Aart Bik 1be09496bf [mlir][sparse] improved tensor type lowering
Also includes a first codegen example (although full support need tuple access)

Reviewed By: Peiming

Differential Revision: https://reviews.llvm.org/D133080
2022-09-01 09:24:20 -07:00

199 lines
7.9 KiB
C++

//===- SparseTensorCodegen.cpp - Sparse tensor primitives conversion ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pass that converts sparse tensor types and primitives to actual compiler
// visible buffers and actual compiler IR that implements these primitives on
// the selected sparse tensor storage schemes. This pass provides an alternative
// to the SparseTensorConversion pass, eliminating the dependence on a runtime
// support library, and providing much more opportunities for subsequent
// compiler optimization of the generated code.
//
//===----------------------------------------------------------------------===//
#include "CodegenUtils.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
/// Reorders stored dimension to logical dimension.
static unsigned reorder(const SparseTensorEncodingAttr &enc, unsigned d) {
auto order = enc.getDimOrdering();
if (order) {
assert(order.isPermutation());
return order.getDimPosition(d);
}
return d;
}
/// Maps a sparse tensor type to the appropriate compounded buffers.
static Optional<Type> convertSparseTensorType(Type type) {
auto enc = getSparseTensorEncoding(type);
if (!enc)
return llvm::None;
// Construct the basic types.
auto context = type.getContext();
unsigned idxWidth = enc.getIndexBitWidth();
unsigned ptrWidth = enc.getPointerBitWidth();
RankedTensorType rType = type.cast<RankedTensorType>();
Type indexType = IndexType::get(context);
Type idxType = idxWidth ? IntegerType::get(context, idxWidth) : indexType;
Type ptrType = ptrWidth ? IntegerType::get(context, ptrWidth) : indexType;
Type eltType = rType.getElementType();
ArrayRef<int64_t> shape = rType.getShape();
//
// Sparse tensor storage for rank-dimensional tensor is organized as a
// single compound type with the following fields:
//
// struct {
// ; if dynamic shape:
// memref<rank x index> dimSize ; size in each dimension
// ; per-dimension d:
// ; if dense:
// <nothing>
// ; if compresed:
// memref<? x idx> indices-d ; indices for sparse dim d
// memref<? x ptr> pointers-d ; pointers for sparse dim d
// ; if singleton:
// memref<? x idx> indices-d ; indices for singleton dim d
// memref<? x eltType> values ; values
// };
//
int64_t linear = 1;
bool allDense = true;
unsigned rank = rType.getShape().size();
SmallVector<Type, 8> fields;
// The dimSizes array.
if (!rType.hasStaticShape())
fields.push_back(MemRefType::get({rank}, indexType));
// Per-dimension storage.
for (unsigned r = 0; r < rank; r++) {
// Get the original dimension (ro) for the current stored dimension (r).
unsigned ro = reorder(enc, r);
// Dimension level types apply in order to the reordered dimension.
// As a result, the compound type can be constructed directly in the given
// order. Clients of this type know what field is what from the sparse
// tensor type.
switch (enc.getDimLevelType()[r]) {
case SparseTensorEncodingAttr::DimLevelType::Dense:
// Linearize the size of consecutive dense dimensions.
if (ShapedType::isDynamic(shape[ro]) || ShapedType::isDynamic(linear))
linear = ShapedType::kDynamicSize;
else
linear *= shape[ro];
break;
case SparseTensorEncodingAttr::DimLevelType::Compressed:
case SparseTensorEncodingAttr::DimLevelType::CompressedNu:
case SparseTensorEncodingAttr::DimLevelType::CompressedNo:
case SparseTensorEncodingAttr::DimLevelType::CompressedNuNo:
fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, idxType));
fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, ptrType));
allDense = false;
linear = 1;
break;
case SparseTensorEncodingAttr::DimLevelType::Singleton:
case SparseTensorEncodingAttr::DimLevelType::SingletonNu:
case SparseTensorEncodingAttr::DimLevelType::SingletonNo:
case SparseTensorEncodingAttr::DimLevelType::SingletonNuNo:
fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, idxType));
allDense = false;
linear = 1;
break;
}
}
// The values array.
int64_t nnz =
(rType.hasStaticShape() && allDense) ? linear : ShapedType::kDynamicSize;
fields.push_back(MemRefType::get({nnz}, eltType));
// Sparse tensor storage (temporarily) lives in a tuple. This allows a
// simple 1:1 type conversion during codegen. A subsequent pass uses
// a 1:N type conversion to expand the tuple into its fields.
return TupleType::get(context, fields);
}
//===----------------------------------------------------------------------===//
// Codegen rules.
//===----------------------------------------------------------------------===//
/// Sparse codegen rule for returns.
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands());
return success();
}
};
/// Sparse codegen rule for dimension accesses.
class SparseDimOpConverter : public OpConversionPattern<tensor::DimOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
Type type = op.getSource().getType();
// Only rewrite annotated DimOp with constant index.
auto enc = getSparseTensorEncoding(type);
if (!enc)
return failure();
Optional<int64_t> index = op.getConstantIndex();
if (!index)
return failure();
// Access into static shape can query original type directly.
// Note that this is typically already done by DimOp's folding.
RankedTensorType rType = type.cast<RankedTensorType>();
if (rType.hasStaticShape()) {
rewriter.replaceOp(
op, constantIndex(rewriter, loc, rType.getShape()[*index]));
return success();
}
// Any other query can consult the dimSize array.
// TODO: this needs tuple access
return failure();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Sparse tensor type conversion into an actual buffer.
//===----------------------------------------------------------------------===//
mlir::SparseTensorTypeToBufferConverter::SparseTensorTypeToBufferConverter() {
addConversion([](Type type) { return type; });
addConversion(convertSparseTensorType);
}
//===----------------------------------------------------------------------===//
// Public method for populating conversion rules.
//===----------------------------------------------------------------------===//
/// Populates the given patterns list with conversion rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparseTensorCodegenPatterns(TypeConverter &typeConverter,
RewritePatternSet &patterns) {
patterns.add<SparseReturnConverter, SparseDimOpConverter>(
typeConverter, patterns.getContext());
}