llvm-project/clang/lib/StaticAnalyzer/Core/ConstraintManager.cpp
Gabor Marton 1c1c1e25f9 [analyzer] Implement assume in terms of assumeDual
Summary:
By evaluating both children states, now we are capable of discovering
infeasible parent states. In this patch, `assume` is implemented in the terms
of `assumeDuali`. This might be suboptimal (e.g. where there are adjacent
assume(true) and assume(false) calls, next patches addresses that). This patch
fixes a real CRASH.
Fixes https://github.com/llvm/llvm-project/issues/54272

Differential Revision:
https://reviews.llvm.org/D124758
2022-05-10 10:16:55 +02:00

79 lines
3.1 KiB
C++

//===- ConstraintManager.cpp - Constraints on symbolic values. ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defined the interface to manage constraints on symbolic values.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
#include "clang/AST/Type.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
using namespace clang;
using namespace ento;
ConstraintManager::~ConstraintManager() = default;
static DefinedSVal getLocFromSymbol(const ProgramStateRef &State,
SymbolRef Sym) {
const MemRegion *R =
State->getStateManager().getRegionManager().getSymbolicRegion(Sym);
return loc::MemRegionVal(R);
}
ConditionTruthVal ConstraintManager::checkNull(ProgramStateRef State,
SymbolRef Sym) {
QualType Ty = Sym->getType();
DefinedSVal V = Loc::isLocType(Ty) ? getLocFromSymbol(State, Sym)
: nonloc::SymbolVal(Sym);
const ProgramStatePair &P = assumeDual(State, V);
if (P.first && !P.second)
return ConditionTruthVal(false);
if (!P.first && P.second)
return ConditionTruthVal(true);
return {};
}
ConstraintManager::ProgramStatePair
ConstraintManager::assumeDual(ProgramStateRef State, DefinedSVal Cond) {
ProgramStateRef StTrue = assumeInternal(State, Cond, true);
if (!StTrue) {
ProgramStateRef StFalse = assumeInternal(State, Cond, false);
if (LLVM_UNLIKELY(!StFalse)) { // both infeasible
ProgramStateRef StInfeasible = State->cloneAsPosteriorlyOverconstrained();
assert(StInfeasible->isPosteriorlyOverconstrained());
// Checkers might rely on the API contract that both returned states
// cannot be null. Thus, we return StInfeasible for both branches because
// it might happen that a Checker uncoditionally uses one of them if the
// other is a nullptr. This may also happen with the non-dual and
// adjacent `assume(true)` and `assume(false)` calls. By implementing
// assume in therms of assumeDual, we can keep our API contract there as
// well.
return ProgramStatePair(StInfeasible, StInfeasible);
}
return ProgramStatePair(nullptr, StFalse);
}
ProgramStateRef StFalse = assumeInternal(State, Cond, false);
if (!StFalse) {
return ProgramStatePair(StTrue, nullptr);
}
return ProgramStatePair(StTrue, StFalse);
}
ProgramStateRef ConstraintManager::assume(ProgramStateRef State,
DefinedSVal Cond, bool Assumption) {
ConstraintManager::ProgramStatePair R = assumeDual(State, Cond);
return Assumption ? R.first : R.second;
}