llvm-project/mlir/lib/ExecutionEngine/SparseTensorRuntime.cpp
Aart Bik dc4cfdbb8f
[mlir][sparse] provide an AoS "view" into sparse runtime support lib (#87116)
Note that even though the sparse runtime support lib always uses SoA
storage for COO storage (and provides correct codegen by means of views
into this storage), in some rare cases we need the true physical SoA
storage as a coordinate buffer. This PR provides that functionality by
means of a (costly) coordinate buffer call.

Since this is currently only used for testing/debugging by means of the
sparse_tensor.print method, this solution is acceptable. If we ever want
a performing version of this, we should truly support AoS storage of COO
in addition to the SoA used right now.
2024-03-29 15:30:36 -07:00

515 lines
25 KiB
C++

//===- SparseTensorRuntime.cpp - SparseTensor runtime support lib ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a light-weight runtime support library for
// manipulating sparse tensors from MLIR. More specifically, it provides
// C-API wrappers so that MLIR-generated code can call into the C++ runtime
// support library. The functionality provided in this library is meant
// to simplify benchmarking, testing, and debugging of MLIR code operating
// on sparse tensors. However, the provided functionality is **not**
// part of core MLIR itself.
//
// The following memory-resident sparse storage schemes are supported:
//
// (a) A coordinate scheme for temporarily storing and lexicographically
// sorting a sparse tensor by coordinate (SparseTensorCOO).
//
// (b) A "one-size-fits-all" sparse tensor storage scheme defined by
// per-dimension sparse/dense annnotations together with a dimension
// ordering used by MLIR compiler-generated code (SparseTensorStorage).
//
// The following external formats are supported:
//
// (1) Matrix Market Exchange (MME): *.mtx
// https://math.nist.gov/MatrixMarket/formats.html
//
// (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns
// http://frostt.io/tensors/file-formats.html
//
// Two public APIs are supported:
//
// (I) Methods operating on MLIR buffers (memrefs) to interact with sparse
// tensors. These methods should be used exclusively by MLIR
// compiler-generated code.
//
// (II) Methods that accept C-style data structures to interact with sparse
// tensors. These methods can be used by any external runtime that wants
// to interact with MLIR compiler-generated code.
//
// In both cases (I) and (II), the SparseTensorStorage format is externally
// only visible as an opaque pointer.
//
//===----------------------------------------------------------------------===//
#include "mlir/ExecutionEngine/SparseTensorRuntime.h"
#ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
#include "mlir/ExecutionEngine/SparseTensor/ArithmeticUtils.h"
#include "mlir/ExecutionEngine/SparseTensor/COO.h"
#include "mlir/ExecutionEngine/SparseTensor/File.h"
#include "mlir/ExecutionEngine/SparseTensor/Storage.h"
#include <cstring>
#include <numeric>
using namespace mlir::sparse_tensor;
//===----------------------------------------------------------------------===//
//
// Utilities for manipulating `StridedMemRefType`.
//
//===----------------------------------------------------------------------===//
namespace {
#define ASSERT_NO_STRIDE(MEMREF) \
do { \
assert((MEMREF) && "Memref is nullptr"); \
assert(((MEMREF)->strides[0] == 1) && "Memref has non-trivial stride"); \
} while (false)
#define MEMREF_GET_USIZE(MEMREF) \
detail::checkOverflowCast<uint64_t>((MEMREF)->sizes[0])
#define ASSERT_USIZE_EQ(MEMREF, SZ) \
assert(detail::safelyEQ(MEMREF_GET_USIZE(MEMREF), (SZ)) && \
"Memref size mismatch")
#define MEMREF_GET_PAYLOAD(MEMREF) ((MEMREF)->data + (MEMREF)->offset)
/// Initializes the memref with the provided size and data pointer. This
/// is designed for functions which want to "return" a memref that aliases
/// into memory owned by some other object (e.g., `SparseTensorStorage`),
/// without doing any actual copying. (The "return" is in scarequotes
/// because the `_mlir_ciface_` calling convention migrates any returned
/// memrefs into an out-parameter passed before all the other function
/// parameters.)
template <typename DataSizeT, typename T>
static inline void aliasIntoMemref(DataSizeT size, T *data,
StridedMemRefType<T, 1> &ref) {
ref.basePtr = ref.data = data;
ref.offset = 0;
using MemrefSizeT = std::remove_reference_t<decltype(ref.sizes[0])>;
ref.sizes[0] = detail::checkOverflowCast<MemrefSizeT>(size);
ref.strides[0] = 1;
}
} // anonymous namespace
extern "C" {
//===----------------------------------------------------------------------===//
//
// Public functions which operate on MLIR buffers (memrefs) to interact
// with sparse tensors (which are only visible as opaque pointers externally).
//
//===----------------------------------------------------------------------===//
#define CASE(p, c, v, P, C, V) \
if (posTp == (p) && crdTp == (c) && valTp == (v)) { \
switch (action) { \
case Action::kEmpty: { \
return SparseTensorStorage<P, C, V>::newEmpty( \
dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes, dim2lvl, lvl2dim); \
} \
case Action::kFromReader: { \
assert(ptr && "Received nullptr for SparseTensorReader object"); \
SparseTensorReader &reader = *static_cast<SparseTensorReader *>(ptr); \
return static_cast<void *>(reader.readSparseTensor<P, C, V>( \
lvlRank, lvlSizes, lvlTypes, dim2lvl, lvl2dim)); \
} \
case Action::kPack: { \
assert(ptr && "Received nullptr for SparseTensorStorage object"); \
intptr_t *buffers = static_cast<intptr_t *>(ptr); \
return SparseTensorStorage<P, C, V>::newFromBuffers( \
dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes, dim2lvl, lvl2dim, \
dimRank, buffers); \
} \
case Action::kSortCOOInPlace: { \
assert(ptr && "Received nullptr for SparseTensorStorage object"); \
auto &tensor = *static_cast<SparseTensorStorage<P, C, V> *>(ptr); \
tensor.sortInPlace(); \
return ptr; \
} \
} \
fprintf(stderr, "unknown action %d\n", static_cast<uint32_t>(action)); \
exit(1); \
}
#define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V)
// Assume index_type is in fact uint64_t, so that _mlir_ciface_newSparseTensor
// can safely rewrite kIndex to kU64. We make this assertion to guarantee
// that this file cannot get out of sync with its header.
static_assert(std::is_same<index_type, uint64_t>::value,
"Expected index_type == uint64_t");
// The Swiss-army-knife for sparse tensor creation.
void *_mlir_ciface_newSparseTensor( // NOLINT
StridedMemRefType<index_type, 1> *dimSizesRef,
StridedMemRefType<index_type, 1> *lvlSizesRef,
StridedMemRefType<LevelType, 1> *lvlTypesRef,
StridedMemRefType<index_type, 1> *dim2lvlRef,
StridedMemRefType<index_type, 1> *lvl2dimRef, OverheadType posTp,
OverheadType crdTp, PrimaryType valTp, Action action, void *ptr) {
ASSERT_NO_STRIDE(dimSizesRef);
ASSERT_NO_STRIDE(lvlSizesRef);
ASSERT_NO_STRIDE(lvlTypesRef);
ASSERT_NO_STRIDE(dim2lvlRef);
ASSERT_NO_STRIDE(lvl2dimRef);
const uint64_t dimRank = MEMREF_GET_USIZE(dimSizesRef);
const uint64_t lvlRank = MEMREF_GET_USIZE(lvlSizesRef);
ASSERT_USIZE_EQ(lvlTypesRef, lvlRank);
ASSERT_USIZE_EQ(dim2lvlRef, lvlRank);
ASSERT_USIZE_EQ(lvl2dimRef, dimRank);
const index_type *dimSizes = MEMREF_GET_PAYLOAD(dimSizesRef);
const index_type *lvlSizes = MEMREF_GET_PAYLOAD(lvlSizesRef);
const LevelType *lvlTypes = MEMREF_GET_PAYLOAD(lvlTypesRef);
const index_type *dim2lvl = MEMREF_GET_PAYLOAD(dim2lvlRef);
const index_type *lvl2dim = MEMREF_GET_PAYLOAD(lvl2dimRef);
// Rewrite kIndex to kU64, to avoid introducing a bunch of new cases.
// This is safe because of the static_assert above.
if (posTp == OverheadType::kIndex)
posTp = OverheadType::kU64;
if (crdTp == OverheadType::kIndex)
crdTp = OverheadType::kU64;
// Double matrices with all combinations of overhead storage.
CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t,
uint64_t, double);
CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t,
uint32_t, double);
CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t,
uint16_t, double);
CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t,
uint8_t, double);
CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t,
uint64_t, double);
CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t,
uint32_t, double);
CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t,
uint16_t, double);
CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t,
uint8_t, double);
CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t,
uint64_t, double);
CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t,
uint32_t, double);
CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t,
uint16_t, double);
CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t,
uint8_t, double);
CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t,
uint64_t, double);
CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t,
uint32_t, double);
CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t,
uint16_t, double);
CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t,
uint8_t, double);
// Float matrices with all combinations of overhead storage.
CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t,
uint64_t, float);
CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t,
uint32_t, float);
CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t,
uint16_t, float);
CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t,
uint8_t, float);
CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t,
uint64_t, float);
CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t,
uint32_t, float);
CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t,
uint16_t, float);
CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t,
uint8_t, float);
CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t,
uint64_t, float);
CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t,
uint32_t, float);
CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t,
uint16_t, float);
CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t,
uint8_t, float);
CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t,
uint64_t, float);
CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t,
uint32_t, float);
CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t,
uint16_t, float);
CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t,
uint8_t, float);
// Two-byte floats with both overheads of the same type.
CASE_SECSAME(OverheadType::kU64, PrimaryType::kF16, uint64_t, f16);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kBF16, uint64_t, bf16);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kF16, uint32_t, f16);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kBF16, uint32_t, bf16);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kF16, uint16_t, f16);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kBF16, uint16_t, bf16);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kF16, uint8_t, f16);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kBF16, uint8_t, bf16);
// Integral matrices with both overheads of the same type.
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI64, uint32_t, int64_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI64, uint16_t, int64_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI64, uint8_t, int64_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t);
// Complex matrices with wide overhead.
CASE_SECSAME(OverheadType::kU64, PrimaryType::kC64, uint64_t, complex64);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kC32, uint64_t, complex32);
// Unsupported case (add above if needed).
fprintf(stderr, "unsupported combination of types: <P=%d, C=%d, V=%d>\n",
static_cast<int>(posTp), static_cast<int>(crdTp),
static_cast<int>(valTp));
exit(1);
}
#undef CASE
#undef CASE_SECSAME
#define IMPL_SPARSEVALUES(VNAME, V) \
void _mlir_ciface_sparseValues##VNAME(StridedMemRefType<V, 1> *ref, \
void *tensor) { \
assert(ref &&tensor); \
std::vector<V> *v; \
static_cast<SparseTensorStorageBase *>(tensor)->getValues(&v); \
assert(v); \
aliasIntoMemref(v->size(), v->data(), *ref); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_SPARSEVALUES)
#undef IMPL_SPARSEVALUES
#define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \
void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \
index_type lvl) { \
assert(ref &&tensor); \
std::vector<TYPE> *v; \
static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, lvl); \
assert(v); \
aliasIntoMemref(v->size(), v->data(), *ref); \
}
#define IMPL_SPARSEPOSITIONS(PNAME, P) \
IMPL_GETOVERHEAD(sparsePositions##PNAME, P, getPositions)
MLIR_SPARSETENSOR_FOREVERY_O(IMPL_SPARSEPOSITIONS)
#undef IMPL_SPARSEPOSITIONS
#define IMPL_SPARSECOORDINATES(CNAME, C) \
IMPL_GETOVERHEAD(sparseCoordinates##CNAME, C, getCoordinates)
MLIR_SPARSETENSOR_FOREVERY_O(IMPL_SPARSECOORDINATES)
#undef IMPL_SPARSECOORDINATES
#define IMPL_SPARSECOORDINATESBUFFER(CNAME, C) \
IMPL_GETOVERHEAD(sparseCoordinatesBuffer##CNAME, C, getCoordinatesBuffer)
MLIR_SPARSETENSOR_FOREVERY_O(IMPL_SPARSECOORDINATESBUFFER)
#undef IMPL_SPARSECOORDINATESBUFFER
#undef IMPL_GETOVERHEAD
#define IMPL_LEXINSERT(VNAME, V) \
void _mlir_ciface_lexInsert##VNAME( \
void *t, StridedMemRefType<index_type, 1> *lvlCoordsRef, \
StridedMemRefType<V, 0> *vref) { \
assert(t &&vref); \
auto &tensor = *static_cast<SparseTensorStorageBase *>(t); \
ASSERT_NO_STRIDE(lvlCoordsRef); \
index_type *lvlCoords = MEMREF_GET_PAYLOAD(lvlCoordsRef); \
assert(lvlCoords); \
V *value = MEMREF_GET_PAYLOAD(vref); \
tensor.lexInsert(lvlCoords, *value); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_LEXINSERT)
#undef IMPL_LEXINSERT
#define IMPL_EXPINSERT(VNAME, V) \
void _mlir_ciface_expInsert##VNAME( \
void *t, StridedMemRefType<index_type, 1> *lvlCoordsRef, \
StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref, \
StridedMemRefType<index_type, 1> *aref, index_type count) { \
assert(t); \
auto &tensor = *static_cast<SparseTensorStorageBase *>(t); \
ASSERT_NO_STRIDE(lvlCoordsRef); \
ASSERT_NO_STRIDE(vref); \
ASSERT_NO_STRIDE(fref); \
ASSERT_NO_STRIDE(aref); \
ASSERT_USIZE_EQ(vref, MEMREF_GET_USIZE(fref)); \
index_type *lvlCoords = MEMREF_GET_PAYLOAD(lvlCoordsRef); \
V *values = MEMREF_GET_PAYLOAD(vref); \
bool *filled = MEMREF_GET_PAYLOAD(fref); \
index_type *added = MEMREF_GET_PAYLOAD(aref); \
uint64_t expsz = vref->sizes[0]; \
tensor.expInsert(lvlCoords, values, filled, added, count, expsz); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_EXPINSERT)
#undef IMPL_EXPINSERT
void *_mlir_ciface_createCheckedSparseTensorReader(
char *filename, StridedMemRefType<index_type, 1> *dimShapeRef,
PrimaryType valTp) {
ASSERT_NO_STRIDE(dimShapeRef);
const uint64_t dimRank = MEMREF_GET_USIZE(dimShapeRef);
const index_type *dimShape = MEMREF_GET_PAYLOAD(dimShapeRef);
auto *reader = SparseTensorReader::create(filename, dimRank, dimShape, valTp);
return static_cast<void *>(reader);
}
void _mlir_ciface_getSparseTensorReaderDimSizes(
StridedMemRefType<index_type, 1> *out, void *p) {
assert(out && p);
SparseTensorReader &reader = *static_cast<SparseTensorReader *>(p);
auto *dimSizes = const_cast<uint64_t *>(reader.getDimSizes());
aliasIntoMemref(reader.getRank(), dimSizes, *out);
}
#define IMPL_GETNEXT(VNAME, V, CNAME, C) \
bool _mlir_ciface_getSparseTensorReaderReadToBuffers##CNAME##VNAME( \
void *p, StridedMemRefType<index_type, 1> *dim2lvlRef, \
StridedMemRefType<index_type, 1> *lvl2dimRef, \
StridedMemRefType<C, 1> *cref, StridedMemRefType<V, 1> *vref) { \
assert(p); \
auto &reader = *static_cast<SparseTensorReader *>(p); \
ASSERT_NO_STRIDE(dim2lvlRef); \
ASSERT_NO_STRIDE(lvl2dimRef); \
ASSERT_NO_STRIDE(cref); \
ASSERT_NO_STRIDE(vref); \
const uint64_t dimRank = reader.getRank(); \
const uint64_t lvlRank = MEMREF_GET_USIZE(dim2lvlRef); \
const uint64_t cSize = MEMREF_GET_USIZE(cref); \
const uint64_t vSize = MEMREF_GET_USIZE(vref); \
ASSERT_USIZE_EQ(lvl2dimRef, dimRank); \
assert(cSize >= lvlRank * reader.getNSE()); \
assert(vSize >= reader.getNSE()); \
(void)dimRank; \
(void)cSize; \
(void)vSize; \
index_type *dim2lvl = MEMREF_GET_PAYLOAD(dim2lvlRef); \
index_type *lvl2dim = MEMREF_GET_PAYLOAD(lvl2dimRef); \
C *lvlCoordinates = MEMREF_GET_PAYLOAD(cref); \
V *values = MEMREF_GET_PAYLOAD(vref); \
return reader.readToBuffers<C, V>(lvlRank, dim2lvl, lvl2dim, \
lvlCoordinates, values); \
}
MLIR_SPARSETENSOR_FOREVERY_V_O(IMPL_GETNEXT)
#undef IMPL_GETNEXT
void _mlir_ciface_outSparseTensorWriterMetaData(
void *p, index_type dimRank, index_type nse,
StridedMemRefType<index_type, 1> *dimSizesRef) {
assert(p);
ASSERT_NO_STRIDE(dimSizesRef);
assert(dimRank != 0);
index_type *dimSizes = MEMREF_GET_PAYLOAD(dimSizesRef);
std::ostream &file = *static_cast<std::ostream *>(p);
file << dimRank << " " << nse << '\n';
for (index_type d = 0; d < dimRank - 1; d++)
file << dimSizes[d] << " ";
file << dimSizes[dimRank - 1] << '\n';
}
#define IMPL_OUTNEXT(VNAME, V) \
void _mlir_ciface_outSparseTensorWriterNext##VNAME( \
void *p, index_type dimRank, \
StridedMemRefType<index_type, 1> *dimCoordsRef, \
StridedMemRefType<V, 0> *vref) { \
assert(p &&vref); \
ASSERT_NO_STRIDE(dimCoordsRef); \
const index_type *dimCoords = MEMREF_GET_PAYLOAD(dimCoordsRef); \
std::ostream &file = *static_cast<std::ostream *>(p); \
for (index_type d = 0; d < dimRank; d++) \
file << (dimCoords[d] + 1) << " "; \
V *value = MEMREF_GET_PAYLOAD(vref); \
file << *value << '\n'; \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_OUTNEXT)
#undef IMPL_OUTNEXT
//===----------------------------------------------------------------------===//
//
// Public functions which accept only C-style data structures to interact
// with sparse tensors (which are only visible as opaque pointers externally).
//
//===----------------------------------------------------------------------===//
index_type sparseLvlSize(void *tensor, index_type l) {
return static_cast<SparseTensorStorageBase *>(tensor)->getLvlSize(l);
}
index_type sparseDimSize(void *tensor, index_type d) {
return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d);
}
void endLexInsert(void *tensor) {
return static_cast<SparseTensorStorageBase *>(tensor)->endLexInsert();
}
void delSparseTensor(void *tensor) {
delete static_cast<SparseTensorStorageBase *>(tensor);
}
char *getTensorFilename(index_type id) {
constexpr size_t bufSize = 80;
char var[bufSize];
snprintf(var, bufSize, "TENSOR%" PRIu64, id);
char *env = getenv(var);
if (!env) {
fprintf(stderr, "Environment variable %s is not set\n", var);
exit(1);
}
return env;
}
index_type getSparseTensorReaderNSE(void *p) {
return static_cast<SparseTensorReader *>(p)->getNSE();
}
void delSparseTensorReader(void *p) {
delete static_cast<SparseTensorReader *>(p);
}
void *createSparseTensorWriter(char *filename) {
std::ostream *file =
(filename[0] == 0) ? &std::cout : new std::ofstream(filename);
*file << "# extended FROSTT format\n";
return static_cast<void *>(file);
}
void delSparseTensorWriter(void *p) {
std::ostream *file = static_cast<std::ostream *>(p);
file->flush();
assert(file->good());
if (file != &std::cout)
delete file;
}
} // extern "C"
#undef MEMREF_GET_PAYLOAD
#undef ASSERT_USIZE_EQ
#undef MEMREF_GET_USIZE
#undef ASSERT_NO_STRIDE
#endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS