Ilya Biryukov 1ad15046dc [Syntax] Allow to mutate syntax trees
Summary:
This patch adds facilities to mutate the syntax trees and produce
corresponding text replacements.

The public interface of the syntax library now includes facilities to:
    1. perform type-safe modifications of syntax trees,
    2. compute textual replacements to apply the modifications,
    3. create syntax trees not backed by the source code.

For each of the three, we only add a few example transformations in this
patch to illustrate the idea, support for more kinds of nodes and
transformations will be done in follow-up patches.

The high-level mutation operations are implemented on top of operations
that allow to arbitrarily change the trees. They are considered to be
implementation details and are not available to the users of the
library.

Reviewers: sammccall, gribozavr2

Reviewed By: gribozavr2

Subscribers: merge_guards_bot, mgorny, cfe-commits

Tags: #clang

Differential Revision: https://reviews.llvm.org/D64573
2019-12-18 12:19:03 +01:00

660 lines
25 KiB
C++

//===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Tooling/Syntax/BuildTree.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Lex/Lexer.h"
#include "clang/Tooling/Syntax/Nodes.h"
#include "clang/Tooling/Syntax/Tokens.h"
#include "clang/Tooling/Syntax/Tree.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
using namespace clang;
LLVM_ATTRIBUTE_UNUSED
static bool isImplicitExpr(clang::Expr *E) { return E->IgnoreImplicit() != E; }
/// A helper class for constructing the syntax tree while traversing a clang
/// AST.
///
/// At each point of the traversal we maintain a list of pending nodes.
/// Initially all tokens are added as pending nodes. When processing a clang AST
/// node, the clients need to:
/// - create a corresponding syntax node,
/// - assign roles to all pending child nodes with 'markChild' and
/// 'markChildToken',
/// - replace the child nodes with the new syntax node in the pending list
/// with 'foldNode'.
///
/// Note that all children are expected to be processed when building a node.
///
/// Call finalize() to finish building the tree and consume the root node.
class syntax::TreeBuilder {
public:
TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {}
llvm::BumpPtrAllocator &allocator() { return Arena.allocator(); }
/// Populate children for \p New node, assuming it covers tokens from \p
/// Range.
void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New);
/// Must be called with the range of each `DeclaratorDecl`. Ensures the
/// corresponding declarator nodes are covered by `SimpleDeclaration`.
void noticeDeclaratorRange(llvm::ArrayRef<syntax::Token> Range);
/// Notifies that we should not consume trailing semicolon when computing
/// token range of \p D.
void noticeDeclaratorWithoutSemicolon(Decl *D);
/// Mark the \p Child node with a corresponding \p Role. All marked children
/// should be consumed by foldNode.
/// (!) when called on expressions (clang::Expr is derived from clang::Stmt),
/// wraps expressions into expression statement.
void markStmtChild(Stmt *Child, NodeRole Role);
/// Should be called for expressions in non-statement position to avoid
/// wrapping into expression statement.
void markExprChild(Expr *Child, NodeRole Role);
/// Set role for a token starting at \p Loc.
void markChildToken(SourceLocation Loc, NodeRole R);
/// Finish building the tree and consume the root node.
syntax::TranslationUnit *finalize() && {
auto Tokens = Arena.tokenBuffer().expandedTokens();
assert(!Tokens.empty());
assert(Tokens.back().kind() == tok::eof);
// Build the root of the tree, consuming all the children.
Pending.foldChildren(Arena, Tokens.drop_back(),
new (Arena.allocator()) syntax::TranslationUnit);
return cast<syntax::TranslationUnit>(std::move(Pending).finalize());
}
/// getRange() finds the syntax tokens corresponding to the passed source
/// locations.
/// \p First is the start position of the first token and \p Last is the start
/// position of the last token.
llvm::ArrayRef<syntax::Token> getRange(SourceLocation First,
SourceLocation Last) const {
assert(First.isValid());
assert(Last.isValid());
assert(First == Last ||
Arena.sourceManager().isBeforeInTranslationUnit(First, Last));
return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
}
llvm::ArrayRef<syntax::Token> getRange(const Decl *D) const {
auto Tokens = getRange(D->getBeginLoc(), D->getEndLoc());
if (llvm::isa<NamespaceDecl>(D))
return Tokens;
if (DeclsWithoutSemicolons.count(D))
return Tokens;
// FIXME: do not consume trailing semicolon on function definitions.
// Most declarations own a semicolon in syntax trees, but not in clang AST.
return withTrailingSemicolon(Tokens);
}
llvm::ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
return getRange(E->getBeginLoc(), E->getEndLoc());
}
/// Find the adjusted range for the statement, consuming the trailing
/// semicolon when needed.
llvm::ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
auto Tokens = getRange(S->getBeginLoc(), S->getEndLoc());
if (isa<CompoundStmt>(S))
return Tokens;
// Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
// all statements that end with those. Consume this semicolon here.
if (Tokens.back().kind() == tok::semi)
return Tokens;
return withTrailingSemicolon(Tokens);
}
private:
llvm::ArrayRef<syntax::Token>
withTrailingSemicolon(llvm::ArrayRef<syntax::Token> Tokens) const {
assert(!Tokens.empty());
assert(Tokens.back().kind() != tok::eof);
// (!) we never consume 'eof', so looking at the next token is ok.
if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
return Tokens;
}
/// Finds a token starting at \p L. The token must exist.
const syntax::Token *findToken(SourceLocation L) const;
/// A collection of trees covering the input tokens.
/// When created, each tree corresponds to a single token in the file.
/// Clients call 'foldChildren' to attach one or more subtrees to a parent
/// node and update the list of trees accordingly.
///
/// Ensures that added nodes properly nest and cover the whole token stream.
struct Forest {
Forest(syntax::Arena &A) {
assert(!A.tokenBuffer().expandedTokens().empty());
assert(A.tokenBuffer().expandedTokens().back().kind() == tok::eof);
// Create all leaf nodes.
// Note that we do not have 'eof' in the tree.
for (auto &T : A.tokenBuffer().expandedTokens().drop_back()) {
auto *L = new (A.allocator()) syntax::Leaf(&T);
L->Original = true;
L->CanModify = A.tokenBuffer().spelledForExpanded(T).hasValue();
Trees.insert(Trees.end(), {&T, NodeAndRole{L}});
}
}
~Forest() { assert(DelayedFolds.empty()); }
void assignRole(llvm::ArrayRef<syntax::Token> Range,
syntax::NodeRole Role) {
assert(!Range.empty());
auto It = Trees.lower_bound(Range.begin());
assert(It != Trees.end() && "no node found");
assert(It->first == Range.begin() && "no child with the specified range");
assert((std::next(It) == Trees.end() ||
std::next(It)->first == Range.end()) &&
"no child with the specified range");
It->second.Role = Role;
}
/// Add \p Node to the forest and attach child nodes based on \p Tokens.
void foldChildren(const syntax::Arena &A,
llvm::ArrayRef<syntax::Token> Tokens,
syntax::Tree *Node) {
// Execute delayed folds inside `Tokens`.
auto BeginExecuted = DelayedFolds.lower_bound(Tokens.begin());
auto It = BeginExecuted;
for (; It != DelayedFolds.end() && It->second.End <= Tokens.end(); ++It)
foldChildrenEager(A, llvm::makeArrayRef(It->first, It->second.End),
It->second.Node);
DelayedFolds.erase(BeginExecuted, It);
// Attach children to `Node`.
foldChildrenEager(A, Tokens, Node);
}
/// Schedule a call to `foldChildren` that will only be executed when
/// containing node is folded. The range of delayed nodes can be extended by
/// calling `extendDelayedFold`. Only one delayed node for each starting
/// token is allowed.
void foldChildrenDelayed(llvm::ArrayRef<syntax::Token> Tokens,
syntax::Tree *Node) {
assert(!Tokens.empty());
bool Inserted =
DelayedFolds.insert({Tokens.begin(), DelayedFold{Tokens.end(), Node}})
.second;
(void)Inserted;
assert(Inserted && "Multiple delayed folds start at the same token");
}
/// If there a delayed fold, starting at `ExtendedRange.begin()`, extends
/// its endpoint to `ExtendedRange.end()` and returns true.
/// Otherwise, returns false.
bool extendDelayedFold(llvm::ArrayRef<syntax::Token> ExtendedRange) {
assert(!ExtendedRange.empty());
auto It = DelayedFolds.find(ExtendedRange.data());
if (It == DelayedFolds.end())
return false;
assert(It->second.End <= ExtendedRange.end());
It->second.End = ExtendedRange.end();
return true;
}
// EXPECTS: all tokens were consumed and are owned by a single root node.
syntax::Node *finalize() && {
assert(Trees.size() == 1);
auto *Root = Trees.begin()->second.Node;
Trees = {};
return Root;
}
std::string str(const syntax::Arena &A) const {
std::string R;
for (auto It = Trees.begin(); It != Trees.end(); ++It) {
unsigned CoveredTokens =
It != Trees.end()
? (std::next(It)->first - It->first)
: A.tokenBuffer().expandedTokens().end() - It->first;
R += llvm::formatv("- '{0}' covers '{1}'+{2} tokens\n",
It->second.Node->kind(),
It->first->text(A.sourceManager()), CoveredTokens);
R += It->second.Node->dump(A);
}
return R;
}
private:
/// Implementation detail of `foldChildren`, does acutal folding ignoring
/// delayed folds.
void foldChildrenEager(const syntax::Arena &A,
llvm::ArrayRef<syntax::Token> Tokens,
syntax::Tree *Node) {
assert(Node->firstChild() == nullptr && "node already has children");
auto *FirstToken = Tokens.begin();
auto BeginChildren = Trees.lower_bound(FirstToken);
assert((BeginChildren == Trees.end() ||
BeginChildren->first == FirstToken) &&
"fold crosses boundaries of existing subtrees");
auto EndChildren = Trees.lower_bound(Tokens.end());
assert(
(EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
"fold crosses boundaries of existing subtrees");
// (!) we need to go in reverse order, because we can only prepend.
for (auto It = EndChildren; It != BeginChildren; --It)
Node->prependChildLowLevel(std::prev(It)->second.Node,
std::prev(It)->second.Role);
// Mark that this node came from the AST and is backed by the source code.
Node->Original = true;
Node->CanModify = A.tokenBuffer().spelledForExpanded(Tokens).hasValue();
Trees.erase(BeginChildren, EndChildren);
Trees.insert({FirstToken, NodeAndRole(Node)});
}
/// A with a role that should be assigned to it when adding to a parent.
struct NodeAndRole {
explicit NodeAndRole(syntax::Node *Node)
: Node(Node), Role(NodeRole::Unknown) {}
syntax::Node *Node;
NodeRole Role;
};
/// Maps from the start token to a subtree starting at that token.
/// Keys in the map are pointers into the array of expanded tokens, so
/// pointer order corresponds to the order of preprocessor tokens.
/// FIXME: storing the end tokens is redundant.
/// FIXME: the key of a map is redundant, it is also stored in NodeForRange.
std::map<const syntax::Token *, NodeAndRole> Trees;
/// See documentation of `foldChildrenDelayed` for details.
struct DelayedFold {
const syntax::Token *End = nullptr;
syntax::Tree *Node = nullptr;
};
std::map<const syntax::Token *, DelayedFold> DelayedFolds;
};
/// For debugging purposes.
std::string str() { return Pending.str(Arena); }
syntax::Arena &Arena;
Forest Pending;
llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
};
namespace {
class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
public:
explicit BuildTreeVisitor(ASTContext &Ctx, syntax::TreeBuilder &Builder)
: Builder(Builder), LangOpts(Ctx.getLangOpts()) {}
bool shouldTraversePostOrder() const { return true; }
bool WalkUpFromDeclaratorDecl(DeclaratorDecl *D) {
// Ensure declarators are covered by SimpleDeclaration.
Builder.noticeDeclaratorRange(Builder.getRange(D));
// FIXME: build nodes for the declarator too.
return true;
}
bool WalkUpFromTypedefNameDecl(TypedefNameDecl *D) {
// Also a declarator.
Builder.noticeDeclaratorRange(Builder.getRange(D));
// FIXME: build nodes for the declarator too.
return true;
}
bool VisitDecl(Decl *D) {
assert(!D->isImplicit());
Builder.foldNode(Builder.getRange(D),
new (allocator()) syntax::UnknownDeclaration());
return true;
}
bool WalkUpFromTagDecl(TagDecl *C) {
// Avoid building UnknownDeclaration here, syntatically 'struct X {}' and
// similar are part of declaration specifiers and do not introduce a new
// top-level declaration.
return true;
}
bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
// (!) we do not want to call VisitDecl(), the declaration for translation
// unit is built by finalize().
return true;
}
bool WalkUpFromCompoundStmt(CompoundStmt *S) {
using NodeRole = syntax::NodeRole;
Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
for (auto *Child : S->body())
Builder.markStmtChild(Child, NodeRole::CompoundStatement_statement);
Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::CompoundStatement);
return true;
}
// Some statements are not yet handled by syntax trees.
bool WalkUpFromStmt(Stmt *S) {
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::UnknownStatement);
return true;
}
bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
// We override to traverse range initializer as VarDecl.
// RAV traverses it as a statement, we produce invalid node kinds in that
// case.
// FIXME: should do this in RAV instead?
if (S->getInit() && !TraverseStmt(S->getInit()))
return false;
if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
return false;
if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
return false;
if (S->getBody() && !TraverseStmt(S->getBody()))
return false;
return true;
}
bool TraverseStmt(Stmt *S) {
if (auto *DS = llvm::dyn_cast_or_null<DeclStmt>(S)) {
// We want to consume the semicolon, make sure SimpleDeclaration does not.
for (auto *D : DS->decls())
Builder.noticeDeclaratorWithoutSemicolon(D);
} else if (auto *E = llvm::dyn_cast_or_null<Expr>(S)) {
// (!) do not recurse into subexpressions.
// we do not have syntax trees for expressions yet, so we only want to see
// the first top-level expression.
return WalkUpFromExpr(E->IgnoreImplicit());
}
return RecursiveASTVisitor::TraverseStmt(S);
}
// Some expressions are not yet handled by syntax trees.
bool WalkUpFromExpr(Expr *E) {
assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
Builder.foldNode(Builder.getExprRange(E),
new (allocator()) syntax::UnknownExpression);
return true;
}
bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
auto Tokens = Builder.getRange(S);
if (Tokens.front().kind() == tok::coloncolon) {
// Handle nested namespace definitions. Those start at '::' token, e.g.
// namespace a^::b {}
// FIXME: build corresponding nodes for the name of this namespace.
return true;
}
Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition);
return true;
}
// The code below is very regular, it could even be generated with some
// preprocessor magic. We merely assign roles to the corresponding children
// and fold resulting nodes.
bool WalkUpFromDeclStmt(DeclStmt *S) {
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::DeclarationStatement);
return true;
}
bool WalkUpFromNullStmt(NullStmt *S) {
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::EmptyStatement);
return true;
}
bool WalkUpFromSwitchStmt(SwitchStmt *S) {
Builder.markChildToken(S->getSwitchLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::SwitchStatement);
return true;
}
bool WalkUpFromCaseStmt(CaseStmt *S) {
Builder.markChildToken(S->getKeywordLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseStatement_value);
Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::CaseStatement);
return true;
}
bool WalkUpFromDefaultStmt(DefaultStmt *S) {
Builder.markChildToken(S->getKeywordLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::DefaultStatement);
return true;
}
bool WalkUpFromIfStmt(IfStmt *S) {
Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getThen(),
syntax::NodeRole::IfStatement_thenStatement);
Builder.markChildToken(S->getElseLoc(),
syntax::NodeRole::IfStatement_elseKeyword);
Builder.markStmtChild(S->getElse(),
syntax::NodeRole::IfStatement_elseStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::IfStatement);
return true;
}
bool WalkUpFromForStmt(ForStmt *S) {
Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::ForStatement);
return true;
}
bool WalkUpFromWhileStmt(WhileStmt *S) {
Builder.markChildToken(S->getWhileLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::WhileStatement);
return true;
}
bool WalkUpFromContinueStmt(ContinueStmt *S) {
Builder.markChildToken(S->getContinueLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::ContinueStatement);
return true;
}
bool WalkUpFromBreakStmt(BreakStmt *S) {
Builder.markChildToken(S->getBreakLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::BreakStatement);
return true;
}
bool WalkUpFromReturnStmt(ReturnStmt *S) {
Builder.markChildToken(S->getReturnLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.markExprChild(S->getRetValue(),
syntax::NodeRole::ReturnStatement_value);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::ReturnStatement);
return true;
}
bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::RangeBasedForStatement);
return true;
}
bool WalkUpFromEmptyDecl(EmptyDecl *S) {
Builder.foldNode(Builder.getRange(S),
new (allocator()) syntax::EmptyDeclaration);
return true;
}
bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
Builder.markExprChild(S->getAssertExpr(),
syntax::NodeRole::StaticAssertDeclaration_condition);
Builder.markExprChild(S->getMessage(),
syntax::NodeRole::StaticAssertDeclaration_message);
Builder.foldNode(Builder.getRange(S),
new (allocator()) syntax::StaticAssertDeclaration);
return true;
}
bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
Builder.foldNode(Builder.getRange(S),
new (allocator()) syntax::LinkageSpecificationDeclaration);
return true;
}
bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
Builder.foldNode(Builder.getRange(S),
new (allocator()) syntax::NamespaceAliasDefinition);
return true;
}
bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
Builder.foldNode(Builder.getRange(S),
new (allocator()) syntax::UsingNamespaceDirective);
return true;
}
bool WalkUpFromUsingDecl(UsingDecl *S) {
Builder.foldNode(Builder.getRange(S),
new (allocator()) syntax::UsingDeclaration);
return true;
}
bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
Builder.foldNode(Builder.getRange(S),
new (allocator()) syntax::UsingDeclaration);
return true;
}
bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
Builder.foldNode(Builder.getRange(S),
new (allocator()) syntax::UsingDeclaration);
return true;
}
bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
Builder.foldNode(Builder.getRange(S),
new (allocator()) syntax::TypeAliasDeclaration);
return true;
}
private:
/// A small helper to save some typing.
llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
syntax::TreeBuilder &Builder;
const LangOptions &LangOpts;
};
} // namespace
void syntax::TreeBuilder::foldNode(llvm::ArrayRef<syntax::Token> Range,
syntax::Tree *New) {
Pending.foldChildren(Arena, Range, New);
}
void syntax::TreeBuilder::noticeDeclaratorRange(
llvm::ArrayRef<syntax::Token> Range) {
if (Pending.extendDelayedFold(Range))
return;
Pending.foldChildrenDelayed(Range,
new (allocator()) syntax::SimpleDeclaration);
}
void syntax::TreeBuilder::noticeDeclaratorWithoutSemicolon(Decl *D) {
DeclsWithoutSemicolons.insert(D);
}
void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
if (Loc.isInvalid())
return;
Pending.assignRole(*findToken(Loc), Role);
}
void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
if (!Child)
return;
auto Range = getStmtRange(Child);
// This is an expression in a statement position, consume the trailing
// semicolon and form an 'ExpressionStatement' node.
if (auto *E = dyn_cast<Expr>(Child)) {
Pending.assignRole(getExprRange(E),
NodeRole::ExpressionStatement_expression);
// (!) 'getRange(Stmt)' ensures this already covers a trailing semicolon.
Pending.foldChildren(Arena, Range,
new (allocator()) syntax::ExpressionStatement);
}
Pending.assignRole(Range, Role);
}
void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
if (!Child)
return;
Pending.assignRole(getExprRange(Child), Role);
}
const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
auto Tokens = Arena.tokenBuffer().expandedTokens();
auto &SM = Arena.sourceManager();
auto It = llvm::partition_point(Tokens, [&](const syntax::Token &T) {
return SM.isBeforeInTranslationUnit(T.location(), L);
});
assert(It != Tokens.end());
assert(It->location() == L);
return &*It;
}
syntax::TranslationUnit *
syntax::buildSyntaxTree(Arena &A, const TranslationUnitDecl &TU) {
TreeBuilder Builder(A);
BuildTreeVisitor(TU.getASTContext(), Builder).TraverseAST(TU.getASTContext());
return std::move(Builder).finalize();
}