llvm-project/mlir/lib/Bytecode/Reader/BytecodeReader.cpp
Jacques Pienaar 1826fadb0d [mlir][bytecode] Avoid recording null arglocs & realloc opnames.
For block arg locs a common case is no/uknown location (where the producer
signifies they don't care about blockarg location). Also avoid needing to
dynamically resize opnames during parsing.

Assumed to be post lazy loading change, so chose version 3.

Differential Revision: https://reviews.llvm.org/D151038
2023-05-25 09:24:50 -07:00

2349 lines
87 KiB
C++

//===- BytecodeReader.cpp - MLIR Bytecode Reader --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// TODO: Support for big-endian architectures.
#include "mlir/Bytecode/BytecodeReader.h"
#include "mlir/AsmParser/AsmParser.h"
#include "mlir/Bytecode/BytecodeImplementation.h"
#include "mlir/Bytecode/Encoding.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/Verifier.h"
#include "mlir/IR/Visitors.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/MemoryBufferRef.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/SourceMgr.h"
#include <list>
#include <memory>
#include <numeric>
#include <optional>
#define DEBUG_TYPE "mlir-bytecode-reader"
using namespace mlir;
/// Stringify the given section ID.
static std::string toString(bytecode::Section::ID sectionID) {
switch (sectionID) {
case bytecode::Section::kString:
return "String (0)";
case bytecode::Section::kDialect:
return "Dialect (1)";
case bytecode::Section::kAttrType:
return "AttrType (2)";
case bytecode::Section::kAttrTypeOffset:
return "AttrTypeOffset (3)";
case bytecode::Section::kIR:
return "IR (4)";
case bytecode::Section::kResource:
return "Resource (5)";
case bytecode::Section::kResourceOffset:
return "ResourceOffset (6)";
case bytecode::Section::kDialectVersions:
return "DialectVersions (7)";
default:
return ("Unknown (" + Twine(static_cast<unsigned>(sectionID)) + ")").str();
}
}
/// Returns true if the given top-level section ID is optional.
static bool isSectionOptional(bytecode::Section::ID sectionID) {
switch (sectionID) {
case bytecode::Section::kString:
case bytecode::Section::kDialect:
case bytecode::Section::kAttrType:
case bytecode::Section::kAttrTypeOffset:
case bytecode::Section::kIR:
return false;
case bytecode::Section::kResource:
case bytecode::Section::kResourceOffset:
case bytecode::Section::kDialectVersions:
return true;
default:
llvm_unreachable("unknown section ID");
}
}
//===----------------------------------------------------------------------===//
// EncodingReader
//===----------------------------------------------------------------------===//
namespace {
class EncodingReader {
public:
explicit EncodingReader(ArrayRef<uint8_t> contents, Location fileLoc)
: dataIt(contents.data()), dataEnd(contents.end()), fileLoc(fileLoc) {}
explicit EncodingReader(StringRef contents, Location fileLoc)
: EncodingReader({reinterpret_cast<const uint8_t *>(contents.data()),
contents.size()},
fileLoc) {}
/// Returns true if the entire section has been read.
bool empty() const { return dataIt == dataEnd; }
/// Returns the remaining size of the bytecode.
size_t size() const { return dataEnd - dataIt; }
/// Align the current reader position to the specified alignment.
LogicalResult alignTo(unsigned alignment) {
if (!llvm::isPowerOf2_32(alignment))
return emitError("expected alignment to be a power-of-two");
// Shift the reader position to the next alignment boundary.
while (uintptr_t(dataIt) & (uintptr_t(alignment) - 1)) {
uint8_t padding;
if (failed(parseByte(padding)))
return failure();
if (padding != bytecode::kAlignmentByte) {
return emitError("expected alignment byte (0xCB), but got: '0x" +
llvm::utohexstr(padding) + "'");
}
}
// Ensure the data iterator is now aligned. This case is unlikely because we
// *just* went through the effort to align the data iterator.
if (LLVM_UNLIKELY(!llvm::isAddrAligned(llvm::Align(alignment), dataIt))) {
return emitError("expected data iterator aligned to ", alignment,
", but got pointer: '0x" +
llvm::utohexstr((uintptr_t)dataIt) + "'");
}
return success();
}
/// Emit an error using the given arguments.
template <typename... Args>
InFlightDiagnostic emitError(Args &&...args) const {
return ::emitError(fileLoc).append(std::forward<Args>(args)...);
}
InFlightDiagnostic emitError() const { return ::emitError(fileLoc); }
/// Parse a single byte from the stream.
template <typename T>
LogicalResult parseByte(T &value) {
if (empty())
return emitError("attempting to parse a byte at the end of the bytecode");
value = static_cast<T>(*dataIt++);
return success();
}
/// Parse a range of bytes of 'length' into the given result.
LogicalResult parseBytes(size_t length, ArrayRef<uint8_t> &result) {
if (length > size()) {
return emitError("attempting to parse ", length, " bytes when only ",
size(), " remain");
}
result = {dataIt, length};
dataIt += length;
return success();
}
/// Parse a range of bytes of 'length' into the given result, which can be
/// assumed to be large enough to hold `length`.
LogicalResult parseBytes(size_t length, uint8_t *result) {
if (length > size()) {
return emitError("attempting to parse ", length, " bytes when only ",
size(), " remain");
}
memcpy(result, dataIt, length);
dataIt += length;
return success();
}
/// Parse an aligned blob of data, where the alignment was encoded alongside
/// the data.
LogicalResult parseBlobAndAlignment(ArrayRef<uint8_t> &data,
uint64_t &alignment) {
uint64_t dataSize;
if (failed(parseVarInt(alignment)) || failed(parseVarInt(dataSize)) ||
failed(alignTo(alignment)))
return failure();
return parseBytes(dataSize, data);
}
/// Parse a variable length encoded integer from the byte stream. The first
/// encoded byte contains a prefix in the low bits indicating the encoded
/// length of the value. This length prefix is a bit sequence of '0's followed
/// by a '1'. The number of '0' bits indicate the number of _additional_ bytes
/// (not including the prefix byte). All remaining bits in the first byte,
/// along with all of the bits in additional bytes, provide the value of the
/// integer encoded in little-endian order.
LogicalResult parseVarInt(uint64_t &result) {
// Parse the first byte of the encoding, which contains the length prefix.
if (failed(parseByte(result)))
return failure();
// Handle the overwhelmingly common case where the value is stored in a
// single byte. In this case, the first bit is the `1` marker bit.
if (LLVM_LIKELY(result & 1)) {
result >>= 1;
return success();
}
// Handle the overwhelming uncommon case where the value required all 8
// bytes (i.e. a really really big number). In this case, the marker byte is
// all zeros: `00000000`.
if (LLVM_UNLIKELY(result == 0))
return parseBytes(sizeof(result), reinterpret_cast<uint8_t *>(&result));
return parseMultiByteVarInt(result);
}
/// Parse a signed variable length encoded integer from the byte stream. A
/// signed varint is encoded as a normal varint with zigzag encoding applied,
/// i.e. the low bit of the value is used to indicate the sign.
LogicalResult parseSignedVarInt(uint64_t &result) {
if (failed(parseVarInt(result)))
return failure();
// Essentially (but using unsigned): (x >> 1) ^ -(x & 1)
result = (result >> 1) ^ (~(result & 1) + 1);
return success();
}
/// Parse a variable length encoded integer whose low bit is used to encode an
/// unrelated flag, i.e: `(integerValue << 1) | (flag ? 1 : 0)`.
LogicalResult parseVarIntWithFlag(uint64_t &result, bool &flag) {
if (failed(parseVarInt(result)))
return failure();
flag = result & 1;
result >>= 1;
return success();
}
/// Skip the first `length` bytes within the reader.
LogicalResult skipBytes(size_t length) {
if (length > size()) {
return emitError("attempting to skip ", length, " bytes when only ",
size(), " remain");
}
dataIt += length;
return success();
}
/// Parse a null-terminated string into `result` (without including the NUL
/// terminator).
LogicalResult parseNullTerminatedString(StringRef &result) {
const char *startIt = (const char *)dataIt;
const char *nulIt = (const char *)memchr(startIt, 0, size());
if (!nulIt)
return emitError(
"malformed null-terminated string, no null character found");
result = StringRef(startIt, nulIt - startIt);
dataIt = (const uint8_t *)nulIt + 1;
return success();
}
/// Parse a section header, placing the kind of section in `sectionID` and the
/// contents of the section in `sectionData`.
LogicalResult parseSection(bytecode::Section::ID &sectionID,
ArrayRef<uint8_t> &sectionData) {
uint8_t sectionIDAndHasAlignment;
uint64_t length;
if (failed(parseByte(sectionIDAndHasAlignment)) ||
failed(parseVarInt(length)))
return failure();
// Extract the section ID and whether the section is aligned. The high bit
// of the ID is the alignment flag.
sectionID = static_cast<bytecode::Section::ID>(sectionIDAndHasAlignment &
0b01111111);
bool hasAlignment = sectionIDAndHasAlignment & 0b10000000;
// Check that the section is actually valid before trying to process its
// data.
if (sectionID >= bytecode::Section::kNumSections)
return emitError("invalid section ID: ", unsigned(sectionID));
// Process the section alignment if present.
if (hasAlignment) {
uint64_t alignment;
if (failed(parseVarInt(alignment)) || failed(alignTo(alignment)))
return failure();
}
// Parse the actual section data.
return parseBytes(static_cast<size_t>(length), sectionData);
}
Location getLoc() const { return fileLoc; }
private:
/// Parse a variable length encoded integer from the byte stream. This method
/// is a fallback when the number of bytes used to encode the value is greater
/// than 1, but less than the max (9). The provided `result` value can be
/// assumed to already contain the first byte of the value.
/// NOTE: This method is marked noinline to avoid pessimizing the common case
/// of single byte encoding.
LLVM_ATTRIBUTE_NOINLINE LogicalResult parseMultiByteVarInt(uint64_t &result) {
// Count the number of trailing zeros in the marker byte, this indicates the
// number of trailing bytes that are part of the value. We use `uint32_t`
// here because we only care about the first byte, and so that be actually
// get ctz intrinsic calls when possible (the `uint8_t` overload uses a loop
// implementation).
uint32_t numBytes = llvm::countr_zero<uint32_t>(result);
assert(numBytes > 0 && numBytes <= 7 &&
"unexpected number of trailing zeros in varint encoding");
// Parse in the remaining bytes of the value.
if (failed(parseBytes(numBytes, reinterpret_cast<uint8_t *>(&result) + 1)))
return failure();
// Shift out the low-order bits that were used to mark how the value was
// encoded.
result >>= (numBytes + 1);
return success();
}
/// The current data iterator, and an iterator to the end of the buffer.
const uint8_t *dataIt, *dataEnd;
/// A location for the bytecode used to report errors.
Location fileLoc;
};
} // namespace
/// Resolve an index into the given entry list. `entry` may either be a
/// reference, in which case it is assigned to the corresponding value in
/// `entries`, or a pointer, in which case it is assigned to the address of the
/// element in `entries`.
template <typename RangeT, typename T>
static LogicalResult resolveEntry(EncodingReader &reader, RangeT &entries,
uint64_t index, T &entry,
StringRef entryStr) {
if (index >= entries.size())
return reader.emitError("invalid ", entryStr, " index: ", index);
// If the provided entry is a pointer, resolve to the address of the entry.
if constexpr (std::is_convertible_v<llvm::detail::ValueOfRange<RangeT>, T>)
entry = entries[index];
else
entry = &entries[index];
return success();
}
/// Parse and resolve an index into the given entry list.
template <typename RangeT, typename T>
static LogicalResult parseEntry(EncodingReader &reader, RangeT &entries,
T &entry, StringRef entryStr) {
uint64_t entryIdx;
if (failed(reader.parseVarInt(entryIdx)))
return failure();
return resolveEntry(reader, entries, entryIdx, entry, entryStr);
}
//===----------------------------------------------------------------------===//
// StringSectionReader
//===----------------------------------------------------------------------===//
namespace {
/// This class is used to read references to the string section from the
/// bytecode.
class StringSectionReader {
public:
/// Initialize the string section reader with the given section data.
LogicalResult initialize(Location fileLoc, ArrayRef<uint8_t> sectionData);
/// Parse a shared string from the string section. The shared string is
/// encoded using an index to a corresponding string in the string section.
LogicalResult parseString(EncodingReader &reader, StringRef &result) {
return parseEntry(reader, strings, result, "string");
}
/// Parse a shared string from the string section. The shared string is
/// encoded using an index to a corresponding string in the string section.
LogicalResult parseStringAtIndex(EncodingReader &reader, uint64_t index,
StringRef &result) {
return resolveEntry(reader, strings, index, result, "string");
}
private:
/// The table of strings referenced within the bytecode file.
SmallVector<StringRef> strings;
};
} // namespace
LogicalResult StringSectionReader::initialize(Location fileLoc,
ArrayRef<uint8_t> sectionData) {
EncodingReader stringReader(sectionData, fileLoc);
// Parse the number of strings in the section.
uint64_t numStrings;
if (failed(stringReader.parseVarInt(numStrings)))
return failure();
strings.resize(numStrings);
// Parse each of the strings. The sizes of the strings are encoded in reverse
// order, so that's the order we populate the table.
size_t stringDataEndOffset = sectionData.size();
for (StringRef &string : llvm::reverse(strings)) {
uint64_t stringSize;
if (failed(stringReader.parseVarInt(stringSize)))
return failure();
if (stringDataEndOffset < stringSize) {
return stringReader.emitError(
"string size exceeds the available data size");
}
// Extract the string from the data, dropping the null character.
size_t stringOffset = stringDataEndOffset - stringSize;
string = StringRef(
reinterpret_cast<const char *>(sectionData.data() + stringOffset),
stringSize - 1);
stringDataEndOffset = stringOffset;
}
// Check that the only remaining data was for the strings, i.e. the reader
// should be at the same offset as the first string.
if ((sectionData.size() - stringReader.size()) != stringDataEndOffset) {
return stringReader.emitError("unexpected trailing data between the "
"offsets for strings and their data");
}
return success();
}
//===----------------------------------------------------------------------===//
// BytecodeDialect
//===----------------------------------------------------------------------===//
namespace {
class DialectReader;
/// This struct represents a dialect entry within the bytecode.
struct BytecodeDialect {
/// Load the dialect into the provided context if it hasn't been loaded yet.
/// Returns failure if the dialect couldn't be loaded *and* the provided
/// context does not allow unregistered dialects. The provided reader is used
/// for error emission if necessary.
LogicalResult load(DialectReader &reader, MLIRContext *ctx);
/// Return the loaded dialect, or nullptr if the dialect is unknown. This can
/// only be called after `load`.
Dialect *getLoadedDialect() const {
assert(dialect &&
"expected `load` to be invoked before `getLoadedDialect`");
return *dialect;
}
/// The loaded dialect entry. This field is std::nullopt if we haven't
/// attempted to load, nullptr if we failed to load, otherwise the loaded
/// dialect.
std::optional<Dialect *> dialect;
/// The bytecode interface of the dialect, or nullptr if the dialect does not
/// implement the bytecode interface. This field should only be checked if the
/// `dialect` field is not std::nullopt.
const BytecodeDialectInterface *interface = nullptr;
/// The name of the dialect.
StringRef name;
/// A buffer containing the encoding of the dialect version parsed.
ArrayRef<uint8_t> versionBuffer;
/// Lazy loaded dialect version from the handle above.
std::unique_ptr<DialectVersion> loadedVersion;
};
/// This struct represents an operation name entry within the bytecode.
struct BytecodeOperationName {
BytecodeOperationName(BytecodeDialect *dialect, StringRef name)
: dialect(dialect), name(name) {}
/// The loaded operation name, or std::nullopt if it hasn't been processed
/// yet.
std::optional<OperationName> opName;
/// The dialect that owns this operation name.
BytecodeDialect *dialect;
/// The name of the operation, without the dialect prefix.
StringRef name;
};
} // namespace
/// Parse a single dialect group encoded in the byte stream.
static LogicalResult parseDialectGrouping(
EncodingReader &reader, MutableArrayRef<BytecodeDialect> dialects,
function_ref<LogicalResult(BytecodeDialect *)> entryCallback) {
// Parse the dialect and the number of entries in the group.
BytecodeDialect *dialect;
if (failed(parseEntry(reader, dialects, dialect, "dialect")))
return failure();
uint64_t numEntries;
if (failed(reader.parseVarInt(numEntries)))
return failure();
for (uint64_t i = 0; i < numEntries; ++i)
if (failed(entryCallback(dialect)))
return failure();
return success();
}
//===----------------------------------------------------------------------===//
// ResourceSectionReader
//===----------------------------------------------------------------------===//
namespace {
/// This class is used to read the resource section from the bytecode.
class ResourceSectionReader {
public:
/// Initialize the resource section reader with the given section data.
LogicalResult
initialize(Location fileLoc, const ParserConfig &config,
MutableArrayRef<BytecodeDialect> dialects,
StringSectionReader &stringReader, ArrayRef<uint8_t> sectionData,
ArrayRef<uint8_t> offsetSectionData, DialectReader &dialectReader,
const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef);
/// Parse a dialect resource handle from the resource section.
LogicalResult parseResourceHandle(EncodingReader &reader,
AsmDialectResourceHandle &result) {
return parseEntry(reader, dialectResources, result, "resource handle");
}
private:
/// The table of dialect resources within the bytecode file.
SmallVector<AsmDialectResourceHandle> dialectResources;
llvm::StringMap<std::string> dialectResourceHandleRenamingMap;
};
class ParsedResourceEntry : public AsmParsedResourceEntry {
public:
ParsedResourceEntry(StringRef key, AsmResourceEntryKind kind,
EncodingReader &reader, StringSectionReader &stringReader,
const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef)
: key(key), kind(kind), reader(reader), stringReader(stringReader),
bufferOwnerRef(bufferOwnerRef) {}
~ParsedResourceEntry() override = default;
StringRef getKey() const final { return key; }
InFlightDiagnostic emitError() const final { return reader.emitError(); }
AsmResourceEntryKind getKind() const final { return kind; }
FailureOr<bool> parseAsBool() const final {
if (kind != AsmResourceEntryKind::Bool)
return emitError() << "expected a bool resource entry, but found a "
<< toString(kind) << " entry instead";
bool value;
if (failed(reader.parseByte(value)))
return failure();
return value;
}
FailureOr<std::string> parseAsString() const final {
if (kind != AsmResourceEntryKind::String)
return emitError() << "expected a string resource entry, but found a "
<< toString(kind) << " entry instead";
StringRef string;
if (failed(stringReader.parseString(reader, string)))
return failure();
return string.str();
}
FailureOr<AsmResourceBlob>
parseAsBlob(BlobAllocatorFn allocator) const final {
if (kind != AsmResourceEntryKind::Blob)
return emitError() << "expected a blob resource entry, but found a "
<< toString(kind) << " entry instead";
ArrayRef<uint8_t> data;
uint64_t alignment;
if (failed(reader.parseBlobAndAlignment(data, alignment)))
return failure();
// If we have an extendable reference to the buffer owner, we don't need to
// allocate a new buffer for the data, and can use the data directly.
if (bufferOwnerRef) {
ArrayRef<char> charData(reinterpret_cast<const char *>(data.data()),
data.size());
// Allocate an unmanager buffer which captures a reference to the owner.
// For now we just mark this as immutable, but in the future we should
// explore marking this as mutable when desired.
return UnmanagedAsmResourceBlob::allocateWithAlign(
charData, alignment,
[bufferOwnerRef = bufferOwnerRef](void *, size_t, size_t) {});
}
// Allocate memory for the blob using the provided allocator and copy the
// data into it.
AsmResourceBlob blob = allocator(data.size(), alignment);
assert(llvm::isAddrAligned(llvm::Align(alignment), blob.getData().data()) &&
blob.isMutable() &&
"blob allocator did not return a properly aligned address");
memcpy(blob.getMutableData().data(), data.data(), data.size());
return blob;
}
private:
StringRef key;
AsmResourceEntryKind kind;
EncodingReader &reader;
StringSectionReader &stringReader;
const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef;
};
} // namespace
template <typename T>
static LogicalResult
parseResourceGroup(Location fileLoc, bool allowEmpty,
EncodingReader &offsetReader, EncodingReader &resourceReader,
StringSectionReader &stringReader, T *handler,
const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef,
function_ref<StringRef(StringRef)> remapKey = {},
function_ref<LogicalResult(StringRef)> processKeyFn = {}) {
uint64_t numResources;
if (failed(offsetReader.parseVarInt(numResources)))
return failure();
for (uint64_t i = 0; i < numResources; ++i) {
StringRef key;
AsmResourceEntryKind kind;
uint64_t resourceOffset;
ArrayRef<uint8_t> data;
if (failed(stringReader.parseString(offsetReader, key)) ||
failed(offsetReader.parseVarInt(resourceOffset)) ||
failed(offsetReader.parseByte(kind)) ||
failed(resourceReader.parseBytes(resourceOffset, data)))
return failure();
// Process the resource key.
if ((processKeyFn && failed(processKeyFn(key))))
return failure();
// If the resource data is empty and we allow it, don't error out when
// parsing below, just skip it.
if (allowEmpty && data.empty())
continue;
// Ignore the entry if we don't have a valid handler.
if (!handler)
continue;
// Otherwise, parse the resource value.
EncodingReader entryReader(data, fileLoc);
key = remapKey(key);
ParsedResourceEntry entry(key, kind, entryReader, stringReader,
bufferOwnerRef);
if (failed(handler->parseResource(entry)))
return failure();
if (!entryReader.empty()) {
return entryReader.emitError(
"unexpected trailing bytes in resource entry '", key, "'");
}
}
return success();
}
LogicalResult ResourceSectionReader::initialize(
Location fileLoc, const ParserConfig &config,
MutableArrayRef<BytecodeDialect> dialects,
StringSectionReader &stringReader, ArrayRef<uint8_t> sectionData,
ArrayRef<uint8_t> offsetSectionData, DialectReader &dialectReader,
const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef) {
EncodingReader resourceReader(sectionData, fileLoc);
EncodingReader offsetReader(offsetSectionData, fileLoc);
// Read the number of external resource providers.
uint64_t numExternalResourceGroups;
if (failed(offsetReader.parseVarInt(numExternalResourceGroups)))
return failure();
// Utility functor that dispatches to `parseResourceGroup`, but implicitly
// provides most of the arguments.
auto parseGroup = [&](auto *handler, bool allowEmpty = false,
function_ref<LogicalResult(StringRef)> keyFn = {}) {
auto resolveKey = [&](StringRef key) -> StringRef {
auto it = dialectResourceHandleRenamingMap.find(key);
if (it == dialectResourceHandleRenamingMap.end())
return "";
return it->second;
};
return parseResourceGroup(fileLoc, allowEmpty, offsetReader, resourceReader,
stringReader, handler, bufferOwnerRef, resolveKey,
keyFn);
};
// Read the external resources from the bytecode.
for (uint64_t i = 0; i < numExternalResourceGroups; ++i) {
StringRef key;
if (failed(stringReader.parseString(offsetReader, key)))
return failure();
// Get the handler for these resources.
// TODO: Should we require handling external resources in some scenarios?
AsmResourceParser *handler = config.getResourceParser(key);
if (!handler) {
emitWarning(fileLoc) << "ignoring unknown external resources for '" << key
<< "'";
}
if (failed(parseGroup(handler)))
return failure();
}
// Read the dialect resources from the bytecode.
MLIRContext *ctx = fileLoc->getContext();
while (!offsetReader.empty()) {
BytecodeDialect *dialect;
if (failed(parseEntry(offsetReader, dialects, dialect, "dialect")) ||
failed(dialect->load(dialectReader, ctx)))
return failure();
Dialect *loadedDialect = dialect->getLoadedDialect();
if (!loadedDialect) {
return resourceReader.emitError()
<< "dialect '" << dialect->name << "' is unknown";
}
const auto *handler = dyn_cast<OpAsmDialectInterface>(loadedDialect);
if (!handler) {
return resourceReader.emitError()
<< "unexpected resources for dialect '" << dialect->name << "'";
}
// Ensure that each resource is declared before being processed.
auto processResourceKeyFn = [&](StringRef key) -> LogicalResult {
FailureOr<AsmDialectResourceHandle> handle =
handler->declareResource(key);
if (failed(handle)) {
return resourceReader.emitError()
<< "unknown 'resource' key '" << key << "' for dialect '"
<< dialect->name << "'";
}
dialectResourceHandleRenamingMap[key] = handler->getResourceKey(*handle);
dialectResources.push_back(*handle);
return success();
};
// Parse the resources for this dialect. We allow empty resources because we
// just treat these as declarations.
if (failed(parseGroup(handler, /*allowEmpty=*/true, processResourceKeyFn)))
return failure();
}
return success();
}
//===----------------------------------------------------------------------===//
// Attribute/Type Reader
//===----------------------------------------------------------------------===//
namespace {
/// This class provides support for reading attribute and type entries from the
/// bytecode. Attribute and Type entries are read lazily on demand, so we use
/// this reader to manage when to actually parse them from the bytecode.
class AttrTypeReader {
/// This class represents a single attribute or type entry.
template <typename T>
struct Entry {
/// The entry, or null if it hasn't been resolved yet.
T entry = {};
/// The parent dialect of this entry.
BytecodeDialect *dialect = nullptr;
/// A flag indicating if the entry was encoded using a custom encoding,
/// instead of using the textual assembly format.
bool hasCustomEncoding = false;
/// The raw data of this entry in the bytecode.
ArrayRef<uint8_t> data;
};
using AttrEntry = Entry<Attribute>;
using TypeEntry = Entry<Type>;
public:
AttrTypeReader(StringSectionReader &stringReader,
ResourceSectionReader &resourceReader, Location fileLoc)
: stringReader(stringReader), resourceReader(resourceReader),
fileLoc(fileLoc) {}
/// Initialize the attribute and type information within the reader.
LogicalResult initialize(MutableArrayRef<BytecodeDialect> dialects,
ArrayRef<uint8_t> sectionData,
ArrayRef<uint8_t> offsetSectionData);
/// Resolve the attribute or type at the given index. Returns nullptr on
/// failure.
Attribute resolveAttribute(size_t index) {
return resolveEntry(attributes, index, "Attribute");
}
Type resolveType(size_t index) { return resolveEntry(types, index, "Type"); }
/// Parse a reference to an attribute or type using the given reader.
LogicalResult parseAttribute(EncodingReader &reader, Attribute &result) {
uint64_t attrIdx;
if (failed(reader.parseVarInt(attrIdx)))
return failure();
result = resolveAttribute(attrIdx);
return success(!!result);
}
LogicalResult parseType(EncodingReader &reader, Type &result) {
uint64_t typeIdx;
if (failed(reader.parseVarInt(typeIdx)))
return failure();
result = resolveType(typeIdx);
return success(!!result);
}
template <typename T>
LogicalResult parseAttribute(EncodingReader &reader, T &result) {
Attribute baseResult;
if (failed(parseAttribute(reader, baseResult)))
return failure();
if ((result = dyn_cast<T>(baseResult)))
return success();
return reader.emitError("expected attribute of type: ",
llvm::getTypeName<T>(), ", but got: ", baseResult);
}
private:
/// Resolve the given entry at `index`.
template <typename T>
T resolveEntry(SmallVectorImpl<Entry<T>> &entries, size_t index,
StringRef entryType);
/// Parse an entry using the given reader that was encoded using the textual
/// assembly format.
template <typename T>
LogicalResult parseAsmEntry(T &result, EncodingReader &reader,
StringRef entryType);
/// Parse an entry using the given reader that was encoded using a custom
/// bytecode format.
template <typename T>
LogicalResult parseCustomEntry(Entry<T> &entry, EncodingReader &reader,
StringRef entryType);
/// The string section reader used to resolve string references when parsing
/// custom encoded attribute/type entries.
StringSectionReader &stringReader;
/// The resource section reader used to resolve resource references when
/// parsing custom encoded attribute/type entries.
ResourceSectionReader &resourceReader;
/// The set of attribute and type entries.
SmallVector<AttrEntry> attributes;
SmallVector<TypeEntry> types;
/// A location used for error emission.
Location fileLoc;
};
class DialectReader : public DialectBytecodeReader {
public:
DialectReader(AttrTypeReader &attrTypeReader,
StringSectionReader &stringReader,
ResourceSectionReader &resourceReader, EncodingReader &reader)
: attrTypeReader(attrTypeReader), stringReader(stringReader),
resourceReader(resourceReader), reader(reader) {}
InFlightDiagnostic emitError(const Twine &msg) override {
return reader.emitError(msg);
}
DialectReader withEncodingReader(EncodingReader &encReader) {
return DialectReader(attrTypeReader, stringReader, resourceReader,
encReader);
}
Location getLoc() const { return reader.getLoc(); }
//===--------------------------------------------------------------------===//
// IR
//===--------------------------------------------------------------------===//
LogicalResult readAttribute(Attribute &result) override {
return attrTypeReader.parseAttribute(reader, result);
}
LogicalResult readType(Type &result) override {
return attrTypeReader.parseType(reader, result);
}
FailureOr<AsmDialectResourceHandle> readResourceHandle() override {
AsmDialectResourceHandle handle;
if (failed(resourceReader.parseResourceHandle(reader, handle)))
return failure();
return handle;
}
//===--------------------------------------------------------------------===//
// Primitives
//===--------------------------------------------------------------------===//
LogicalResult readVarInt(uint64_t &result) override {
return reader.parseVarInt(result);
}
LogicalResult readSignedVarInt(int64_t &result) override {
uint64_t unsignedResult;
if (failed(reader.parseSignedVarInt(unsignedResult)))
return failure();
result = static_cast<int64_t>(unsignedResult);
return success();
}
FailureOr<APInt> readAPIntWithKnownWidth(unsigned bitWidth) override {
// Small values are encoded using a single byte.
if (bitWidth <= 8) {
uint8_t value;
if (failed(reader.parseByte(value)))
return failure();
return APInt(bitWidth, value);
}
// Large values up to 64 bits are encoded using a single varint.
if (bitWidth <= 64) {
uint64_t value;
if (failed(reader.parseSignedVarInt(value)))
return failure();
return APInt(bitWidth, value);
}
// Otherwise, for really big values we encode the array of active words in
// the value.
uint64_t numActiveWords;
if (failed(reader.parseVarInt(numActiveWords)))
return failure();
SmallVector<uint64_t, 4> words(numActiveWords);
for (uint64_t i = 0; i < numActiveWords; ++i)
if (failed(reader.parseSignedVarInt(words[i])))
return failure();
return APInt(bitWidth, words);
}
FailureOr<APFloat>
readAPFloatWithKnownSemantics(const llvm::fltSemantics &semantics) override {
FailureOr<APInt> intVal =
readAPIntWithKnownWidth(APFloat::getSizeInBits(semantics));
if (failed(intVal))
return failure();
return APFloat(semantics, *intVal);
}
LogicalResult readString(StringRef &result) override {
return stringReader.parseString(reader, result);
}
LogicalResult readBlob(ArrayRef<char> &result) override {
uint64_t dataSize;
ArrayRef<uint8_t> data;
if (failed(reader.parseVarInt(dataSize)) ||
failed(reader.parseBytes(dataSize, data)))
return failure();
result = llvm::ArrayRef(reinterpret_cast<const char *>(data.data()),
data.size());
return success();
}
private:
AttrTypeReader &attrTypeReader;
StringSectionReader &stringReader;
ResourceSectionReader &resourceReader;
EncodingReader &reader;
};
} // namespace
LogicalResult
AttrTypeReader::initialize(MutableArrayRef<BytecodeDialect> dialects,
ArrayRef<uint8_t> sectionData,
ArrayRef<uint8_t> offsetSectionData) {
EncodingReader offsetReader(offsetSectionData, fileLoc);
// Parse the number of attribute and type entries.
uint64_t numAttributes, numTypes;
if (failed(offsetReader.parseVarInt(numAttributes)) ||
failed(offsetReader.parseVarInt(numTypes)))
return failure();
attributes.resize(numAttributes);
types.resize(numTypes);
// A functor used to accumulate the offsets for the entries in the given
// range.
uint64_t currentOffset = 0;
auto parseEntries = [&](auto &&range) {
size_t currentIndex = 0, endIndex = range.size();
// Parse an individual entry.
auto parseEntryFn = [&](BytecodeDialect *dialect) -> LogicalResult {
auto &entry = range[currentIndex++];
uint64_t entrySize;
if (failed(offsetReader.parseVarIntWithFlag(entrySize,
entry.hasCustomEncoding)))
return failure();
// Verify that the offset is actually valid.
if (currentOffset + entrySize > sectionData.size()) {
return offsetReader.emitError(
"Attribute or Type entry offset points past the end of section");
}
entry.data = sectionData.slice(currentOffset, entrySize);
entry.dialect = dialect;
currentOffset += entrySize;
return success();
};
while (currentIndex != endIndex)
if (failed(parseDialectGrouping(offsetReader, dialects, parseEntryFn)))
return failure();
return success();
};
// Process each of the attributes, and then the types.
if (failed(parseEntries(attributes)) || failed(parseEntries(types)))
return failure();
// Ensure that we read everything from the section.
if (!offsetReader.empty()) {
return offsetReader.emitError(
"unexpected trailing data in the Attribute/Type offset section");
}
return success();
}
template <typename T>
T AttrTypeReader::resolveEntry(SmallVectorImpl<Entry<T>> &entries, size_t index,
StringRef entryType) {
if (index >= entries.size()) {
emitError(fileLoc) << "invalid " << entryType << " index: " << index;
return {};
}
// If the entry has already been resolved, there is nothing left to do.
Entry<T> &entry = entries[index];
if (entry.entry)
return entry.entry;
// Parse the entry.
EncodingReader reader(entry.data, fileLoc);
// Parse based on how the entry was encoded.
if (entry.hasCustomEncoding) {
if (failed(parseCustomEntry(entry, reader, entryType)))
return T();
} else if (failed(parseAsmEntry(entry.entry, reader, entryType))) {
return T();
}
if (!reader.empty()) {
reader.emitError("unexpected trailing bytes after " + entryType + " entry");
return T();
}
return entry.entry;
}
template <typename T>
LogicalResult AttrTypeReader::parseAsmEntry(T &result, EncodingReader &reader,
StringRef entryType) {
StringRef asmStr;
if (failed(reader.parseNullTerminatedString(asmStr)))
return failure();
// Invoke the MLIR assembly parser to parse the entry text.
size_t numRead = 0;
MLIRContext *context = fileLoc->getContext();
if constexpr (std::is_same_v<T, Type>)
result =
::parseType(asmStr, context, &numRead, /*isKnownNullTerminated=*/true);
else
result = ::parseAttribute(asmStr, context, Type(), &numRead,
/*isKnownNullTerminated=*/true);
if (!result)
return failure();
// Ensure there weren't dangling characters after the entry.
if (numRead != asmStr.size()) {
return reader.emitError("trailing characters found after ", entryType,
" assembly format: ", asmStr.drop_front(numRead));
}
return success();
}
template <typename T>
LogicalResult AttrTypeReader::parseCustomEntry(Entry<T> &entry,
EncodingReader &reader,
StringRef entryType) {
DialectReader dialectReader(*this, stringReader, resourceReader, reader);
if (failed(entry.dialect->load(dialectReader, fileLoc.getContext())))
return failure();
// Ensure that the dialect implements the bytecode interface.
if (!entry.dialect->interface) {
return reader.emitError("dialect '", entry.dialect->name,
"' does not implement the bytecode interface");
}
// Ask the dialect to parse the entry. If the dialect is versioned, parse
// using the versioned encoding readers.
if (entry.dialect->loadedVersion.get()) {
if constexpr (std::is_same_v<T, Type>)
entry.entry = entry.dialect->interface->readType(
dialectReader, *entry.dialect->loadedVersion);
else
entry.entry = entry.dialect->interface->readAttribute(
dialectReader, *entry.dialect->loadedVersion);
} else {
if constexpr (std::is_same_v<T, Type>)
entry.entry = entry.dialect->interface->readType(dialectReader);
else
entry.entry = entry.dialect->interface->readAttribute(dialectReader);
}
return success(!!entry.entry);
}
//===----------------------------------------------------------------------===//
// Bytecode Reader
//===----------------------------------------------------------------------===//
/// This class is used to read a bytecode buffer and translate it into MLIR.
class mlir::BytecodeReader::Impl {
struct RegionReadState;
using LazyLoadableOpsInfo =
std::list<std::pair<Operation *, RegionReadState>>;
using LazyLoadableOpsMap =
DenseMap<Operation *, LazyLoadableOpsInfo::iterator>;
public:
Impl(Location fileLoc, const ParserConfig &config, bool lazyLoading,
llvm::MemoryBufferRef buffer,
const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef)
: config(config), fileLoc(fileLoc), lazyLoading(lazyLoading),
attrTypeReader(stringReader, resourceReader, fileLoc),
// Use the builtin unrealized conversion cast operation to represent
// forward references to values that aren't yet defined.
forwardRefOpState(UnknownLoc::get(config.getContext()),
"builtin.unrealized_conversion_cast", ValueRange(),
NoneType::get(config.getContext())),
buffer(buffer), bufferOwnerRef(bufferOwnerRef) {}
/// Read the bytecode defined within `buffer` into the given block.
LogicalResult read(Block *block,
llvm::function_ref<bool(Operation *)> lazyOps);
/// Return the number of ops that haven't been materialized yet.
int64_t getNumOpsToMaterialize() const { return lazyLoadableOpsMap.size(); }
bool isMaterializable(Operation *op) { return lazyLoadableOpsMap.count(op); }
/// Materialize the provided operation, invoke the lazyOpsCallback on every
/// newly found lazy operation.
LogicalResult
materialize(Operation *op,
llvm::function_ref<bool(Operation *)> lazyOpsCallback) {
this->lazyOpsCallback = lazyOpsCallback;
auto resetlazyOpsCallback =
llvm::make_scope_exit([&] { this->lazyOpsCallback = nullptr; });
auto it = lazyLoadableOpsMap.find(op);
assert(it != lazyLoadableOpsMap.end() &&
"materialize called on non-materializable op");
return materialize(it);
}
/// Materialize all operations.
LogicalResult materializeAll() {
while (!lazyLoadableOpsMap.empty()) {
if (failed(materialize(lazyLoadableOpsMap.begin())))
return failure();
}
return success();
}
/// Finalize the lazy-loading by calling back with every op that hasn't been
/// materialized to let the client decide if the op should be deleted or
/// materialized. The op is materialized if the callback returns true, deleted
/// otherwise.
LogicalResult finalize(function_ref<bool(Operation *)> shouldMaterialize) {
while (!lazyLoadableOps.empty()) {
Operation *op = lazyLoadableOps.begin()->first;
if (shouldMaterialize(op)) {
if (failed(materialize(lazyLoadableOpsMap.find(op))))
return failure();
continue;
}
op->dropAllReferences();
op->erase();
lazyLoadableOps.pop_front();
lazyLoadableOpsMap.erase(op);
}
return success();
}
private:
LogicalResult materialize(LazyLoadableOpsMap::iterator it) {
assert(it != lazyLoadableOpsMap.end() &&
"materialize called on non-materializable op");
valueScopes.emplace_back();
std::vector<RegionReadState> regionStack;
regionStack.push_back(std::move(it->getSecond()->second));
lazyLoadableOps.erase(it->getSecond());
lazyLoadableOpsMap.erase(it);
auto result = parseRegions(regionStack, regionStack.back());
assert(regionStack.empty());
return result;
}
/// Return the context for this config.
MLIRContext *getContext() const { return config.getContext(); }
/// Parse the bytecode version.
LogicalResult parseVersion(EncodingReader &reader);
//===--------------------------------------------------------------------===//
// Dialect Section
LogicalResult parseDialectSection(ArrayRef<uint8_t> sectionData);
/// Parse an operation name reference using the given reader.
FailureOr<OperationName> parseOpName(EncodingReader &reader);
//===--------------------------------------------------------------------===//
// Attribute/Type Section
/// Parse an attribute or type using the given reader.
template <typename T>
LogicalResult parseAttribute(EncodingReader &reader, T &result) {
return attrTypeReader.parseAttribute(reader, result);
}
LogicalResult parseType(EncodingReader &reader, Type &result) {
return attrTypeReader.parseType(reader, result);
}
//===--------------------------------------------------------------------===//
// Resource Section
LogicalResult
parseResourceSection(EncodingReader &reader,
std::optional<ArrayRef<uint8_t>> resourceData,
std::optional<ArrayRef<uint8_t>> resourceOffsetData);
//===--------------------------------------------------------------------===//
// IR Section
/// This struct represents the current read state of a range of regions. This
/// struct is used to enable iterative parsing of regions.
struct RegionReadState {
RegionReadState(Operation *op, EncodingReader *reader,
bool isIsolatedFromAbove)
: RegionReadState(op->getRegions(), reader, isIsolatedFromAbove) {}
RegionReadState(MutableArrayRef<Region> regions, EncodingReader *reader,
bool isIsolatedFromAbove)
: curRegion(regions.begin()), endRegion(regions.end()), reader(reader),
isIsolatedFromAbove(isIsolatedFromAbove) {}
/// The current regions being read.
MutableArrayRef<Region>::iterator curRegion, endRegion;
/// This is the reader to use for this region, this pointer is pointing to
/// the parent region reader unless the current region is IsolatedFromAbove,
/// in which case the pointer is pointing to the `owningReader` which is a
/// section dedicated to the current region.
EncodingReader *reader;
std::unique_ptr<EncodingReader> owningReader;
/// The number of values defined immediately within this region.
unsigned numValues = 0;
/// The current blocks of the region being read.
SmallVector<Block *> curBlocks;
Region::iterator curBlock = {};
/// The number of operations remaining to be read from the current block
/// being read.
uint64_t numOpsRemaining = 0;
/// A flag indicating if the regions being read are isolated from above.
bool isIsolatedFromAbove = false;
};
LogicalResult parseIRSection(ArrayRef<uint8_t> sectionData, Block *block);
LogicalResult parseRegions(std::vector<RegionReadState> &regionStack,
RegionReadState &readState);
FailureOr<Operation *> parseOpWithoutRegions(EncodingReader &reader,
RegionReadState &readState,
bool &isIsolatedFromAbove);
LogicalResult parseRegion(RegionReadState &readState);
LogicalResult parseBlockHeader(EncodingReader &reader,
RegionReadState &readState);
LogicalResult parseBlockArguments(EncodingReader &reader, Block *block);
//===--------------------------------------------------------------------===//
// Value Processing
/// Parse an operand reference using the given reader. Returns nullptr in the
/// case of failure.
Value parseOperand(EncodingReader &reader);
/// Sequentially define the given value range.
LogicalResult defineValues(EncodingReader &reader, ValueRange values);
/// Create a value to use for a forward reference.
Value createForwardRef();
//===--------------------------------------------------------------------===//
// Use-list order helpers
/// This struct is a simple storage that contains information required to
/// reorder the use-list of a value with respect to the pre-order traversal
/// ordering.
struct UseListOrderStorage {
UseListOrderStorage(bool isIndexPairEncoding,
SmallVector<unsigned, 4> &&indices)
: indices(std::move(indices)),
isIndexPairEncoding(isIndexPairEncoding){};
/// The vector containing the information required to reorder the
/// use-list of a value.
SmallVector<unsigned, 4> indices;
/// Whether indices represent a pair of type `(src, dst)` or it is a direct
/// indexing, such as `dst = order[src]`.
bool isIndexPairEncoding;
};
/// Parse use-list order from bytecode for a range of values if available. The
/// range is expected to be either a block argument or an op result range. On
/// success, return a map of the position in the range and the use-list order
/// encoding. The function assumes to know the size of the range it is
/// processing.
using UseListMapT = DenseMap<unsigned, UseListOrderStorage>;
FailureOr<UseListMapT> parseUseListOrderForRange(EncodingReader &reader,
uint64_t rangeSize);
/// Shuffle the use-chain according to the order parsed.
LogicalResult sortUseListOrder(Value value);
/// Recursively visit all the values defined within topLevelOp and sort the
/// use-list orders according to the indices parsed.
LogicalResult processUseLists(Operation *topLevelOp);
//===--------------------------------------------------------------------===//
// Fields
/// This class represents a single value scope, in which a value scope is
/// delimited by isolated from above regions.
struct ValueScope {
/// Push a new region state onto this scope, reserving enough values for
/// those defined within the current region of the provided state.
void push(RegionReadState &readState) {
nextValueIDs.push_back(values.size());
values.resize(values.size() + readState.numValues);
}
/// Pop the values defined for the current region within the provided region
/// state.
void pop(RegionReadState &readState) {
values.resize(values.size() - readState.numValues);
nextValueIDs.pop_back();
}
/// The set of values defined in this scope.
std::vector<Value> values;
/// The ID for the next defined value for each region current being
/// processed in this scope.
SmallVector<unsigned, 4> nextValueIDs;
};
/// The configuration of the parser.
const ParserConfig &config;
/// A location to use when emitting errors.
Location fileLoc;
/// Flag that indicates if lazyloading is enabled.
bool lazyLoading;
/// Keep track of operations that have been lazy loaded (their regions haven't
/// been materialized), along with the `RegionReadState` that allows to
/// lazy-load the regions nested under the operation.
LazyLoadableOpsInfo lazyLoadableOps;
LazyLoadableOpsMap lazyLoadableOpsMap;
llvm::function_ref<bool(Operation *)> lazyOpsCallback;
/// The reader used to process attribute and types within the bytecode.
AttrTypeReader attrTypeReader;
/// The version of the bytecode being read.
uint64_t version = 0;
/// The producer of the bytecode being read.
StringRef producer;
/// The table of IR units referenced within the bytecode file.
SmallVector<BytecodeDialect> dialects;
SmallVector<BytecodeOperationName> opNames;
/// The reader used to process resources within the bytecode.
ResourceSectionReader resourceReader;
/// Worklist of values with custom use-list orders to process before the end
/// of the parsing.
DenseMap<void *, UseListOrderStorage> valueToUseListMap;
/// The table of strings referenced within the bytecode file.
StringSectionReader stringReader;
/// The current set of available IR value scopes.
std::vector<ValueScope> valueScopes;
/// The global pre-order operation ordering.
DenseMap<Operation *, unsigned> operationIDs;
/// A block containing the set of operations defined to create forward
/// references.
Block forwardRefOps;
/// A block containing previously created, and no longer used, forward
/// reference operations.
Block openForwardRefOps;
/// An operation state used when instantiating forward references.
OperationState forwardRefOpState;
/// Reference to the input buffer.
llvm::MemoryBufferRef buffer;
/// The optional owning source manager, which when present may be used to
/// extend the lifetime of the input buffer.
const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef;
};
LogicalResult BytecodeReader::Impl::read(
Block *block, llvm::function_ref<bool(Operation *)> lazyOpsCallback) {
EncodingReader reader(buffer.getBuffer(), fileLoc);
this->lazyOpsCallback = lazyOpsCallback;
auto resetlazyOpsCallback =
llvm::make_scope_exit([&] { this->lazyOpsCallback = nullptr; });
// Skip over the bytecode header, this should have already been checked.
if (failed(reader.skipBytes(StringRef("ML\xefR").size())))
return failure();
// Parse the bytecode version and producer.
if (failed(parseVersion(reader)) ||
failed(reader.parseNullTerminatedString(producer)))
return failure();
// Add a diagnostic handler that attaches a note that includes the original
// producer of the bytecode.
ScopedDiagnosticHandler diagHandler(getContext(), [&](Diagnostic &diag) {
diag.attachNote() << "in bytecode version " << version
<< " produced by: " << producer;
return failure();
});
// Parse the raw data for each of the top-level sections of the bytecode.
std::optional<ArrayRef<uint8_t>>
sectionDatas[bytecode::Section::kNumSections];
while (!reader.empty()) {
// Read the next section from the bytecode.
bytecode::Section::ID sectionID;
ArrayRef<uint8_t> sectionData;
if (failed(reader.parseSection(sectionID, sectionData)))
return failure();
// Check for duplicate sections, we only expect one instance of each.
if (sectionDatas[sectionID]) {
return reader.emitError("duplicate top-level section: ",
::toString(sectionID));
}
sectionDatas[sectionID] = sectionData;
}
// Check that all of the required sections were found.
for (int i = 0; i < bytecode::Section::kNumSections; ++i) {
bytecode::Section::ID sectionID = static_cast<bytecode::Section::ID>(i);
if (!sectionDatas[i] && !isSectionOptional(sectionID)) {
return reader.emitError("missing data for top-level section: ",
::toString(sectionID));
}
}
// Process the string section first.
if (failed(stringReader.initialize(
fileLoc, *sectionDatas[bytecode::Section::kString])))
return failure();
// Process the dialect section.
if (failed(parseDialectSection(*sectionDatas[bytecode::Section::kDialect])))
return failure();
// Process the resource section if present.
if (failed(parseResourceSection(
reader, sectionDatas[bytecode::Section::kResource],
sectionDatas[bytecode::Section::kResourceOffset])))
return failure();
// Process the attribute and type section.
if (failed(attrTypeReader.initialize(
dialects, *sectionDatas[bytecode::Section::kAttrType],
*sectionDatas[bytecode::Section::kAttrTypeOffset])))
return failure();
// Finally, process the IR section.
return parseIRSection(*sectionDatas[bytecode::Section::kIR], block);
}
LogicalResult BytecodeReader::Impl::parseVersion(EncodingReader &reader) {
if (failed(reader.parseVarInt(version)))
return failure();
// Validate the bytecode version.
uint64_t currentVersion = bytecode::kVersion;
uint64_t minSupportedVersion = bytecode::kMinSupportedVersion;
if (version < minSupportedVersion) {
return reader.emitError("bytecode version ", version,
" is older than the current version of ",
currentVersion, ", and upgrade is not supported");
}
if (version > currentVersion) {
return reader.emitError("bytecode version ", version,
" is newer than the current version ",
currentVersion);
}
// Override any request to lazy-load if the bytecode version is too old.
if (version < 2)
lazyLoading = false;
return success();
}
//===----------------------------------------------------------------------===//
// Dialect Section
LogicalResult BytecodeDialect::load(DialectReader &reader, MLIRContext *ctx) {
if (dialect)
return success();
Dialect *loadedDialect = ctx->getOrLoadDialect(name);
if (!loadedDialect && !ctx->allowsUnregisteredDialects()) {
return reader.emitError("dialect '")
<< name
<< "' is unknown. If this is intended, please call "
"allowUnregisteredDialects() on the MLIRContext, or use "
"-allow-unregistered-dialect with the MLIR tool used.";
}
dialect = loadedDialect;
// If the dialect was actually loaded, check to see if it has a bytecode
// interface.
if (loadedDialect)
interface = dyn_cast<BytecodeDialectInterface>(loadedDialect);
if (!versionBuffer.empty()) {
if (!interface)
return reader.emitError("dialect '")
<< name
<< "' does not implement the bytecode interface, "
"but found a version entry";
EncodingReader encReader(versionBuffer, reader.getLoc());
DialectReader versionReader = reader.withEncodingReader(encReader);
loadedVersion = interface->readVersion(versionReader);
if (!loadedVersion)
return failure();
}
return success();
}
LogicalResult
BytecodeReader::Impl::parseDialectSection(ArrayRef<uint8_t> sectionData) {
EncodingReader sectionReader(sectionData, fileLoc);
// Parse the number of dialects in the section.
uint64_t numDialects;
if (failed(sectionReader.parseVarInt(numDialects)))
return failure();
dialects.resize(numDialects);
// Parse each of the dialects.
for (uint64_t i = 0; i < numDialects; ++i) {
/// Before version 1, there wasn't any versioning available for dialects,
/// and the entryIdx represent the string itself.
if (version == 0) {
if (failed(stringReader.parseString(sectionReader, dialects[i].name)))
return failure();
continue;
}
// Parse ID representing dialect and version.
uint64_t dialectNameIdx;
bool versionAvailable;
if (failed(sectionReader.parseVarIntWithFlag(dialectNameIdx,
versionAvailable)))
return failure();
if (failed(stringReader.parseStringAtIndex(sectionReader, dialectNameIdx,
dialects[i].name)))
return failure();
if (versionAvailable) {
bytecode::Section::ID sectionID;
if (failed(
sectionReader.parseSection(sectionID, dialects[i].versionBuffer)))
return failure();
if (sectionID != bytecode::Section::kDialectVersions) {
emitError(fileLoc, "expected dialect version section");
return failure();
}
}
}
// Parse the operation names, which are grouped by dialect.
auto parseOpName = [&](BytecodeDialect *dialect) {
StringRef opName;
if (failed(stringReader.parseString(sectionReader, opName)))
return failure();
opNames.emplace_back(dialect, opName);
return success();
};
// Avoid re-allocation in bytecode version > 3 where the number of ops are
// known.
if (version > 3) {
uint64_t numOps;
if (failed(sectionReader.parseVarInt(numOps)))
return failure();
opNames.reserve(numOps);
}
while (!sectionReader.empty())
if (failed(parseDialectGrouping(sectionReader, dialects, parseOpName)))
return failure();
return success();
}
FailureOr<OperationName>
BytecodeReader::Impl::parseOpName(EncodingReader &reader) {
BytecodeOperationName *opName = nullptr;
if (failed(parseEntry(reader, opNames, opName, "operation name")))
return failure();
// Check to see if this operation name has already been resolved. If we
// haven't, load the dialect and build the operation name.
if (!opName->opName) {
// Load the dialect and its version.
DialectReader dialectReader(attrTypeReader, stringReader, resourceReader,
reader);
if (failed(opName->dialect->load(dialectReader, getContext())))
return failure();
// If the opName is empty, this is because we use to accept names such as
// `foo` without any `.` separator. We shouldn't tolerate this in textual
// format anymore but for now we'll be backward compatible. This can only
// happen with unregistered dialects.
if (opName->name.empty()) {
if (opName->dialect->getLoadedDialect())
return emitError(fileLoc) << "has an empty opname for dialect '"
<< opName->dialect->name << "'\n";
opName->opName.emplace(opName->dialect->name, getContext());
} else {
opName->opName.emplace((opName->dialect->name + "." + opName->name).str(),
getContext());
}
}
return *opName->opName;
}
//===----------------------------------------------------------------------===//
// Resource Section
LogicalResult BytecodeReader::Impl::parseResourceSection(
EncodingReader &reader, std::optional<ArrayRef<uint8_t>> resourceData,
std::optional<ArrayRef<uint8_t>> resourceOffsetData) {
// Ensure both sections are either present or not.
if (resourceData.has_value() != resourceOffsetData.has_value()) {
if (resourceOffsetData)
return emitError(fileLoc, "unexpected resource offset section when "
"resource section is not present");
return emitError(
fileLoc,
"expected resource offset section when resource section is present");
}
// If the resource sections are absent, there is nothing to do.
if (!resourceData)
return success();
// Initialize the resource reader with the resource sections.
DialectReader dialectReader(attrTypeReader, stringReader, resourceReader,
reader);
return resourceReader.initialize(fileLoc, config, dialects, stringReader,
*resourceData, *resourceOffsetData,
dialectReader, bufferOwnerRef);
}
//===----------------------------------------------------------------------===//
// UseListOrder Helpers
FailureOr<BytecodeReader::Impl::UseListMapT>
BytecodeReader::Impl::parseUseListOrderForRange(EncodingReader &reader,
uint64_t numResults) {
BytecodeReader::Impl::UseListMapT map;
uint64_t numValuesToRead = 1;
if (numResults > 1 && failed(reader.parseVarInt(numValuesToRead)))
return failure();
for (size_t valueIdx = 0; valueIdx < numValuesToRead; valueIdx++) {
uint64_t resultIdx = 0;
if (numResults > 1 && failed(reader.parseVarInt(resultIdx)))
return failure();
uint64_t numValues;
bool indexPairEncoding;
if (failed(reader.parseVarIntWithFlag(numValues, indexPairEncoding)))
return failure();
SmallVector<unsigned, 4> useListOrders;
for (size_t idx = 0; idx < numValues; idx++) {
uint64_t index;
if (failed(reader.parseVarInt(index)))
return failure();
useListOrders.push_back(index);
}
// Store in a map the result index
map.try_emplace(resultIdx, UseListOrderStorage(indexPairEncoding,
std::move(useListOrders)));
}
return map;
}
/// Sorts each use according to the order specified in the use-list parsed. If
/// the custom use-list is not found, this means that the order needs to be
/// consistent with the reverse pre-order walk of the IR. If multiple uses lie
/// on the same operation, the order will follow the reverse operand number
/// ordering.
LogicalResult BytecodeReader::Impl::sortUseListOrder(Value value) {
// Early return for trivial use-lists.
if (value.use_empty() || value.hasOneUse())
return success();
bool hasIncomingOrder =
valueToUseListMap.contains(value.getAsOpaquePointer());
// Compute the current order of the use-list with respect to the global
// ordering. Detect if the order is already sorted while doing so.
bool alreadySorted = true;
auto &firstUse = *value.use_begin();
uint64_t prevID =
bytecode::getUseID(firstUse, operationIDs.at(firstUse.getOwner()));
llvm::SmallVector<std::pair<unsigned, uint64_t>> currentOrder = {{0, prevID}};
for (auto item : llvm::drop_begin(llvm::enumerate(value.getUses()))) {
uint64_t currentID = bytecode::getUseID(
item.value(), operationIDs.at(item.value().getOwner()));
alreadySorted &= prevID > currentID;
currentOrder.push_back({item.index(), currentID});
prevID = currentID;
}
// If the order is already sorted, and there wasn't a custom order to apply
// from the bytecode file, we are done.
if (alreadySorted && !hasIncomingOrder)
return success();
// If not already sorted, sort the indices of the current order by descending
// useIDs.
if (!alreadySorted)
std::sort(
currentOrder.begin(), currentOrder.end(),
[](auto elem1, auto elem2) { return elem1.second > elem2.second; });
if (!hasIncomingOrder) {
// If the bytecode file did not contain any custom use-list order, it means
// that the order was descending useID. Hence, shuffle by the first index
// of the `currentOrder` pair.
SmallVector<unsigned> shuffle = SmallVector<unsigned>(
llvm::map_range(currentOrder, [&](auto item) { return item.first; }));
value.shuffleUseList(shuffle);
return success();
}
// Pull the custom order info from the map.
UseListOrderStorage customOrder =
valueToUseListMap.at(value.getAsOpaquePointer());
SmallVector<unsigned, 4> shuffle = std::move(customOrder.indices);
uint64_t numUses =
std::distance(value.getUses().begin(), value.getUses().end());
// If the encoding was a pair of indices `(src, dst)` for every permutation,
// reconstruct the shuffle vector for every use. Initialize the shuffle vector
// as identity, and then apply the mapping encoded in the indices.
if (customOrder.isIndexPairEncoding) {
// Return failure if the number of indices was not representing pairs.
if (shuffle.size() & 1)
return failure();
SmallVector<unsigned, 4> newShuffle(numUses);
size_t idx = 0;
std::iota(newShuffle.begin(), newShuffle.end(), idx);
for (idx = 0; idx < shuffle.size(); idx += 2)
newShuffle[shuffle[idx]] = shuffle[idx + 1];
shuffle = std::move(newShuffle);
}
// Make sure that the indices represent a valid mapping. That is, the sum of
// all the values needs to be equal to (numUses - 1) * numUses / 2, and no
// duplicates are allowed in the list.
DenseSet<unsigned> set;
uint64_t accumulator = 0;
for (const auto &elem : shuffle) {
if (set.contains(elem))
return failure();
accumulator += elem;
set.insert(elem);
}
if (numUses != shuffle.size() ||
accumulator != (((numUses - 1) * numUses) >> 1))
return failure();
// Apply the current ordering map onto the shuffle vector to get the final
// use-list sorting indices before shuffling.
shuffle = SmallVector<unsigned, 4>(llvm::map_range(
currentOrder, [&](auto item) { return shuffle[item.first]; }));
value.shuffleUseList(shuffle);
return success();
}
LogicalResult BytecodeReader::Impl::processUseLists(Operation *topLevelOp) {
// Precompute operation IDs according to the pre-order walk of the IR. We
// can't do this while parsing since parseRegions ordering is not strictly
// equal to the pre-order walk.
unsigned operationID = 0;
topLevelOp->walk<mlir::WalkOrder::PreOrder>(
[&](Operation *op) { operationIDs.try_emplace(op, operationID++); });
auto blockWalk = topLevelOp->walk([this](Block *block) {
for (auto arg : block->getArguments())
if (failed(sortUseListOrder(arg)))
return WalkResult::interrupt();
return WalkResult::advance();
});
auto resultWalk = topLevelOp->walk([this](Operation *op) {
for (auto result : op->getResults())
if (failed(sortUseListOrder(result)))
return WalkResult::interrupt();
return WalkResult::advance();
});
return failure(blockWalk.wasInterrupted() || resultWalk.wasInterrupted());
}
//===----------------------------------------------------------------------===//
// IR Section
LogicalResult
BytecodeReader::Impl::parseIRSection(ArrayRef<uint8_t> sectionData,
Block *block) {
EncodingReader reader(sectionData, fileLoc);
// A stack of operation regions currently being read from the bytecode.
std::vector<RegionReadState> regionStack;
// Parse the top-level block using a temporary module operation.
OwningOpRef<ModuleOp> moduleOp = ModuleOp::create(fileLoc);
regionStack.emplace_back(*moduleOp, &reader, /*isIsolatedFromAbove=*/true);
regionStack.back().curBlocks.push_back(moduleOp->getBody());
regionStack.back().curBlock = regionStack.back().curRegion->begin();
if (failed(parseBlockHeader(reader, regionStack.back())))
return failure();
valueScopes.emplace_back();
valueScopes.back().push(regionStack.back());
// Iteratively parse regions until everything has been resolved.
while (!regionStack.empty())
if (failed(parseRegions(regionStack, regionStack.back())))
return failure();
if (!forwardRefOps.empty()) {
return reader.emitError(
"not all forward unresolved forward operand references");
}
// Sort use-lists according to what specified in bytecode.
if (failed(processUseLists(*moduleOp)))
return reader.emitError(
"parsed use-list orders were invalid and could not be applied");
// Resolve dialect version.
for (const BytecodeDialect &byteCodeDialect : dialects) {
// Parsing is complete, give an opportunity to each dialect to visit the
// IR and perform upgrades.
if (!byteCodeDialect.loadedVersion)
continue;
if (byteCodeDialect.interface &&
failed(byteCodeDialect.interface->upgradeFromVersion(
*moduleOp, *byteCodeDialect.loadedVersion)))
return failure();
}
// Verify that the parsed operations are valid.
if (config.shouldVerifyAfterParse() && failed(verify(*moduleOp)))
return failure();
// Splice the parsed operations over to the provided top-level block.
auto &parsedOps = moduleOp->getBody()->getOperations();
auto &destOps = block->getOperations();
destOps.splice(destOps.end(), parsedOps, parsedOps.begin(), parsedOps.end());
return success();
}
LogicalResult
BytecodeReader::Impl::parseRegions(std::vector<RegionReadState> &regionStack,
RegionReadState &readState) {
// Process regions, blocks, and operations until the end or if a nested
// region is encountered. In this case we push a new state in regionStack and
// return, the processing of the current region will resume afterward.
for (; readState.curRegion != readState.endRegion; ++readState.curRegion) {
// If the current block hasn't been setup yet, parse the header for this
// region. The current block is already setup when this function was
// interrupted to recurse down in a nested region and we resume the current
// block after processing the nested region.
if (readState.curBlock == Region::iterator()) {
if (failed(parseRegion(readState)))
return failure();
// If the region is empty, there is nothing to more to do.
if (readState.curRegion->empty())
continue;
}
// Parse the blocks within the region.
EncodingReader &reader = *readState.reader;
do {
while (readState.numOpsRemaining--) {
// Read in the next operation. We don't read its regions directly, we
// handle those afterwards as necessary.
bool isIsolatedFromAbove = false;
FailureOr<Operation *> op =
parseOpWithoutRegions(reader, readState, isIsolatedFromAbove);
if (failed(op))
return failure();
// If the op has regions, add it to the stack for processing and return:
// we stop the processing of the current region and resume it after the
// inner one is completed. Unless LazyLoading is activated in which case
// nested region parsing is delayed.
if ((*op)->getNumRegions()) {
RegionReadState childState(*op, &reader, isIsolatedFromAbove);
// Isolated regions are encoded as a section in version 2 and above.
if (version >= 2 && isIsolatedFromAbove) {
bytecode::Section::ID sectionID;
ArrayRef<uint8_t> sectionData;
if (failed(reader.parseSection(sectionID, sectionData)))
return failure();
if (sectionID != bytecode::Section::kIR)
return emitError(fileLoc, "expected IR section for region");
childState.owningReader =
std::make_unique<EncodingReader>(sectionData, fileLoc);
childState.reader = childState.owningReader.get();
}
if (lazyLoading) {
// If the user has a callback set, they have the opportunity
// to control lazyloading as we go.
if (!lazyOpsCallback || !lazyOpsCallback(*op)) {
lazyLoadableOps.push_back(
std::make_pair(*op, std::move(childState)));
lazyLoadableOpsMap.try_emplace(*op,
std::prev(lazyLoadableOps.end()));
continue;
}
}
regionStack.push_back(std::move(childState));
// If the op is isolated from above, push a new value scope.
if (isIsolatedFromAbove)
valueScopes.emplace_back();
return success();
}
}
// Move to the next block of the region.
if (++readState.curBlock == readState.curRegion->end())
break;
if (failed(parseBlockHeader(reader, readState)))
return failure();
} while (true);
// Reset the current block and any values reserved for this region.
readState.curBlock = {};
valueScopes.back().pop(readState);
}
// When the regions have been fully parsed, pop them off of the read stack. If
// the regions were isolated from above, we also pop the last value scope.
if (readState.isIsolatedFromAbove) {
assert(!valueScopes.empty() && "Expect a valueScope after reading region");
valueScopes.pop_back();
}
assert(!regionStack.empty() && "Expect a regionStack after reading region");
regionStack.pop_back();
return success();
}
FailureOr<Operation *>
BytecodeReader::Impl::parseOpWithoutRegions(EncodingReader &reader,
RegionReadState &readState,
bool &isIsolatedFromAbove) {
// Parse the name of the operation.
FailureOr<OperationName> opName = parseOpName(reader);
if (failed(opName))
return failure();
// Parse the operation mask, which indicates which components of the operation
// are present.
uint8_t opMask;
if (failed(reader.parseByte(opMask)))
return failure();
/// Parse the location.
LocationAttr opLoc;
if (failed(parseAttribute(reader, opLoc)))
return failure();
// With the location and name resolved, we can start building the operation
// state.
OperationState opState(opLoc, *opName);
// Parse the attributes of the operation.
if (opMask & bytecode::OpEncodingMask::kHasAttrs) {
DictionaryAttr dictAttr;
if (failed(parseAttribute(reader, dictAttr)))
return failure();
opState.attributes = dictAttr;
}
/// Parse the results of the operation.
if (opMask & bytecode::OpEncodingMask::kHasResults) {
uint64_t numResults;
if (failed(reader.parseVarInt(numResults)))
return failure();
opState.types.resize(numResults);
for (int i = 0, e = numResults; i < e; ++i)
if (failed(parseType(reader, opState.types[i])))
return failure();
}
/// Parse the operands of the operation.
if (opMask & bytecode::OpEncodingMask::kHasOperands) {
uint64_t numOperands;
if (failed(reader.parseVarInt(numOperands)))
return failure();
opState.operands.resize(numOperands);
for (int i = 0, e = numOperands; i < e; ++i)
if (!(opState.operands[i] = parseOperand(reader)))
return failure();
}
/// Parse the successors of the operation.
if (opMask & bytecode::OpEncodingMask::kHasSuccessors) {
uint64_t numSuccs;
if (failed(reader.parseVarInt(numSuccs)))
return failure();
opState.successors.resize(numSuccs);
for (int i = 0, e = numSuccs; i < e; ++i) {
if (failed(parseEntry(reader, readState.curBlocks, opState.successors[i],
"successor")))
return failure();
}
}
/// Parse the use-list orders for the results of the operation. Use-list
/// orders are available since version 3 of the bytecode.
std::optional<UseListMapT> resultIdxToUseListMap = std::nullopt;
if (version > 2 && (opMask & bytecode::OpEncodingMask::kHasUseListOrders)) {
size_t numResults = opState.types.size();
auto parseResult = parseUseListOrderForRange(reader, numResults);
if (failed(parseResult))
return failure();
resultIdxToUseListMap = std::move(*parseResult);
}
/// Parse the regions of the operation.
if (opMask & bytecode::OpEncodingMask::kHasInlineRegions) {
uint64_t numRegions;
if (failed(reader.parseVarIntWithFlag(numRegions, isIsolatedFromAbove)))
return failure();
opState.regions.reserve(numRegions);
for (int i = 0, e = numRegions; i < e; ++i)
opState.regions.push_back(std::make_unique<Region>());
}
// Create the operation at the back of the current block.
Operation *op = Operation::create(opState);
readState.curBlock->push_back(op);
// If the operation had results, update the value references.
if (op->getNumResults() && failed(defineValues(reader, op->getResults())))
return failure();
/// Store a map for every value that received a custom use-list order from the
/// bytecode file.
if (resultIdxToUseListMap.has_value()) {
for (size_t idx = 0; idx < op->getNumResults(); idx++) {
if (resultIdxToUseListMap->contains(idx)) {
valueToUseListMap.try_emplace(op->getResult(idx).getAsOpaquePointer(),
resultIdxToUseListMap->at(idx));
}
}
}
return op;
}
LogicalResult BytecodeReader::Impl::parseRegion(RegionReadState &readState) {
EncodingReader &reader = *readState.reader;
// Parse the number of blocks in the region.
uint64_t numBlocks;
if (failed(reader.parseVarInt(numBlocks)))
return failure();
// If the region is empty, there is nothing else to do.
if (numBlocks == 0)
return success();
// Parse the number of values defined in this region.
uint64_t numValues;
if (failed(reader.parseVarInt(numValues)))
return failure();
readState.numValues = numValues;
// Create the blocks within this region. We do this before processing so that
// we can rely on the blocks existing when creating operations.
readState.curBlocks.clear();
readState.curBlocks.reserve(numBlocks);
for (uint64_t i = 0; i < numBlocks; ++i) {
readState.curBlocks.push_back(new Block());
readState.curRegion->push_back(readState.curBlocks.back());
}
// Prepare the current value scope for this region.
valueScopes.back().push(readState);
// Parse the entry block of the region.
readState.curBlock = readState.curRegion->begin();
return parseBlockHeader(reader, readState);
}
LogicalResult
BytecodeReader::Impl::parseBlockHeader(EncodingReader &reader,
RegionReadState &readState) {
bool hasArgs;
if (failed(reader.parseVarIntWithFlag(readState.numOpsRemaining, hasArgs)))
return failure();
// Parse the arguments of the block.
if (hasArgs && failed(parseBlockArguments(reader, &*readState.curBlock)))
return failure();
// Uselist orders are available since version 3 of the bytecode.
if (version < 3)
return success();
uint8_t hasUseListOrders = 0;
if (hasArgs && failed(reader.parseByte(hasUseListOrders)))
return failure();
if (!hasUseListOrders)
return success();
Block &blk = *readState.curBlock;
auto argIdxToUseListMap =
parseUseListOrderForRange(reader, blk.getNumArguments());
if (failed(argIdxToUseListMap) || argIdxToUseListMap->empty())
return failure();
for (size_t idx = 0; idx < blk.getNumArguments(); idx++)
if (argIdxToUseListMap->contains(idx))
valueToUseListMap.try_emplace(blk.getArgument(idx).getAsOpaquePointer(),
argIdxToUseListMap->at(idx));
// We don't parse the operations of the block here, that's done elsewhere.
return success();
}
LogicalResult BytecodeReader::Impl::parseBlockArguments(EncodingReader &reader,
Block *block) {
// Parse the value ID for the first argument, and the number of arguments.
uint64_t numArgs;
if (failed(reader.parseVarInt(numArgs)))
return failure();
SmallVector<Type> argTypes;
SmallVector<Location> argLocs;
argTypes.reserve(numArgs);
argLocs.reserve(numArgs);
Location unknownLoc = UnknownLoc::get(config.getContext());
while (numArgs--) {
Type argType;
LocationAttr argLoc = unknownLoc;
if (version > 3) {
// Parse the type with hasLoc flag to determine if it has type.
uint64_t typeIdx;
bool hasLoc;
if (failed(reader.parseVarIntWithFlag(typeIdx, hasLoc)) ||
!(argType = attrTypeReader.resolveType(typeIdx)))
return failure();
if (hasLoc && failed(parseAttribute(reader, argLoc)))
return failure();
} else {
// All args has type and location.
if (failed(parseType(reader, argType)) ||
failed(parseAttribute(reader, argLoc)))
return failure();
}
argTypes.push_back(argType);
argLocs.push_back(argLoc);
}
block->addArguments(argTypes, argLocs);
return defineValues(reader, block->getArguments());
}
//===----------------------------------------------------------------------===//
// Value Processing
Value BytecodeReader::Impl::parseOperand(EncodingReader &reader) {
std::vector<Value> &values = valueScopes.back().values;
Value *value = nullptr;
if (failed(parseEntry(reader, values, value, "value")))
return Value();
// Create a new forward reference if necessary.
if (!*value)
*value = createForwardRef();
return *value;
}
LogicalResult BytecodeReader::Impl::defineValues(EncodingReader &reader,
ValueRange newValues) {
ValueScope &valueScope = valueScopes.back();
std::vector<Value> &values = valueScope.values;
unsigned &valueID = valueScope.nextValueIDs.back();
unsigned valueIDEnd = valueID + newValues.size();
if (valueIDEnd > values.size()) {
return reader.emitError(
"value index range was outside of the expected range for "
"the parent region, got [",
valueID, ", ", valueIDEnd, "), but the maximum index was ",
values.size() - 1);
}
// Assign the values and update any forward references.
for (unsigned i = 0, e = newValues.size(); i != e; ++i, ++valueID) {
Value newValue = newValues[i];
// Check to see if a definition for this value already exists.
if (Value oldValue = std::exchange(values[valueID], newValue)) {
Operation *forwardRefOp = oldValue.getDefiningOp();
// Assert that this is a forward reference operation. Given how we compute
// definition ids (incrementally as we parse), it shouldn't be possible
// for the value to be defined any other way.
assert(forwardRefOp && forwardRefOp->getBlock() == &forwardRefOps &&
"value index was already defined?");
oldValue.replaceAllUsesWith(newValue);
forwardRefOp->moveBefore(&openForwardRefOps, openForwardRefOps.end());
}
}
return success();
}
Value BytecodeReader::Impl::createForwardRef() {
// Check for an avaliable existing operation to use. Otherwise, create a new
// fake operation to use for the reference.
if (!openForwardRefOps.empty()) {
Operation *op = &openForwardRefOps.back();
op->moveBefore(&forwardRefOps, forwardRefOps.end());
} else {
forwardRefOps.push_back(Operation::create(forwardRefOpState));
}
return forwardRefOps.back().getResult(0);
}
//===----------------------------------------------------------------------===//
// Entry Points
//===----------------------------------------------------------------------===//
BytecodeReader::~BytecodeReader() { assert(getNumOpsToMaterialize() == 0); }
BytecodeReader::BytecodeReader(
llvm::MemoryBufferRef buffer, const ParserConfig &config, bool lazyLoading,
const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef) {
Location sourceFileLoc =
FileLineColLoc::get(config.getContext(), buffer.getBufferIdentifier(),
/*line=*/0, /*column=*/0);
impl = std::make_unique<Impl>(sourceFileLoc, config, lazyLoading, buffer,
bufferOwnerRef);
}
LogicalResult BytecodeReader::readTopLevel(
Block *block, llvm::function_ref<bool(Operation *)> lazyOpsCallback) {
return impl->read(block, lazyOpsCallback);
}
int64_t BytecodeReader::getNumOpsToMaterialize() const {
return impl->getNumOpsToMaterialize();
}
bool BytecodeReader::isMaterializable(Operation *op) {
return impl->isMaterializable(op);
}
LogicalResult BytecodeReader::materialize(
Operation *op, llvm::function_ref<bool(Operation *)> lazyOpsCallback) {
return impl->materialize(op, lazyOpsCallback);
}
LogicalResult
BytecodeReader::finalize(function_ref<bool(Operation *)> shouldMaterialize) {
return impl->finalize(shouldMaterialize);
}
bool mlir::isBytecode(llvm::MemoryBufferRef buffer) {
return buffer.getBuffer().startswith("ML\xefR");
}
/// Read the bytecode from the provided memory buffer reference.
/// `bufferOwnerRef` if provided is the owning source manager for the buffer,
/// and may be used to extend the lifetime of the buffer.
static LogicalResult
readBytecodeFileImpl(llvm::MemoryBufferRef buffer, Block *block,
const ParserConfig &config,
const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef) {
Location sourceFileLoc =
FileLineColLoc::get(config.getContext(), buffer.getBufferIdentifier(),
/*line=*/0, /*column=*/0);
if (!isBytecode(buffer)) {
return emitError(sourceFileLoc,
"input buffer is not an MLIR bytecode file");
}
BytecodeReader::Impl reader(sourceFileLoc, config, /*lazyLoading=*/false,
buffer, bufferOwnerRef);
return reader.read(block, /*lazyOpsCallback=*/nullptr);
}
LogicalResult mlir::readBytecodeFile(llvm::MemoryBufferRef buffer, Block *block,
const ParserConfig &config) {
return readBytecodeFileImpl(buffer, block, config, /*bufferOwnerRef=*/{});
}
LogicalResult
mlir::readBytecodeFile(const std::shared_ptr<llvm::SourceMgr> &sourceMgr,
Block *block, const ParserConfig &config) {
return readBytecodeFileImpl(
*sourceMgr->getMemoryBuffer(sourceMgr->getMainFileID()), block, config,
sourceMgr);
}