
VLST return values are coerced to VLATs in the function epilog for consistency with the VLAT ABI. Previously, this coercion was done through memory. It is preferable to use the llvm.experimental.vector.insert intrinsic to avoid going through memory here. Reviewed By: c-rhodes Differential Revision: https://reviews.llvm.org/D94290
106 lines
6.5 KiB
C
106 lines
6.5 KiB
C
// NOTE: Assertions have been autogenerated by utils/update_cc_test_checks.py
|
|
// RUN: %clang_cc1 -triple aarch64-none-linux-gnu -target-feature +sve -target-feature +bf16 -msve-vector-bits=512 -fallow-half-arguments-and-returns -S -disable-llvm-passes -emit-llvm -o - %s | FileCheck %s
|
|
|
|
#include <arm_sve.h>
|
|
|
|
#define N __ARM_FEATURE_SVE_BITS
|
|
|
|
typedef svint32_t fixed_int32_t __attribute__((arm_sve_vector_bits(N)));
|
|
typedef svbool_t fixed_bool_t __attribute__((arm_sve_vector_bits(N)));
|
|
|
|
fixed_bool_t global_pred;
|
|
fixed_int32_t global_vec;
|
|
|
|
// CHECK-LABEL: @foo(
|
|
// CHECK-NEXT: entry:
|
|
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <16 x i32>, align 16
|
|
// CHECK-NEXT: [[PRED_ADDR:%.*]] = alloca <vscale x 16 x i1>, align 2
|
|
// CHECK-NEXT: [[VEC_ADDR:%.*]] = alloca <vscale x 4 x i32>, align 16
|
|
// CHECK-NEXT: [[PG:%.*]] = alloca <vscale x 16 x i1>, align 2
|
|
// CHECK-NEXT: store <vscale x 16 x i1> [[PRED:%.*]], <vscale x 16 x i1>* [[PRED_ADDR]], align 2
|
|
// CHECK-NEXT: store <vscale x 4 x i32> [[VEC:%.*]], <vscale x 4 x i32>* [[VEC_ADDR]], align 16
|
|
// CHECK-NEXT: [[TMP0:%.*]] = load <vscale x 16 x i1>, <vscale x 16 x i1>* [[PRED_ADDR]], align 2
|
|
// CHECK-NEXT: [[TMP1:%.*]] = load <8 x i8>, <8 x i8>* @global_pred, align 2
|
|
// CHECK-NEXT: [[TMP2:%.*]] = load <vscale x 16 x i1>, <vscale x 16 x i1>* bitcast (<8 x i8>* @global_pred to <vscale x 16 x i1>*), align 2
|
|
// CHECK-NEXT: [[TMP3:%.*]] = load <8 x i8>, <8 x i8>* @global_pred, align 2
|
|
// CHECK-NEXT: [[TMP4:%.*]] = load <vscale x 16 x i1>, <vscale x 16 x i1>* bitcast (<8 x i8>* @global_pred to <vscale x 16 x i1>*), align 2
|
|
// CHECK-NEXT: [[TMP5:%.*]] = call <vscale x 16 x i1> @llvm.aarch64.sve.and.z.nxv16i1(<vscale x 16 x i1> [[TMP0]], <vscale x 16 x i1> [[TMP2]], <vscale x 16 x i1> [[TMP4]])
|
|
// CHECK-NEXT: store <vscale x 16 x i1> [[TMP5]], <vscale x 16 x i1>* [[PG]], align 2
|
|
// CHECK-NEXT: [[TMP6:%.*]] = load <vscale x 16 x i1>, <vscale x 16 x i1>* [[PG]], align 2
|
|
// CHECK-NEXT: [[TMP7:%.*]] = load <16 x i32>, <16 x i32>* @global_vec, align 16
|
|
// CHECK-NEXT: [[CASTSCALABLESVE:%.*]] = call <vscale x 4 x i32> @llvm.experimental.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> undef, <16 x i32> [[TMP7]], i64 0)
|
|
// CHECK-NEXT: [[TMP8:%.*]] = load <vscale x 4 x i32>, <vscale x 4 x i32>* [[VEC_ADDR]], align 16
|
|
// CHECK-NEXT: [[TMP9:%.*]] = call <vscale x 4 x i1> @llvm.aarch64.sve.convert.from.svbool.nxv4i1(<vscale x 16 x i1> [[TMP6]])
|
|
// CHECK-NEXT: [[TMP10:%.*]] = call <vscale x 4 x i32> @llvm.aarch64.sve.add.nxv4i32(<vscale x 4 x i1> [[TMP9]], <vscale x 4 x i32> [[CASTSCALABLESVE]], <vscale x 4 x i32> [[TMP8]])
|
|
// CHECK-NEXT: [[CASTFIXEDSVE:%.*]] = call <16 x i32> @llvm.experimental.vector.extract.v16i32.nxv4i32(<vscale x 4 x i32> [[TMP10]], i64 0)
|
|
// CHECK-NEXT: store <16 x i32> [[CASTFIXEDSVE]], <16 x i32>* [[RETVAL]], align 16
|
|
// CHECK-NEXT: [[TMP11:%.*]] = load <16 x i32>, <16 x i32>* [[RETVAL]], align 16
|
|
// CHECK-NEXT: [[CASTSCALABLESVE1:%.*]] = call <vscale x 4 x i32> @llvm.experimental.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> undef, <16 x i32> [[TMP11]], i64 0)
|
|
// CHECK-NEXT: ret <vscale x 4 x i32> [[CASTSCALABLESVE1]]
|
|
//
|
|
fixed_int32_t foo(svbool_t pred, svint32_t vec) {
|
|
svbool_t pg = svand_z(pred, global_pred, global_pred);
|
|
return svadd_m(pg, global_vec, vec);
|
|
}
|
|
|
|
// CHECK-LABEL: @test_ptr_to_global(
|
|
// CHECK-NEXT: entry:
|
|
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <16 x i32>, align 16
|
|
// CHECK-NEXT: [[GLOBAL_VEC_PTR:%.*]] = alloca <16 x i32>*, align 8
|
|
// CHECK-NEXT: store <16 x i32>* @global_vec, <16 x i32>** [[GLOBAL_VEC_PTR]], align 8
|
|
// CHECK-NEXT: [[TMP0:%.*]] = load <16 x i32>*, <16 x i32>** [[GLOBAL_VEC_PTR]], align 8
|
|
// CHECK-NEXT: [[TMP1:%.*]] = load <16 x i32>, <16 x i32>* [[TMP0]], align 16
|
|
// CHECK-NEXT: store <16 x i32> [[TMP1]], <16 x i32>* [[RETVAL]], align 16
|
|
// CHECK-NEXT: [[TMP2:%.*]] = load <16 x i32>, <16 x i32>* [[RETVAL]], align 16
|
|
// CHECK-NEXT: [[CASTSCALABLESVE:%.*]] = call <vscale x 4 x i32> @llvm.experimental.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> undef, <16 x i32> [[TMP2]], i64 0)
|
|
// CHECK-NEXT: ret <vscale x 4 x i32> [[CASTSCALABLESVE]]
|
|
//
|
|
fixed_int32_t test_ptr_to_global() {
|
|
fixed_int32_t *global_vec_ptr;
|
|
global_vec_ptr = &global_vec;
|
|
return *global_vec_ptr;
|
|
}
|
|
|
|
//
|
|
// Test casting pointer from fixed-length array to scalable vector.
|
|
// CHECK-LABEL: @array_arg(
|
|
// CHECK-NEXT: entry:
|
|
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <16 x i32>, align 16
|
|
// CHECK-NEXT: [[ARR_ADDR:%.*]] = alloca <16 x i32>*, align 8
|
|
// CHECK-NEXT: store <16 x i32>* [[ARR:%.*]], <16 x i32>** [[ARR_ADDR]], align 8
|
|
// CHECK-NEXT: [[TMP0:%.*]] = load <16 x i32>*, <16 x i32>** [[ARR_ADDR]], align 8
|
|
// CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds <16 x i32>, <16 x i32>* [[TMP0]], i64 0
|
|
// CHECK-NEXT: [[TMP1:%.*]] = load <16 x i32>, <16 x i32>* [[ARRAYIDX]], align 16
|
|
// CHECK-NEXT: store <16 x i32> [[TMP1]], <16 x i32>* [[RETVAL]], align 16
|
|
// CHECK-NEXT: [[TMP2:%.*]] = load <16 x i32>, <16 x i32>* [[RETVAL]], align 16
|
|
// CHECK-NEXT: [[CASTSCALABLESVE:%.*]] = call <vscale x 4 x i32> @llvm.experimental.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> undef, <16 x i32> [[TMP2]], i64 0)
|
|
// CHECK-NEXT: ret <vscale x 4 x i32> [[CASTSCALABLESVE]]
|
|
//
|
|
fixed_int32_t array_arg(fixed_int32_t arr[]) {
|
|
return arr[0];
|
|
}
|
|
|
|
// CHECK-LABEL: @address_of_array_idx(
|
|
// CHECK-NEXT: entry:
|
|
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <8 x i8>, align 2
|
|
// CHECK-NEXT: [[ARR:%.*]] = alloca [3 x <8 x i8>], align 2
|
|
// CHECK-NEXT: [[PARR:%.*]] = alloca <8 x i8>*, align 8
|
|
// CHECK-NEXT: [[RETVAL_COERCE:%.*]] = alloca <vscale x 16 x i1>, align 16
|
|
// CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [3 x <8 x i8>], [3 x <8 x i8>]* [[ARR]], i64 0, i64 0
|
|
// CHECK-NEXT: store <8 x i8>* [[ARRAYIDX]], <8 x i8>** [[PARR]], align 8
|
|
// CHECK-NEXT: [[TMP0:%.*]] = load <8 x i8>*, <8 x i8>** [[PARR]], align 8
|
|
// CHECK-NEXT: [[TMP1:%.*]] = load <8 x i8>, <8 x i8>* [[TMP0]], align 2
|
|
// CHECK-NEXT: store <8 x i8> [[TMP1]], <8 x i8>* [[RETVAL]], align 2
|
|
// CHECK-NEXT: [[TMP2:%.*]] = bitcast <vscale x 16 x i1>* [[RETVAL_COERCE]] to i8*
|
|
// CHECK-NEXT: [[TMP3:%.*]] = bitcast <8 x i8>* [[RETVAL]] to i8*
|
|
// CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 16 [[TMP2]], i8* align 2 [[TMP3]], i64 8, i1 false)
|
|
// CHECK-NEXT: [[TMP4:%.*]] = load <vscale x 16 x i1>, <vscale x 16 x i1>* [[RETVAL_COERCE]], align 16
|
|
// CHECK-NEXT: ret <vscale x 16 x i1> [[TMP4]]
|
|
//
|
|
fixed_bool_t address_of_array_idx() {
|
|
fixed_bool_t arr[3];
|
|
fixed_bool_t *parr;
|
|
parr = &arr[0];
|
|
return *parr;
|
|
}
|