<fir::GlobalOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::GlobalOp global, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto tyAttr = convertType(global.getType());
if (global.getType().isa<fir::BoxType>())
tyAttr = tyAttr.cast<mlir::LLVM::LLVMPointerType>().getElementType();
auto loc = global.getLoc();
mlir::Attribute initAttr{};
if (global.initVal())
initAttr = global.initVal().getValue();
auto linkage = convertLinkage(global.linkName());
auto isConst = global.constant().hasValue();
auto g = rewriter.create<mlir::LLVM::GlobalOp>(
loc, tyAttr, isConst, linkage, global.sym_name(), initAttr);
auto &gr = g.getInitializerRegion();
rewriter.inlineRegionBefore(global.region(), gr, gr.end());
if (!gr.empty()) {
// Replace insert_on_range with a constant dense attribute if the
// initialization is on the full range.
auto insertOnRangeOps = gr.front().getOps<fir::InsertOnRangeOp>();
for (auto insertOp : insertOnRangeOps) {
if (isFullRange(insertOp.coor(), insertOp.getType())) {
auto seqTyAttr = convertType(insertOp.getType());
auto *op = insertOp.val().getDefiningOp();
auto constant = mlir::dyn_cast<mlir::arith::ConstantOp>(op);
if (!constant) {
auto convertOp = mlir::dyn_cast<fir::ConvertOp>(op);
if (!convertOp)
continue;
constant = cast<mlir::arith::ConstantOp>(
convertOp.value().getDefiningOp());
}
mlir::Type vecType = mlir::VectorType::get(
insertOp.getType().getShape(), constant.getType());
auto denseAttr = mlir::DenseElementsAttr::get(
vecType.cast<ShapedType>(), constant.value());
rewriter.setInsertionPointAfter(insertOp);
rewriter.replaceOpWithNewOp<mlir::arith::ConstantOp>(
insertOp, seqTyAttr, denseAttr);
}
}
}
rewriter.eraseOp(global);
return success();
}
bool isFullRange(mlir::ArrayAttr indexes, fir::SequenceType seqTy) const {
auto extents = seqTy.getShape();
if (indexes.size() / 2 != extents.size())
return false;
for (unsigned i = 0; i < indexes.size(); i += 2) {
if (indexes[i].cast<IntegerAttr>().getInt() != 0)
return false;
if (indexes[i + 1].cast<IntegerAttr>().getInt() != extents[i / 2] - 1)
return false;
}
return true;
}
// TODO: String comparaison should be avoided. Replace linkName with an
// enumeration.
mlir::LLVM::Linkage convertLinkage(Optional<StringRef> optLinkage) const {
if (optLinkage.hasValue()) {
auto name = optLinkage.getValue();
if (name == "internal")
return mlir::LLVM::Linkage::Internal;
if (name == "linkonce")
return mlir::LLVM::Linkage::Linkonce;
if (name == "common")
return mlir::LLVM::Linkage::Common;
if (name == "weak")
return mlir::LLVM::Linkage::Weak;
}
return mlir::LLVM::Linkage::External;
}
};
template <typename OP>
void selectMatchAndRewrite(fir::LLVMTypeConverter &lowering, OP select,
typename OP::Adaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) {
unsigned conds = select.getNumConditions();
auto cases = select.getCases().getValue();
mlir::Value selector = adaptor.selector();
auto loc = select.getLoc();
assert(conds > 0 && "select must have cases");
llvm::SmallVector<mlir::Block *> destinations;
llvm::SmallVector<mlir::ValueRange> destinationsOperands;
mlir::Block *defaultDestination;
mlir::ValueRange defaultOperands;
llvm::SmallVector<int32_t> caseValues;
for (unsigned t = 0; t != conds; ++t) {
mlir::Block *dest = select.getSuccessor(t);
auto destOps = select.getSuccessorOperands(adaptor.getOperands(), t);
const mlir::Attribute &attr = cases[t];
if (auto intAttr = attr.template dyn_cast<mlir::IntegerAttr>()) {
destinations.push_back(dest);
destinationsOperands.push_back(destOps.hasValue() ? *destOps
: ValueRange());
caseValues.push_back(intAttr.getInt());
continue;
}
assert(attr.template dyn_cast_or_null<mlir::UnitAttr>());
assert((t + 1 == conds) && "unit must be last");
defaultDestination = dest;
defaultOperands = destOps.hasValue() ? *destOps : ValueRange();
}
// LLVM::SwitchOp takes a i32 type for the selector.
if (select.getSelector().getType() != rewriter.getI32Type())
selector =
rewriter.create<LLVM::TruncOp>(loc, rewriter.getI32Type(), selector);
rewriter.replaceOpWithNewOp<mlir::LLVM::SwitchOp>(
select, selector,
/*defaultDestination=*/defaultDestination,
/*defaultOperands=*/defaultOperands,
/*caseValues=*/caseValues,
/*caseDestinations=*/destinations,
/*caseOperands=*/destinationsOperands,
/*branchWeights=*/ArrayRef<int32_t>());
}
/// conversion of fir::SelectOp to an if-then-else ladder
struct SelectOpConversion : public FIROpConversion<fir::SelectOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::SelectOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
selectMatchAndRewrite<fir::SelectOp>(lowerTy(), op, adaptor, rewriter);
return success();
}
};
/// conversion of fir::SelectRankOp to an if-then-else ladder
struct SelectRankOpConversion : public FIROpConversion<fir::SelectRankOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::SelectRankOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
selectMatchAndRewrite<fir::SelectRankOp>(lowerTy(), op, adaptor, rewriter);
return success();
}
};
// convert to LLVM IR dialect `undef`
struct UndefOpConversion : public FIROpConversion<fir::UndefOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::UndefOp undef, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<mlir::LLVM::UndefOp>(
undef, convertType(undef.getType()));
return success();
}
};
// convert to LLVM IR dialect `unreachable`
struct UnreachableOpConversion : public FIROpConversion<fir::UnreachableOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::UnreachableOp unreach, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<mlir::LLVM::UnreachableOp>(unreach);
return success();
}
};
struct ZeroOpConversion : public FIROpConversion<fir::ZeroOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::ZeroOp zero, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto ty = convertType(zero.getType());
if (ty.isa<mlir::LLVM::LLVMPointerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::NullOp>(zero, ty);
} else if (ty.isa<mlir::IntegerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>(
zero, ty, mlir::IntegerAttr::get(zero.getType(), 0));
} else if (mlir::LLVM::isCompatibleFloatingPointType(ty)) {
rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>(
zero, ty, mlir::FloatAttr::get(zero.getType(), 0.0));
} else {
// TODO: create ConstantAggregateZero for FIR aggregate/array types.
return rewriter.notifyMatchFailure(
zero,
"conversion of fir.zero with aggregate type not implemented yet");
}
return success();
}
};
// Code shared between insert_value and extract_value Ops.
struct ValueOpCommon {
// Translate the arguments pertaining to any multidimensional array to
// row-major order for LLVM-IR.
static void toRowMajor(SmallVectorImpl<mlir::Attribute> &attrs,
mlir::Type ty) {
assert(ty && "type is null");
const auto end = attrs.size();
for (std::remove_const_t<decltype(end)> i = 0; i < end; ++i) {
if (auto seq = ty.dyn_cast<mlir::LLVM::LLVMArrayType>()) {
const auto dim = getDimension(seq);
if (dim > 1) {
auto ub = std::min(i + dim, end);
std::reverse(attrs.begin() + i, attrs.begin() + ub);
i += dim - 1;
}
ty = getArrayElementType(seq);
} else if (auto st = ty.dyn_cast<mlir::LLVM::LLVMStructType>()) {
ty = st.getBody()[attrs[i].cast<mlir::IntegerAttr>().getInt()];
} else {
llvm_unreachable("index into invalid type");
}
}
}
static llvm::SmallVector<mlir::Attribute>
collectIndices(mlir::ConversionPatternRewriter &rewriter,
mlir::ArrayAttr arrAttr) {
llvm::SmallVector<mlir::Attribute> attrs;
for (auto i = arrAttr.begin(), e = arrAttr.end(); i != e; ++i) {
if (i->isa<mlir::IntegerAttr>()) {
attrs.push_back(*i);
} else {
auto fieldName = i->cast<mlir::StringAttr>().getValue();
++i;
auto ty = i->cast<mlir::TypeAttr>().getValue();
auto index = ty.cast<fir::RecordType>().getFieldIndex(fieldName);
attrs.push_back(mlir::IntegerAttr::get(rewriter.getI32Type(), index));
}
}
return attrs;
}
private:
static unsigned getDimension(mlir::LLVM::LLVMArrayType ty) {
unsigned result = 1;
for (auto eleTy = ty.getElementType().dyn_cast<mlir::LLVM::LLVMArrayType>();
eleTy;
eleTy = eleTy.getElementType().dyn_cast<mlir::LLVM::LLVMArrayType>())
++result;
return result;
}
static mlir::Type getArrayElementType(mlir::LLVM::LLVMArrayType ty) {
auto eleTy = ty.getElementType();
while (auto arrTy = eleTy.dyn_cast<mlir::LLVM::LLVMArrayType>())
eleTy = arrTy.getElementType();
return eleTy;
}
};
/// Extract a subobject value from an ssa-value of aggregate type
struct ExtractValueOpConversion
: public FIROpAndTypeConversion<fir::ExtractValueOp>,
public ValueOpCommon {
using FIROpAndTypeConversion::FIROpAndTypeConversion;
mlir::LogicalResult
doRewrite(fir::ExtractValueOp extractVal, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto attrs = collectIndices(rewriter, extractVal.coor());
toRowMajor(attrs, adaptor.getOperands()[0].getType());
auto position = mlir::ArrayAttr::get(extractVal.getContext(), attrs);
rewriter.replaceOpWithNewOp<mlir::LLVM::ExtractValueOp>(
extractVal, ty, adaptor.getOperands()[0], position);
return success();
}
};
/// InsertValue is the generalized instruction for the composition of new
/// aggregate type values.
struct InsertValueOpConversion
: public FIROpAndTypeConversion<fir::InsertValueOp>,
public ValueOpCommon {
using FIROpAndTypeConversion::FIROpAndTypeConversion;
mlir::LogicalResult
doRewrite(fir::InsertValueOp insertVal, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto attrs = collectIndices(rewriter, insertVal.coor());
toRowMajor(attrs, adaptor.getOperands()[0].getType());
auto position = mlir::ArrayAttr::get(insertVal.getContext(), attrs);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
insertVal, ty, adaptor.getOperands()[0], adaptor.getOperands()[1],
position);
return success();
}
};
/// InsertOnRange inserts a value into a sequence over a range of offsets.
struct InsertOnRangeOpConversion
: public FIROpAndTypeConversion<fir::InsertOnRangeOp> {
using FIROpAndTypeConversion::FIROpAndTypeConversion;
// Increments an array of subscripts in a row major fasion.
void incrementSubscripts(const SmallVector<uint64_t> &dims,
SmallVector<uint64_t> &subscripts) const {
for (size_t i = dims.size(); i > 0; --i) {
if (++subscripts[i - 1] < dims[i - 1]) {
return;
}
subscripts[i - 1] = 0;
}
}
mlir::LogicalResult
doRewrite(fir::InsertOnRangeOp range, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
llvm::SmallVector<uint64_t> dims;
auto type = adaptor.getOperands()[0].getType();
// Iteratively extract the array dimensions from the type.
while (auto t = type.dyn_cast<mlir::LLVM::LLVMArrayType>()) {
dims.push_back(t.getNumElements());
type = t.getElementType();
}
SmallVector<uint64_t> lBounds;
SmallVector<uint64_t> uBounds;
// Extract integer value from the attribute
SmallVector<int64_t> coordinates = llvm::to_vector<4>(
llvm::map_range(range.coor(), [](Attribute a) -> int64_t {
return a.cast<IntegerAttr>().getInt();
}));
// Unzip the upper and lower bound and convert to a row major format.
for (auto i = coordinates.rbegin(), e = coordinates.rend(); i != e; ++i) {
uBounds.push_back(*i++);
lBounds.push_back(*i);
}
auto &subscripts = lBounds;
auto loc = range.getLoc();
mlir::Value lastOp = adaptor.getOperands()[0];
mlir::Value insertVal = adaptor.getOperands()[1];
auto i64Ty = rewriter.getI64Type();
while (subscripts != uBounds) {
// Convert uint64_t's to Attribute's.
SmallVector<mlir::Attribute> subscriptAttrs;
for (const auto &subscript : subscripts)
subscriptAttrs.push_back(IntegerAttr::get(i64Ty, subscript));
lastOp = rewriter.create<mlir::LLVM::InsertValueOp>(
loc, ty, lastOp, insertVal,
ArrayAttr::get(range.getContext(), subscriptAttrs));
incrementSubscripts(dims, subscripts);
}
// Convert uint64_t's to Attribute's.
SmallVector<mlir::Attribute> subscriptAttrs;
for (const auto &subscript : subscripts)
subscriptAttrs.push_back(
IntegerAttr::get(rewriter.getI64Type(), subscript));
mlir::ArrayRef<mlir::Attribute> arrayRef(subscriptAttrs);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
range, ty, lastOp, insertVal,
ArrayAttr::get(range.getContext(), arrayRef));
return success();
}
};
//
// Primitive operations on Complex types
//
/// Generate inline code for complex addition/subtraction
template <typename LLVMOP, typename OPTY>
mlir::LLVM::InsertValueOp complexSum(OPTY sumop, mlir::ValueRange opnds,
mlir::ConversionPatternRewriter &rewriter,
fir::LLVMTypeConverter &lowering) {
mlir::Value a = opnds[0];
mlir::Value b = opnds[1];
auto loc = sumop.getLoc();
auto ctx = sumop.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
mlir::Type eleTy = lowering.convertType(getComplexEleTy(sumop.getType()));
mlir::Type ty = lowering.convertType(sumop.getType());
auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
auto rx = rewriter.create<LLVMOP>(loc, eleTy, x0, x1);
auto ry = rewriter.create<LLVMOP>(loc, eleTy, y0, y1);
auto r0 = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r0, rx, c0);
return rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ry, c1);
}
struct AddcOpConversion : public FIROpConversion<fir::AddcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::AddcOp addc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// given: (x + iy) + (x' + iy')
// result: (x + x') + i(y + y')
auto r = complexSum<mlir::LLVM::FAddOp>(addc, adaptor.getOperands(),
rewriter, lowerTy());
rewriter.replaceOp(addc, r.getResult());
return success();
}
};
struct SubcOpConversion : public FIROpConversion<fir::SubcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::SubcOp subc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// given: (x + iy) - (x' + iy')
// result: (x - x') + i(y - y')
auto r = complexSum<mlir::LLVM::FSubOp>(subc, adaptor.getOperands(),
rewriter, lowerTy());
rewriter.replaceOp(subc, r.getResult());
return success();
}
};
/// Inlined complex multiply
struct MulcOpConversion : public FIROpConversion<fir::MulcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::MulcOp mulc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// TODO: Can we use a call to __muldc3 ?
// given: (x + iy) * (x' + iy')
// result: (xx'-yy')+i(xy'+yx')
mlir::Value a = adaptor.getOperands()[0];
mlir::Value b = adaptor.getOperands()[1];
auto loc = mulc.getLoc();
auto *ctx = mulc.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
mlir::Type eleTy = convertType(getComplexEleTy(mulc.getType()));
mlir::Type ty = convertType(mulc.getType());
auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
auto xx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, x1);
auto yx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, x1);
auto xy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, y1);
auto ri = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, xy, yx);
auto yy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, y1);
auto rr = rewriter.create<mlir::LLVM::FSubOp>(loc, eleTy, xx, yy);
auto ra = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, ra, rr, c0);
auto r0 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ri, c1);
rewriter.replaceOp(mulc, r0.getResult());
return success();
}
};
/// Inlined complex division
struct DivcOpConversion : public FIROpConversion<fir::DivcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::DivcOp divc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// TODO: Can we use a call to __divdc3 instead?
// Just generate inline code for now.
// given: (x + iy) / (x' + iy')
// result: ((xx'+yy')/d) + i((yx'-xy')/d) where d = x'x' + y'y'
mlir::Value a = adaptor.getOperands()[0];
mlir::Value b = adaptor.getOperands()[1];
auto loc = divc.getLoc();
auto *ctx = divc.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
mlir::Type eleTy = convertType(getComplexEleTy(divc.getType()));
mlir::Type ty = convertType(divc.getType());
auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
auto xx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, x1);
auto x1x1 = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x1, x1);
auto yx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, x1);
auto xy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, y1);
auto yy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, y1);
auto y1y1 = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y1, y1);
auto d = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, x1x1, y1y1);
auto rrn = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, xx, yy);
auto rin = rewriter.create<mlir::LLVM::FSubOp>(loc, eleTy, yx, xy);
auto rr = rewriter.create<mlir::LLVM::FDivOp>(loc, eleTy, rrn, d);
auto ri = rewriter.create<mlir::LLVM::FDivOp>(loc, eleTy, rin, d);
auto ra = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, ra, rr, c0);
auto r0 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ri, c1);
rewriter.replaceOp(divc, r0.getResult());
return success();
}
};
/// Inlined complex negation
struct NegcOpConversion : public FIROpConversion<fir::NegcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::NegcOp neg, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// given: -(x + iy)
// result: -x - iy
auto *ctxt = neg.getContext();
auto eleTy = convertType(getComplexEleTy(neg.getType()));
auto ty = convertType(neg.getType());
auto loc = neg.getLoc();
mlir::Value o0 = adaptor.getOperands()[0];
auto c0 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(1));
auto rp = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, o0, c0);
auto ip = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, o0, c1);
auto nrp = rewriter.create<mlir::LLVM::FNegOp>(loc, eleTy, rp);
auto nip = rewriter.create<mlir::LLVM::FNegOp>(loc, eleTy, ip);
auto r = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, o0, nrp, c0);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(neg, ty, r, nip, c1);
return success();
}
};
} // namespace
namespace {
/// Convert FIR dialect to LLVM dialect
///
/// This pass lowers all FIR dialect operations to LLVM IR dialect. An
/// MLIR pass is used to lower residual Std dialect to LLVM IR dialect.
///
/// This pass is not complete yet. We are upstreaming it in small patches.
class FIRToLLVMLowering : public fir::FIRToLLVMLoweringBase<FIRToLLVMLowering> {
public:
mlir::ModuleOp getModule() { return getOperation(); }
void runOnOperation() override final {
auto mod = getModule();
if (!forcedTargetTriple.empty()) {
fir::setTargetTriple(mod, forcedTargetTriple);
}
auto *context = getModule().getContext();
fir::LLVMTypeConverter typeConverter{getModule()};
mlir::OwningRewritePatternList pattern(context);
pattern
.insert<AddcOpConversion, AddrOfOpConversion, CallOpConversion,
ConvertOpConversion, DivcOpConversion, ExtractValueOpConversion,
HasValueOpConversion, GlobalOpConversion,
InsertOnRangeOpConversion, InsertValueOpConversion,
NegcOpConversion, MulcOpConversion, SelectOpConversion,
SelectRankOpConversion, SubcOpConversion, UndefOpConversion,
UnreachableOpConversion, ZeroOpConversion>(typeConverter);
mlir::populateStdToLLVMConversionPatterns(typeConverter, pattern);
mlir::arith::populateArithmeticToLLVMConversionPatterns(typeConverter,
pattern);
mlir::ConversionTarget target{*context};
target.addLegalDialect<mlir::LLVM::LLVMDialect>();
// required NOPs for applying a full conversion
target.addLegalOp<mlir::ModuleOp>();
// apply the patterns
if (mlir::failed(mlir::applyFullConversion(getModule(), target,
std::move(pattern)))) {
signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<mlir::Pass> fir::createFIRToLLVMPass() {
return std::make_unique<FIRToLLVMLowering>();
}