Zachary Turner 190fadcdb2 Unicode support on Win32.
Win32 API calls that are Unicode aware require wide character
strings, but LLDB uses UTF8 everywhere.  This patch does conversions
wherever necessary when passing strings into and out of Win32 API
calls.

Patch by Cameron
Differential Revision: http://reviews.llvm.org/D17107
Reviewed By: zturner, amccarth

llvm-svn: 264074
2016-03-22 17:58:09 +00:00

1280 lines
32 KiB
C++

//===-- PythonDataObjects.cpp ------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifdef LLDB_DISABLE_PYTHON
// Python is disabled in this build
#else
#include "lldb-python.h"
#include "PythonDataObjects.h"
#include "ScriptInterpreterPython.h"
#include "lldb/Core/Stream.h"
#include "lldb/Host/File.h"
#include "lldb/Host/FileSystem.h"
#include "lldb/Interpreter/ScriptInterpreter.h"
#include "llvm/Support/ConvertUTF.h"
#include <stdio.h>
#include "llvm/ADT/StringSwitch.h"
using namespace lldb_private;
using namespace lldb;
void
StructuredPythonObject::Dump(Stream &s) const
{
s << "Python Obj: 0x" << GetValue();
}
//----------------------------------------------------------------------
// PythonObject
//----------------------------------------------------------------------
void
PythonObject::Dump(Stream &strm) const
{
if (m_py_obj)
{
FILE *file = ::tmpfile();
if (file)
{
::PyObject_Print (m_py_obj, file, 0);
const long length = ftell (file);
if (length)
{
::rewind(file);
std::vector<char> file_contents (length,'\0');
const size_t length_read = ::fread (file_contents.data(), 1, file_contents.size(), file);
if (length_read > 0)
strm.Write (file_contents.data(), length_read);
}
::fclose (file);
}
}
else
strm.PutCString ("NULL");
}
PyObjectType
PythonObject::GetObjectType() const
{
if (!IsAllocated())
return PyObjectType::None;
if (PythonModule::Check(m_py_obj))
return PyObjectType::Module;
if (PythonList::Check(m_py_obj))
return PyObjectType::List;
if (PythonTuple::Check(m_py_obj))
return PyObjectType::Tuple;
if (PythonDictionary::Check(m_py_obj))
return PyObjectType::Dictionary;
if (PythonString::Check(m_py_obj))
return PyObjectType::String;
#if PY_MAJOR_VERSION >= 3
if (PythonBytes::Check(m_py_obj))
return PyObjectType::Bytes;
#endif
if (PythonByteArray::Check(m_py_obj))
return PyObjectType::ByteArray;
if (PythonInteger::Check(m_py_obj))
return PyObjectType::Integer;
if (PythonFile::Check(m_py_obj))
return PyObjectType::File;
if (PythonCallable::Check(m_py_obj))
return PyObjectType::Callable;
return PyObjectType::Unknown;
}
PythonString
PythonObject::Repr() const
{
if (!m_py_obj)
return PythonString();
PyObject *repr = PyObject_Repr(m_py_obj);
if (!repr)
return PythonString();
return PythonString(PyRefType::Owned, repr);
}
PythonString
PythonObject::Str() const
{
if (!m_py_obj)
return PythonString();
PyObject *str = PyObject_Str(m_py_obj);
if (!str)
return PythonString();
return PythonString(PyRefType::Owned, str);
}
PythonObject
PythonObject::ResolveNameWithDictionary(llvm::StringRef name, const PythonDictionary &dict)
{
size_t dot_pos = name.find_first_of('.');
llvm::StringRef piece = name.substr(0, dot_pos);
PythonObject result = dict.GetItemForKey(PythonString(piece));
if (dot_pos == llvm::StringRef::npos)
{
// There was no dot, we're done.
return result;
}
// There was a dot. The remaining portion of the name should be looked up in
// the context of the object that was found in the dictionary.
return result.ResolveName(name.substr(dot_pos + 1));
}
PythonObject
PythonObject::ResolveName(llvm::StringRef name) const
{
// Resolve the name in the context of the specified object. If,
// for example, `this` refers to a PyModule, then this will look for
// `name` in this module. If `this` refers to a PyType, then it will
// resolve `name` as an attribute of that type. If `this` refers to
// an instance of an object, then it will resolve `name` as the value
// of the specified field.
//
// This function handles dotted names so that, for example, if `m_py_obj`
// refers to the `sys` module, and `name` == "path.append", then it
// will find the function `sys.path.append`.
size_t dot_pos = name.find_first_of('.');
if (dot_pos == llvm::StringRef::npos)
{
// No dots in the name, we should be able to find the value immediately
// as an attribute of `m_py_obj`.
return GetAttributeValue(name);
}
// Look up the first piece of the name, and resolve the rest as a child of that.
PythonObject parent = ResolveName(name.substr(0, dot_pos));
if (!parent.IsAllocated())
return PythonObject();
// Tail recursion.. should be optimized by the compiler
return parent.ResolveName(name.substr(dot_pos + 1));
}
bool
PythonObject::HasAttribute(llvm::StringRef attr) const
{
if (!IsValid())
return false;
PythonString py_attr(attr);
return !!PyObject_HasAttr(m_py_obj, py_attr.get());
}
PythonObject
PythonObject::GetAttributeValue(llvm::StringRef attr) const
{
if (!IsValid())
return PythonObject();
PythonString py_attr(attr);
if (!PyObject_HasAttr(m_py_obj, py_attr.get()))
return PythonObject();
return PythonObject(PyRefType::Owned,
PyObject_GetAttr(m_py_obj, py_attr.get()));
}
bool
PythonObject::IsNone() const
{
return m_py_obj == Py_None;
}
bool
PythonObject::IsValid() const
{
return m_py_obj != nullptr;
}
bool
PythonObject::IsAllocated() const
{
return IsValid() && !IsNone();
}
StructuredData::ObjectSP
PythonObject::CreateStructuredObject() const
{
switch (GetObjectType())
{
case PyObjectType::Dictionary:
return PythonDictionary(PyRefType::Borrowed, m_py_obj).CreateStructuredDictionary();
case PyObjectType::Integer:
return PythonInteger(PyRefType::Borrowed, m_py_obj).CreateStructuredInteger();
case PyObjectType::List:
return PythonList(PyRefType::Borrowed, m_py_obj).CreateStructuredArray();
case PyObjectType::String:
return PythonString(PyRefType::Borrowed, m_py_obj).CreateStructuredString();
case PyObjectType::Bytes:
return PythonBytes(PyRefType::Borrowed, m_py_obj).CreateStructuredString();
case PyObjectType::ByteArray:
return PythonByteArray(PyRefType::Borrowed, m_py_obj).CreateStructuredString();
case PyObjectType::None:
return StructuredData::ObjectSP();
default:
return StructuredData::ObjectSP(new StructuredPythonObject(m_py_obj));
}
}
//----------------------------------------------------------------------
// PythonString
//----------------------------------------------------------------------
PythonBytes::PythonBytes() : PythonObject()
{
}
PythonBytes::PythonBytes(llvm::ArrayRef<uint8_t> bytes) : PythonObject()
{
SetBytes(bytes);
}
PythonBytes::PythonBytes(const uint8_t *bytes, size_t length) : PythonObject()
{
SetBytes(llvm::ArrayRef<uint8_t>(bytes, length));
}
PythonBytes::PythonBytes(PyRefType type, PyObject *py_obj) : PythonObject()
{
Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a string
}
PythonBytes::PythonBytes(const PythonBytes &object) : PythonObject(object)
{
}
PythonBytes::~PythonBytes()
{
}
bool
PythonBytes::Check(PyObject *py_obj)
{
if (!py_obj)
return false;
if (PyBytes_Check(py_obj))
return true;
return false;
}
void
PythonBytes::Reset(PyRefType type, PyObject *py_obj)
{
// Grab the desired reference type so that if we end up rejecting
// `py_obj` it still gets decremented if necessary.
PythonObject result(type, py_obj);
if (!PythonBytes::Check(py_obj))
{
PythonObject::Reset();
return;
}
// Calling PythonObject::Reset(const PythonObject&) will lead to stack overflow since it calls
// back into the virtual implementation.
PythonObject::Reset(PyRefType::Borrowed, result.get());
}
llvm::ArrayRef<uint8_t>
PythonBytes::GetBytes() const
{
if (!IsValid())
return llvm::ArrayRef<uint8_t>();
Py_ssize_t size;
char *c;
PyBytes_AsStringAndSize(m_py_obj, &c, &size);
return llvm::ArrayRef<uint8_t>(reinterpret_cast<uint8_t *>(c), size);
}
size_t
PythonBytes::GetSize() const
{
if (!IsValid())
return 0;
return PyBytes_Size(m_py_obj);
}
void
PythonBytes::SetBytes(llvm::ArrayRef<uint8_t> bytes)
{
const char *data = reinterpret_cast<const char *>(bytes.data());
PyObject *py_bytes = PyBytes_FromStringAndSize(data, bytes.size());
PythonObject::Reset(PyRefType::Owned, py_bytes);
}
StructuredData::StringSP
PythonBytes::CreateStructuredString() const
{
StructuredData::StringSP result(new StructuredData::String);
Py_ssize_t size;
char *c;
PyBytes_AsStringAndSize(m_py_obj, &c, &size);
result->SetValue(std::string(c, size));
return result;
}
PythonByteArray::PythonByteArray(llvm::ArrayRef<uint8_t> bytes) : PythonByteArray(bytes.data(), bytes.size())
{
}
PythonByteArray::PythonByteArray(const uint8_t *bytes, size_t length)
{
const char *str = reinterpret_cast<const char *>(bytes);
Reset(PyRefType::Owned, PyByteArray_FromStringAndSize(str, length));
}
PythonByteArray::PythonByteArray(PyRefType type, PyObject *o)
{
Reset(type, o);
}
PythonByteArray::PythonByteArray(const PythonBytes &object) : PythonObject(object)
{
}
PythonByteArray::~PythonByteArray()
{
}
bool
PythonByteArray::Check(PyObject *py_obj)
{
if (!py_obj)
return false;
if (PyByteArray_Check(py_obj))
return true;
return false;
}
void
PythonByteArray::Reset(PyRefType type, PyObject *py_obj)
{
// Grab the desired reference type so that if we end up rejecting
// `py_obj` it still gets decremented if necessary.
PythonObject result(type, py_obj);
if (!PythonByteArray::Check(py_obj))
{
PythonObject::Reset();
return;
}
// Calling PythonObject::Reset(const PythonObject&) will lead to stack overflow since it calls
// back into the virtual implementation.
PythonObject::Reset(PyRefType::Borrowed, result.get());
}
llvm::ArrayRef<uint8_t>
PythonByteArray::GetBytes() const
{
if (!IsValid())
return llvm::ArrayRef<uint8_t>();
char *c = PyByteArray_AsString(m_py_obj);
size_t size = GetSize();
return llvm::ArrayRef<uint8_t>(reinterpret_cast<uint8_t *>(c), size);
}
size_t
PythonByteArray::GetSize() const
{
if (!IsValid())
return 0;
return PyByteArray_Size(m_py_obj);
}
StructuredData::StringSP
PythonByteArray::CreateStructuredString() const
{
StructuredData::StringSP result(new StructuredData::String);
llvm::ArrayRef<uint8_t> bytes = GetBytes();
const char *str = reinterpret_cast<const char *>(bytes.data());
result->SetValue(std::string(str, bytes.size()));
return result;
}
//----------------------------------------------------------------------
// PythonString
//----------------------------------------------------------------------
PythonString::PythonString(PyRefType type, PyObject *py_obj)
: PythonObject()
{
Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a string
}
PythonString::PythonString(const PythonString &object)
: PythonObject(object)
{
}
PythonString::PythonString(llvm::StringRef string)
: PythonObject()
{
SetString(string);
}
PythonString::PythonString(const char *string)
: PythonObject()
{
SetString(llvm::StringRef(string));
}
PythonString::PythonString()
: PythonObject()
{
}
PythonString::~PythonString ()
{
}
bool
PythonString::Check(PyObject *py_obj)
{
if (!py_obj)
return false;
if (PyUnicode_Check(py_obj))
return true;
#if PY_MAJOR_VERSION < 3
if (PyString_Check(py_obj))
return true;
#endif
return false;
}
void
PythonString::Reset(PyRefType type, PyObject *py_obj)
{
// Grab the desired reference type so that if we end up rejecting
// `py_obj` it still gets decremented if necessary.
PythonObject result(type, py_obj);
if (!PythonString::Check(py_obj))
{
PythonObject::Reset();
return;
}
#if PY_MAJOR_VERSION < 3
// In Python 2, Don't store PyUnicode objects directly, because we need
// access to their underlying character buffers which Python 2 doesn't
// provide.
if (PyUnicode_Check(py_obj))
result.Reset(PyRefType::Owned, PyUnicode_AsUTF8String(result.get()));
#endif
// Calling PythonObject::Reset(const PythonObject&) will lead to stack overflow since it calls
// back into the virtual implementation.
PythonObject::Reset(PyRefType::Borrowed, result.get());
}
llvm::StringRef
PythonString::GetString() const
{
if (!IsValid())
return llvm::StringRef();
Py_ssize_t size;
char *c;
#if PY_MAJOR_VERSION >= 3
c = PyUnicode_AsUTF8AndSize(m_py_obj, &size);
#else
PyString_AsStringAndSize(m_py_obj, &c, &size);
#endif
return llvm::StringRef(c, size);
}
size_t
PythonString::GetSize() const
{
if (IsValid())
{
#if PY_MAJOR_VERSION >= 3
return PyUnicode_GetSize(m_py_obj);
#else
return PyString_Size(m_py_obj);
#endif
}
return 0;
}
void
PythonString::SetString (llvm::StringRef string)
{
#if PY_MAJOR_VERSION >= 3
PyObject *unicode = PyUnicode_FromStringAndSize(string.data(), string.size());
PythonObject::Reset(PyRefType::Owned, unicode);
#else
PyObject *str = PyString_FromStringAndSize(string.data(), string.size());
PythonObject::Reset(PyRefType::Owned, str);
#endif
}
StructuredData::StringSP
PythonString::CreateStructuredString() const
{
StructuredData::StringSP result(new StructuredData::String);
result->SetValue(GetString());
return result;
}
//----------------------------------------------------------------------
// PythonInteger
//----------------------------------------------------------------------
PythonInteger::PythonInteger()
: PythonObject()
{
}
PythonInteger::PythonInteger(PyRefType type, PyObject *py_obj)
: PythonObject()
{
Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a integer type
}
PythonInteger::PythonInteger(const PythonInteger &object)
: PythonObject(object)
{
}
PythonInteger::PythonInteger(int64_t value)
: PythonObject()
{
SetInteger(value);
}
PythonInteger::~PythonInteger ()
{
}
bool
PythonInteger::Check(PyObject *py_obj)
{
if (!py_obj)
return false;
#if PY_MAJOR_VERSION >= 3
// Python 3 does not have PyInt_Check. There is only one type of
// integral value, long.
return PyLong_Check(py_obj);
#else
return PyLong_Check(py_obj) || PyInt_Check(py_obj);
#endif
}
void
PythonInteger::Reset(PyRefType type, PyObject *py_obj)
{
// Grab the desired reference type so that if we end up rejecting
// `py_obj` it still gets decremented if necessary.
PythonObject result(type, py_obj);
if (!PythonInteger::Check(py_obj))
{
PythonObject::Reset();
return;
}
#if PY_MAJOR_VERSION < 3
// Always store this as a PyLong, which makes interoperability between
// Python 2.x and Python 3.x easier. This is only necessary in 2.x,
// since 3.x doesn't even have a PyInt.
if (PyInt_Check(py_obj))
{
// Since we converted the original object to a different type, the new
// object is an owned object regardless of the ownership semantics requested
// by the user.
result.Reset(PyRefType::Owned, PyLong_FromLongLong(PyInt_AsLong(py_obj)));
}
#endif
assert(PyLong_Check(result.get()) && "Couldn't get a PyLong from this PyObject");
// Calling PythonObject::Reset(const PythonObject&) will lead to stack overflow since it calls
// back into the virtual implementation.
PythonObject::Reset(PyRefType::Borrowed, result.get());
}
int64_t
PythonInteger::GetInteger() const
{
if (m_py_obj)
{
assert(PyLong_Check(m_py_obj) && "PythonInteger::GetInteger has a PyObject that isn't a PyLong");
return PyLong_AsLongLong(m_py_obj);
}
return UINT64_MAX;
}
void
PythonInteger::SetInteger(int64_t value)
{
PythonObject::Reset(PyRefType::Owned, PyLong_FromLongLong(value));
}
StructuredData::IntegerSP
PythonInteger::CreateStructuredInteger() const
{
StructuredData::IntegerSP result(new StructuredData::Integer);
result->SetValue(GetInteger());
return result;
}
//----------------------------------------------------------------------
// PythonList
//----------------------------------------------------------------------
PythonList::PythonList(PyInitialValue value)
: PythonObject()
{
if (value == PyInitialValue::Empty)
Reset(PyRefType::Owned, PyList_New(0));
}
PythonList::PythonList(int list_size)
: PythonObject()
{
Reset(PyRefType::Owned, PyList_New(list_size));
}
PythonList::PythonList(PyRefType type, PyObject *py_obj)
: PythonObject()
{
Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a list
}
PythonList::PythonList(const PythonList &list)
: PythonObject(list)
{
}
PythonList::~PythonList ()
{
}
bool
PythonList::Check(PyObject *py_obj)
{
if (!py_obj)
return false;
return PyList_Check(py_obj);
}
void
PythonList::Reset(PyRefType type, PyObject *py_obj)
{
// Grab the desired reference type so that if we end up rejecting
// `py_obj` it still gets decremented if necessary.
PythonObject result(type, py_obj);
if (!PythonList::Check(py_obj))
{
PythonObject::Reset();
return;
}
// Calling PythonObject::Reset(const PythonObject&) will lead to stack overflow since it calls
// back into the virtual implementation.
PythonObject::Reset(PyRefType::Borrowed, result.get());
}
uint32_t
PythonList::GetSize() const
{
if (IsValid())
return PyList_GET_SIZE(m_py_obj);
return 0;
}
PythonObject
PythonList::GetItemAtIndex(uint32_t index) const
{
if (IsValid())
return PythonObject(PyRefType::Borrowed, PyList_GetItem(m_py_obj, index));
return PythonObject();
}
void
PythonList::SetItemAtIndex(uint32_t index, const PythonObject &object)
{
if (IsAllocated() && object.IsValid())
{
// PyList_SetItem is documented to "steal" a reference, so we need to
// convert it to an owned reference by incrementing it.
Py_INCREF(object.get());
PyList_SetItem(m_py_obj, index, object.get());
}
}
void
PythonList::AppendItem(const PythonObject &object)
{
if (IsAllocated() && object.IsValid())
{
// `PyList_Append` does *not* steal a reference, so do not call `Py_INCREF`
// here like we do with `PyList_SetItem`.
PyList_Append(m_py_obj, object.get());
}
}
StructuredData::ArraySP
PythonList::CreateStructuredArray() const
{
StructuredData::ArraySP result(new StructuredData::Array);
uint32_t count = GetSize();
for (uint32_t i = 0; i < count; ++i)
{
PythonObject obj = GetItemAtIndex(i);
result->AddItem(obj.CreateStructuredObject());
}
return result;
}
//----------------------------------------------------------------------
// PythonTuple
//----------------------------------------------------------------------
PythonTuple::PythonTuple(PyInitialValue value)
: PythonObject()
{
if (value == PyInitialValue::Empty)
Reset(PyRefType::Owned, PyTuple_New(0));
}
PythonTuple::PythonTuple(int tuple_size)
: PythonObject()
{
Reset(PyRefType::Owned, PyTuple_New(tuple_size));
}
PythonTuple::PythonTuple(PyRefType type, PyObject *py_obj)
: PythonObject()
{
Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a tuple
}
PythonTuple::PythonTuple(const PythonTuple &tuple)
: PythonObject(tuple)
{
}
PythonTuple::PythonTuple(std::initializer_list<PythonObject> objects)
{
m_py_obj = PyTuple_New(objects.size());
uint32_t idx = 0;
for (auto object : objects)
{
if (object.IsValid())
SetItemAtIndex(idx, object);
idx++;
}
}
PythonTuple::PythonTuple(std::initializer_list<PyObject*> objects)
{
m_py_obj = PyTuple_New(objects.size());
uint32_t idx = 0;
for (auto py_object : objects)
{
PythonObject object(PyRefType::Borrowed, py_object);
if (object.IsValid())
SetItemAtIndex(idx, object);
idx++;
}
}
PythonTuple::~PythonTuple()
{
}
bool
PythonTuple::Check(PyObject *py_obj)
{
if (!py_obj)
return false;
return PyTuple_Check(py_obj);
}
void
PythonTuple::Reset(PyRefType type, PyObject *py_obj)
{
// Grab the desired reference type so that if we end up rejecting
// `py_obj` it still gets decremented if necessary.
PythonObject result(type, py_obj);
if (!PythonTuple::Check(py_obj))
{
PythonObject::Reset();
return;
}
// Calling PythonObject::Reset(const PythonObject&) will lead to stack overflow since it calls
// back into the virtual implementation.
PythonObject::Reset(PyRefType::Borrowed, result.get());
}
uint32_t
PythonTuple::GetSize() const
{
if (IsValid())
return PyTuple_GET_SIZE(m_py_obj);
return 0;
}
PythonObject
PythonTuple::GetItemAtIndex(uint32_t index) const
{
if (IsValid())
return PythonObject(PyRefType::Borrowed, PyTuple_GetItem(m_py_obj, index));
return PythonObject();
}
void
PythonTuple::SetItemAtIndex(uint32_t index, const PythonObject &object)
{
if (IsAllocated() && object.IsValid())
{
// PyTuple_SetItem is documented to "steal" a reference, so we need to
// convert it to an owned reference by incrementing it.
Py_INCREF(object.get());
PyTuple_SetItem(m_py_obj, index, object.get());
}
}
StructuredData::ArraySP
PythonTuple::CreateStructuredArray() const
{
StructuredData::ArraySP result(new StructuredData::Array);
uint32_t count = GetSize();
for (uint32_t i = 0; i < count; ++i)
{
PythonObject obj = GetItemAtIndex(i);
result->AddItem(obj.CreateStructuredObject());
}
return result;
}
//----------------------------------------------------------------------
// PythonDictionary
//----------------------------------------------------------------------
PythonDictionary::PythonDictionary(PyInitialValue value)
: PythonObject()
{
if (value == PyInitialValue::Empty)
Reset(PyRefType::Owned, PyDict_New());
}
PythonDictionary::PythonDictionary(PyRefType type, PyObject *py_obj)
: PythonObject()
{
Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a dictionary
}
PythonDictionary::PythonDictionary(const PythonDictionary &object)
: PythonObject(object)
{
}
PythonDictionary::~PythonDictionary ()
{
}
bool
PythonDictionary::Check(PyObject *py_obj)
{
if (!py_obj)
return false;
return PyDict_Check(py_obj);
}
void
PythonDictionary::Reset(PyRefType type, PyObject *py_obj)
{
// Grab the desired reference type so that if we end up rejecting
// `py_obj` it still gets decremented if necessary.
PythonObject result(type, py_obj);
if (!PythonDictionary::Check(py_obj))
{
PythonObject::Reset();
return;
}
// Calling PythonObject::Reset(const PythonObject&) will lead to stack overflow since it calls
// back into the virtual implementation.
PythonObject::Reset(PyRefType::Borrowed, result.get());
}
uint32_t
PythonDictionary::GetSize() const
{
if (IsValid())
return PyDict_Size(m_py_obj);
return 0;
}
PythonList
PythonDictionary::GetKeys() const
{
if (IsValid())
return PythonList(PyRefType::Owned, PyDict_Keys(m_py_obj));
return PythonList(PyInitialValue::Invalid);
}
PythonObject
PythonDictionary::GetItemForKey(const PythonObject &key) const
{
if (IsAllocated() && key.IsValid())
return PythonObject(PyRefType::Borrowed, PyDict_GetItem(m_py_obj, key.get()));
return PythonObject();
}
void
PythonDictionary::SetItemForKey(const PythonObject &key, const PythonObject &value)
{
if (IsAllocated() && key.IsValid() && value.IsValid())
PyDict_SetItem(m_py_obj, key.get(), value.get());
}
StructuredData::DictionarySP
PythonDictionary::CreateStructuredDictionary() const
{
StructuredData::DictionarySP result(new StructuredData::Dictionary);
PythonList keys(GetKeys());
uint32_t num_keys = keys.GetSize();
for (uint32_t i = 0; i < num_keys; ++i)
{
PythonObject key = keys.GetItemAtIndex(i);
PythonObject value = GetItemForKey(key);
StructuredData::ObjectSP structured_value = value.CreateStructuredObject();
result->AddItem(key.Str().GetString(), structured_value);
}
return result;
}
PythonModule::PythonModule() : PythonObject()
{
}
PythonModule::PythonModule(PyRefType type, PyObject *py_obj)
{
Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a module
}
PythonModule::PythonModule(const PythonModule &dict) : PythonObject(dict)
{
}
PythonModule::~PythonModule()
{
}
PythonModule
PythonModule::BuiltinsModule()
{
#if PY_MAJOR_VERSION >= 3
return AddModule("builtins");
#else
return AddModule("__builtin__");
#endif
}
PythonModule
PythonModule::MainModule()
{
return AddModule("__main__");
}
PythonModule
PythonModule::AddModule(llvm::StringRef module)
{
std::string str = module.str();
return PythonModule(PyRefType::Borrowed, PyImport_AddModule(str.c_str()));
}
PythonModule
PythonModule::ImportModule(llvm::StringRef module)
{
std::string str = module.str();
return PythonModule(PyRefType::Owned, PyImport_ImportModule(str.c_str()));
}
bool
PythonModule::Check(PyObject *py_obj)
{
if (!py_obj)
return false;
return PyModule_Check(py_obj);
}
void
PythonModule::Reset(PyRefType type, PyObject *py_obj)
{
// Grab the desired reference type so that if we end up rejecting
// `py_obj` it still gets decremented if necessary.
PythonObject result(type, py_obj);
if (!PythonModule::Check(py_obj))
{
PythonObject::Reset();
return;
}
// Calling PythonObject::Reset(const PythonObject&) will lead to stack overflow since it calls
// back into the virtual implementation.
PythonObject::Reset(PyRefType::Borrowed, result.get());
}
PythonDictionary
PythonModule::GetDictionary() const
{
return PythonDictionary(PyRefType::Borrowed, PyModule_GetDict(m_py_obj));
}
PythonCallable::PythonCallable() : PythonObject()
{
}
PythonCallable::PythonCallable(PyRefType type, PyObject *py_obj)
{
Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a callable
}
PythonCallable::PythonCallable(const PythonCallable &callable)
: PythonObject(callable)
{
}
PythonCallable::~PythonCallable()
{
}
bool
PythonCallable::Check(PyObject *py_obj)
{
if (!py_obj)
return false;
return PyCallable_Check(py_obj);
}
void
PythonCallable::Reset(PyRefType type, PyObject *py_obj)
{
// Grab the desired reference type so that if we end up rejecting
// `py_obj` it still gets decremented if necessary.
PythonObject result(type, py_obj);
if (!PythonCallable::Check(py_obj))
{
PythonObject::Reset();
return;
}
// Calling PythonObject::Reset(const PythonObject&) will lead to stack overflow since it calls
// back into the virtual implementation.
PythonObject::Reset(PyRefType::Borrowed, result.get());
}
PythonCallable::ArgInfo
PythonCallable::GetNumArguments() const
{
ArgInfo result = { 0, false, false };
if (!IsValid())
return result;
PyObject *py_func_obj = m_py_obj;
if (PyMethod_Check(py_func_obj))
py_func_obj = PyMethod_GET_FUNCTION(py_func_obj);
if (!py_func_obj)
return result;
PyCodeObject* code = (PyCodeObject*)PyFunction_GET_CODE(py_func_obj);
if (!code)
return result;
result.count = code->co_argcount;
result.has_varargs = !!(code->co_flags & CO_VARARGS);
result.has_kwargs = !!(code->co_flags & CO_VARKEYWORDS);
return result;
}
PythonObject
PythonCallable::operator ()()
{
return PythonObject(PyRefType::Owned,
PyObject_CallObject(m_py_obj, nullptr));
}
PythonObject
PythonCallable::operator ()(std::initializer_list<PyObject*> args)
{
PythonTuple arg_tuple(args);
return PythonObject(PyRefType::Owned,
PyObject_CallObject(m_py_obj, arg_tuple.get()));
}
PythonObject
PythonCallable::operator ()(std::initializer_list<PythonObject> args)
{
PythonTuple arg_tuple(args);
return PythonObject(PyRefType::Owned,
PyObject_CallObject(m_py_obj, arg_tuple.get()));
}
PythonFile::PythonFile()
: PythonObject()
{
}
PythonFile::PythonFile(File &file, const char *mode)
{
Reset(file, mode);
}
PythonFile::PythonFile(const char *path, const char *mode)
{
lldb_private::File file(path, GetOptionsFromMode(mode));
Reset(file, mode);
}
PythonFile::PythonFile(PyRefType type, PyObject *o)
{
Reset(type, o);
}
PythonFile::~PythonFile()
{
}
bool
PythonFile::Check(PyObject *py_obj)
{
#if PY_MAJOR_VERSION < 3
return PyFile_Check(py_obj);
#else
// In Python 3, there is no `PyFile_Check`, and in fact PyFile is not even a
// first-class object type anymore. `PyFile_FromFd` is just a thin wrapper
// over `io.open()`, which returns some object derived from `io.IOBase`.
// As a result, the only way to detect a file in Python 3 is to check whether
// it inherits from `io.IOBase`. Since it is possible for non-files to also
// inherit from `io.IOBase`, we additionally verify that it has the `fileno`
// attribute, which should guarantee that it is backed by the file system.
PythonObject io_module(PyRefType::Owned, PyImport_ImportModule("io"));
PythonDictionary io_dict(PyRefType::Borrowed, PyModule_GetDict(io_module.get()));
PythonObject io_base_class = io_dict.GetItemForKey(PythonString("IOBase"));
PythonObject object_type(PyRefType::Owned, PyObject_Type(py_obj));
if (1 != PyObject_IsSubclass(object_type.get(), io_base_class.get()))
return false;
if (!object_type.HasAttribute("fileno"))
return false;
return true;
#endif
}
void
PythonFile::Reset(PyRefType type, PyObject *py_obj)
{
// Grab the desired reference type so that if we end up rejecting
// `py_obj` it still gets decremented if necessary.
PythonObject result(type, py_obj);
if (!PythonFile::Check(py_obj))
{
PythonObject::Reset();
return;
}
// Calling PythonObject::Reset(const PythonObject&) will lead to stack
// overflow since it calls back into the virtual implementation.
PythonObject::Reset(PyRefType::Borrowed, result.get());
}
void
PythonFile::Reset(File &file, const char *mode)
{
if (!file.IsValid())
{
Reset();
return;
}
char *cmode = const_cast<char *>(mode);
#if PY_MAJOR_VERSION >= 3
Reset(PyRefType::Owned,
PyFile_FromFd(file.GetDescriptor(), nullptr, cmode, -1, nullptr, "ignore", nullptr, 0));
#else
// Read through the Python source, doesn't seem to modify these strings
Reset(PyRefType::Owned,
PyFile_FromFile(file.GetStream(), const_cast<char *>(""), cmode, nullptr));
#endif
}
uint32_t
PythonFile::GetOptionsFromMode(llvm::StringRef mode)
{
if (mode.empty())
return 0;
return llvm::StringSwitch<uint32_t>(mode.str().c_str())
.Case("r", File::eOpenOptionRead)
.Case("w", File::eOpenOptionWrite)
.Case("a", File::eOpenOptionAppend|File::eOpenOptionCanCreate)
.Case("r+", File::eOpenOptionRead|File::eOpenOptionWrite)
.Case("w+", File::eOpenOptionRead|File::eOpenOptionWrite|File::eOpenOptionCanCreate|File::eOpenOptionTruncate)
.Case("a+", File::eOpenOptionRead|File::eOpenOptionWrite|File::eOpenOptionCanCreate)
.Default(0);
}
bool
PythonFile::GetUnderlyingFile(File &file) const
{
if (!IsValid())
return false;
file.Close();
// We don't own the file descriptor returned by this function, make sure the
// File object knows about that.
file.SetDescriptor(PyObject_AsFileDescriptor(m_py_obj), false);
PythonString py_mode = GetAttributeValue("mode").AsType<PythonString>();
file.SetOptions(PythonFile::GetOptionsFromMode(py_mode.GetString()));
return file.IsValid();
}
#endif